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Featured Application: This study proposed a novel shape finding technique for both the 2D par-
allel and 3D spatial main cables of suspension bridge with sufficient accuracy and high efficiency.

Abstract: The determination of the final cable shape under the self-weight of the suspension bridge
enables its safe construction and operation. Most existing studies solve the cable shape segment-by-
segment in the Lagrangian coordinate system. This paper develops a novel shape finding method
for the main cable of suspension bridge using nonlinear finite element approach with Eulerian
description. The governing differential equations for a three-dimensional spatial main cable is
developed before a one-dimensional linear shape function is introduced to solve the cable shape
utilizing the Newton iteration method. The proposed method can be readily reduced to solve the
two-dimensional parallel cable shape. Two iteration layers are required for the proposed method.
The shape finding process has no need for the information of the cable material or cross section
using the present technique. The commonly used segmental catenary method is compared with the
present method using three cases study, i.e., a 1666-m-main-span earth-anchored suspension bridge
with 2D parallel and 3D spatial main cables as well as a 300-m-main-span self-anchored suspension
bridge with 3D spatial main cables. Numerical studies and iteration results show that the proposed
shape finding technique is sufficiently accurate and operationally convenient to achieve the target
configuration of the main cable.

Keywords: suspension bridge; main cable; shape-finding; nonlinear finite element method; Eule-
rian description

1. Introduction

The advancements of the fundamental theory, construction technique, and new mate-
rials have enabled the rapid growth of the bridge main span length to cross the large rivers,
wide canyons, and deep straits [1]. As a bridge type with largest span capacity, the suspen-
sion bridge is always a preferable candidate for a single span longer than one kilometer
from the perspectives of the mechanical property and economic performance. Though the
longest suspension bridge is still the Akashi Kaikyō Bridge with main span of 1991 m built
in 1998, several super-long suspension bridges with the main span longer than two kilome-
ters are recently being constructed, such as the 2023-m-main-span Çanakkale 1915 Bridge
in Turkey, the 2018-m-main-span Shiziyang Bridge in China, and the 2300-m-main-span
Zhanggao Bridge across Yangtze River in China. The gravity stiffness of the main cable
owing to the self-weight or initial tension stress is one of the most important reasons for
the continuous growth of the main span for the suspension bridge. Its proportion in the
stiffness of the suspension bridge system will also increase with the growth of the main
span length.
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Essentially, the gravity stiffness steams from the geometric nonlinearity, which strongly
depends on the configuration and internal force of the main cable. However, the shape
of the main cable should be prescribed accounting for the effects of all external forces,
which is always unable to be amended during the construction [2]. The configuration or
target shape for the main cable at the initial equilibrium state under dead loads due to
the self-weights of the bridge should be predetermined at the preliminary design stage. A
shape finding or form finding process is therefore conducted to determine the shape and
internal forces of the main cable through minimizing the dead-load-induced deformation
of the bridge. Moreover, the increase of the main cable dimension and the reduction of the
cable design safety factor require a more refined estimation of the cable configuration and
internal forces in the structural components [3].

In the past several decades, the theory of the shape finding for the main cable of
suspension bridge has received intensive attention. For a given cable segment of specified
unstrained length, cross section area, Young’s elastic modulus, and density, there are
many kinds of relations between node force and node displacement/position, e.g., a link
element considering sag effect [4,5], a two-node curved cable element [6,7], and various
two-dimensional [8] and three-dimensional catenary cable elements [9–12]. The segmental
parabola theory assumes the shape of the main cable to be a parabolic curve under uniform
load [4,13]. This approximation ignores the concentrated forces transferred from the
hangers, which is only acceptable for medium and small span suspension bridges.

The segmental catenary theory allows one to achieve the analytical solutions of each
cable segment shape. The equations describing the analytical relations between the axial
forces and the strained/unstrained lengths of a cable segment under the action of the
self-weight can be found in many pioneering studies, e.g., [14]. These equations were
then widely employed to develop various shape finding approaches for the main cable
of the suspension bridge, such as the initial force method or segmental catenary method
(SCM) [3,15–18], the target configuration under dead load (TCUD) method [19], the im-
proved TCUD method [20], the Generalized TCUD method [21], the coordinate iteration
method [22], and the perturbation approach [23,24]. The unstrained length of each main ca-
ble segment in these methods is unknown and solved in the successive nonlinear equations
using the nonlinear finite element iteration [15,16,25–29]. Generally, at least two loop layers
are required for calculating the unstrained length and axial force of each catenary segment
before determining the shape of the main cable. To avoid a loop over each element, the
unstrained length of each cable is treated as an unknown parameter in formulating a tan-
gential stiffness matrix in the TCUD method [19] and the Generalized TCUD method [21].
Shape finding process based on the analytical solution of each catenary element is mostly
exact. However, its theoretical derivation is complex, and the achievement of the algorithm
requires high programing skills. Moreover, most of them are restricted to two-dimensional
(2D) parallel main cables.

The three-dimensional (3D) spatial main cables, which are intended to enhance the
lateral stiffness of the suspension bridge, have been employed in some recent projects, such
as the Yongjong Grand Bridge in Korea, Jiangdong Bridge in China, the New Oakland Bay
Bridge in the USA, and Halogaland Bridge in Norway. Tang et al. [25] extended the 2D
segmental catenary approach to 3D by iterating the axial component of the main cable to
achieve a target sag-to-span ratio. Kim et al. [20] estimated the spatial cable shape of the
Yongjong Grand Bridge using an improved TCUD method coupled with the initial force
method by introducing a 3D elastic catenary cable element. The procedures in these studies
are lengthier and more time-consuming for spatially curved cables as compared with the
planar cable system.

To simplify the calculation procedure and reduce the computation burden, the finite
element method (FEM) was employed to estimate the 3D main cable shape. A five-step
algorithm was proposed in Xiao et al. [30] and Song et al. [31] using the common FEM
software ANSYS to solve both 2D planar and 3D spatial cable shapes, which is convenient
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to be executed at the preliminary design stage. However, the use of the common FEM
program results in the insufficiently theoretical analysis for the core algorithm.

As can be seen, most above-mentioned methods are developed in the Lagrangian coor-
dinate system, which expresses the quantities of interest as the function of the undeformed
position or unstrained length of the main cable segment. However, the unstrained length
of each cable segment is usually unknown, resulting in more loop layers. In this paper, a
shape finding procedure for the main cable using the NFEM and the Eulerian description
is developed. A modified governing equation for the whole main cable, rather than cable
segments, based on the force equilibrium is proposed by introducing a condition function
to express the concentrated forces from hangers [14]. All quantities of the main cable are
expressed in a fixed coordinate system. That is, if the longitudinal direction along the
bridge axis, the vertical and lateral directions of a suspension bridge are defined as the x-,
y- and z-axes, the variables of the main cable related to the y and z coordinates of the cable
are expressed by a fixed x coordinate instead of the unstrained length of the cable. An FEM
discretization process [32] starting from a linear basic function is then conducted to solve
the governing partial differential equations to get a group of nonlinear algebraic equations.
The iteration schemes for solving the cable shape with known and unknown horizontal
axial force are proposed. The commonly used segmental catenary method is compared
with the present approach. The shapes of 2D parallel and 3D spatial main cables, which
are applied to a 1666-m main span earth-anchored suspension bridge are solved using
the present approach and the segmental catenary method, respectively. The self-anchored
Yongjong Grand Bridge analyzed by Kim et al. [16] is also examined using the proposed
method to validate its accuracy. The proposed algorithm provides an alternative to estimate
the main cable shape at the preliminary design stage using only two-layer iteration and
less programming. The use of the FEM allows the present method to be readily embedded
in some commonly used FE analysis software and easily used by general bridge engineers.

2. Shape Finding of the Main Cable with Eulerian Description
2.1. Governing Equations of Spatial Main Cable

As shown in Figure 1a, a spatial main cable is described in a Eulerian coordinate
system. The x-axis is the longitudinal direction along the bridge axis. The y-axis is in
the vertical direction and the z-axis is in the lateral direction of the bridge. The tension
forces of the cable at two ends are decomposed into three components, i.e.,

(
H0, Fy1, Fz1

)
and

(
H0, Fy2, Fz2

)
. The unit weight of the main cable is defined as q. The projected length

of the cable in the x-direction is L. The total number of hangers is n. The tension of ith
(i = 1, 2, . . . , n) inclined hanger is noted as Ti, which consists of a vertical force of Tyi in
the y-direction and a lateral component of Tzi in the z direction, as shown in Figure 1b.
The connection position between the ith hanger and the main cable is at the coordinate
of (xi, yi, zi) or (xi, yi,−zi). The other connection position at the bridge deck is defined as
(xi, ydi, zdi) or (xi, ydi,−zdi).

At the final state of the bridge, the lumped force transferred from each inclined hanger
Ti can be determined from the dead load of the girder and self-weight of the hanger [25].
The distribution force due to the gravity of the main cable are also prescribed. To establish
the equilibrium equations of a spatial main cable, four assumptions are employed in this
study:

(1) The main cable of the suspension bridge is ideally flexible and unable to bear any
bending moment. Only the axial tension is considered for the main cable.

(2) The axial deformation of the main cable is tiny such that the area of the cross section
for the main cable remains unchanged and the cable weight per unit length is a
constant.

(3) The linear elastic assumption for all materials is adopted.
(4) All the loadings on the main cable are parallel to the y-o-z plane. The tension in the

x-direction of the main cable is constant and defined as H0.
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The first three assumptions are commonly employed during the shape finding process
at the preliminary design stage, e.g., Li et al. [12]; Kim et al. [16,20]; Zhang et al. [18]. As
reported by Zhang et al. [18], the flexural stiffness of the main cable is insignificant and
can be neglected during the construction process. Moreover, the main cable should work
substantially below the yield stress such that the axial deformation is tiny and the variation
of the cross-section area is negligible. For most modern suspension bridges, the hangers
in are designed to incline only in the cross-sectional plane of the bridge. There is no or
insignificant tension component of each hanger along the longitudinal direction. Therefore,
the tension of the main cable in the x-direction remains constant.

The tension force along the axis of the main cable is assumed as F, which can be
decomposed into the H0, Fy and Fz in the x-, y- and z-direction, respectively. The direction
of F is parallel to the cable element at the position of interest, i.e., ds = (dx, dy, dz). The
ratio between the Fy, Fz and H0 can be expressed as:

Fy

H0
=

dy
dx

(1)

Fz

H0
=

dz
dx

(2)

Taking the derivative of Equations (1) and (2) with the respect to x gives the form of

dFy

dx
= H0

d2y
dx2 (3)

dFz

dx
= H0

d2z
dx2 (4)
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The distributions of Fy and Fz along the x-direction can also be formulated as the
functions of real loadings:

dFy

dx
= q

√
1 +

(
dy
dx

)2
+

(
dz
dx

)2
+ Tyiδ(x− xi) (5)

dFz

dx
= Tziδ(x− xi) (6)

in which δ(x− xi) is a condition function defined as:

δ(x− xi) =

{
∞, x = xi
0, x 6= xi

(7)

∫ +∞

−∞
f (x)δ(x− xi)dx = f (xi) (8)

It is noteworthy that the Einstein summation convention is employed hereafter in this
study for the purpose of the formula simplification, e.g., Tyiδ(x− xi) = ∑n

i=1 Tyiδ(x− xi)
in Equations (5) and (6). The governing equations for the spatial main cable can be obtained
by combing the Equations (3) and (6) with the form of

H0y′′ = q
√

1 + y′2 + z′2 + Tyiδ(x− xi) (9)

H0z′′ = Tziδ(x− xi) (10)

in which the dash denotes spatial differentiation with respect to x. For the two-dimensional
main cable that is parallel to the x-o-y plane, a constant z coordinate is assigned.
Equations (9) and (10) can be reduced as:

H0y′′ = q
√

1 + y′2 + Tyiδ(x− xi) (11)

2.2. Nonlinear FEM Solution for the Cable Shape

A differential equation with the strong form is defined as f (x, u, u′, u′′ , · · ·) = 0, in
which f (�) is a function symbol, x is the independent variable, u is the dependent variable,
u′, u′′ , · · · are the first-, second- and high-order derivatives with respect to the x. In FEM, it
can be discretized using a basis function or a shape function Ni to produce a weak form
of
∫

Ω f (x, u, u′, u′′ , · · ·)NidΩ = 0, in which Ω is the computational domain of interest. To
solve the cable shape, a one-dimensional linear shape function is adopted in this study
with the form of

Ni(x) = ai1 + ai2x (12)

in which ai1 and ai2 are undetermined coefficients estimated by the nodal coordinates of
the element. By using the Galerkin’s method, the cable shape in terms of y(x) and z(x) can
be formulated as:

y(x) = yi Ni(x) (13)

z(x) = zi Ni(x) (14)

By introducing the Ni(x), the discrete algebraic form or weak form of Equations (9)
and (10) can be expressed as:∫ L

0
−H0y′′Ni(x)dx +

∫ L

0
q
√

1 + y′2 + z′2Ni(x)dx +
∫ L

0
Tyjδ

(
x− xj

)
Ni(x)dx = 0 (15)

∫ L

0
−H0z′′Ni(x)dx +

∫ L

0
Tzjδ

(
x− xj

)
Ni(x)dx = 0 (16)

in which the subscript j (j = 1, 2, . . . , n) indicates the hanger ID, which is introduced to
distinguish with the subscript i before the Einstein summation convention is applied. The
subscripts k and l in the following sections are also utilized for the same purpose. The
integration by parts is applied to Equations (15) and (16), which leads to
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∫ L

0
H0y′

dNi(x)
dx

dx− H0y′Ni(x)|BC +
∫ L

0
q
√

1 + y′2 + z′2Ni(x)dx + Tyi = 0 (17)

∫ L

0
H0z′

dNi(x)
dx

dx− H0z′Ni(x)|BC + Tzi = 0 (18)

in which BC indicates the integral boundary condition. The substitution of Equation (8)
into Equations (17) and (18) produces:∫ L

0
H0yj

dNj(x)
dx

dNi(x)
dx

dx− H0y′Ni(x)|BC +
∫ L

0
q

√
1 +

[
yj

dNj(x)
dx

]2

+

[
zj

dNj(x)
dx

]2

Ni(x)dx + Tyi = 0 (19)

∫ L

0
H0zj

dNj(x)
dx

dNi(x)
dx

dx− H0z′Ni(x)|BC + Tzi = 0 (20)

in which yj and zj are the final y-direction and z-direction coordinates of the main cable.
An additional formula for describing the ratio between Tyi and Tzi is given as:

Tzi
Tyi

=
zi − zdi
yi − ydi

(21)

As formulated in Equation (12), the differential of a one-dimensional linear shape
function with respect to x is a constant for an element. Meanwhile, the node of the
main cable that is located at the top of the pylon is assumed to be fixed. The Dirichlet
boundary condition is therefore applied to the variables of y and z. The integral form of
Equations (19) and (20) can be alternatively solved using a form of the summation as:

∑Ωe

(
H0yj

dNj(x)
dx

dNi(x)
dx

dL
)
+∑Ωe

q

√
1 +

[
yj

dNj(x)
dx

]2

+

[
zj

dNj(x)
dx

]2 ∫ L

0
Ni(x)dx

+ Tyi = 0 (22)

∑Ωe

(
H0zj

dNj(x)
dx

dNi(x)
dx

dL
)
+ Tyi

zi − zdi
yi − ydi

= 0 (23)

in which dL is the length of element Ωe in the x-direction. It is worth mentioning that[
yj

dNj(x)
dx

]2
and

[
zj

dNj(x)
dx

]2
are constant within each element. However, their values are

not identical for different elements. To solve this nonlinear equation related to yj and zj,
the Newton iteration method [33] is introduced:

xn+1 = xn −ω
f (xn)

f ′(xn)
(24)

in which f (x) is the function to be solved, xn+1 is the approximate solution of f (x) = 0 at
(n + 1)-step iteration, ω is a relaxation coefficient, which is set as 1.0 in this study. f ′(xn)
in Equations (22) and (23) is a matrix for a multivariable problem, which consists of the
partial derivatives of the objective function with respect to each unknow variables:

Kyy
ij =

∂ fyi

∂yj
= ∑Ωe

(
H0

dNj(x)
dx

dNi(x)
dx

dL
)
+∑Ωe

 yl
dNl(x)

dx
dNj(x)

dx Ji√
1 + (yk

dNk(x)
dx )

2
+ (zk

dNk(x)
dx )

2

 (25)

Kyz
ij =

∂ fyi

∂zj
= ∑Ωe

 zl
dNl(x)

dx
dNj(x)

dx Ji√
1 + (yk

dNk(x)
dx )

2
+ (zk

dNk(x)
dx )

2

 (26)

Kzy
ij =

∂ fzi
∂yj

=

{
Tyi

zi−zdi
(yi−ydi)

2

0
, i = j
, i 6= j

(27)
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Kzz
ij =

∂ fzi
∂zj

= ∑Ωe

(
H0

dNj(x)
dx

dNi(x)
dx

dL
)
+

{
Tyi

zi
yi−ydi
0

, i = j
, i 6= j

(28)

in which fyi and fzi are functions described by the first members of Equations (22) and (23),
which are derived from the equilibrium equations in y-direction Equation (9) and
z-direction Equation (10) at ith point, respectively, Ji =

∫ L
0 Ni(x)dx = dL/2 for the

chosen one-dimensional linear shape function. To construct the Newton iteration form
Equations (22) and (23) for the main cable, a matrix related to the f ′(xn) and a vector
related to the f (xn) are assembled as:

K =

[
Kyy Kyz

Kzy Kzz

]
(29)

b =

(
fy
fz

)
(30)

in which Kyy, Kyz, Kzy, Kzz, fy and fz are obtained by assembling the Kyy
ij , Kyz

ij , Kyz
ij , Kzz

ij , fyi

and fzi for all elements, Kyy, Kyz, Kzy and Kzz are matrices with the size of n× n, fy and fz
are matrices with the size of n× 1. To solve the deformation increments of the main cable
in y- and z-directions, i.e., ∆ = (dy dz)T, a linear algebra equation is then developed with
the form of

K∆ = −ωb (31)

The nodal coordinates of the main cable are readily updated using the summation of
the (yi zi) and (dyi dzi). It is worth noting that he initial nodal coordinates (yi, zi) before
the iteration can be assigned as arbitrary values, the coordinates of the intersection point
(IP) between the pylon and main cable are suggested for the operational convenience.
The above iteration scheme is illustrated in Figure 2 with a given H0, which is called the
inner-layer iteration in this study.

However, in most cases, H0 is an undetermined parameter. The middle span-sag
f or the coordinate of the middle point in y-direction ymid of the main cable is always
prescribed. An outer-layer iteration is therefore implemented, as described in Figure 2.
At each outer-layer iteration, the coordinate of the middle point in y-direction ŷmid can be
solved by a given H0 using the inner-layer iteration. A one-to-one mapping relationship
ŷmid = g(H0) is assumed, in which g(�) is the function symbol. As a result, the solution
of H0 can be determined by finding the root of the equation G(H0) = g(H0)− ymid = 0.
Since g(H0) has no explicit expression, the Secant method is utilized to achieve a numerical
solution of H0. The initial conditions for H1 and H2 are suggested as the 1.0 time and 1.1
times of

H0 =
L ∑n

i=1 Tyi

8 f
(32)

For two-dimensional parallel main cables, the coordinate of a main cable in z-direction
zi is an invariant constant. The K can reduced to a n× n matrix as K = Kyy, in which Kyy is
assembled from the Kyy

ij by removing the zi-related terms in Equation (25) with the form of

Kyy
ij =

∂ fyi

∂yj
= ∑Ωe

(
H0

dNj(x)
dx

dNi(x)
dx

dL
)
+∑Ωe

 yl
dNl(x)

dx
dNj(x)

dx Ji√
1 + (yk

dNk(x)
dx )

2

 (33)
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2.3. Comparison with the Segmental Catenary Method

The segmental catenary method is an exact solution for an element of the main cable
deformed due to its self-weight. The lengths of each segment in x- y- and z-directions are
solved as:

lx =
Fx

Ec Ac
l0 −

Fx

q

{
sin h−1

(
Fy

H0

)
− sin h−1

(
Fy − ql0

H0

)}
(34)

ly =
Fz

Ec Ac
l0 −

Fz

q

{
sin h−1

(
Fy

H0

)
− sin h−1

(
Fy − ql0

H0

)}
(35)

lz =
Fy

Ec Ac
l0 −

Fx

2Ec Ac
− H0

q

√1 +
(

Fy

H0

)2
−

√
1 +

(
Fy − ql0

H0

)2
 (36)

in which lx, ly and lz are the distances between the two nodes of a segment along the
global x- y- and z-axes, Fx, Fy and Fz are three components of the global nodal force,
Ec is the elastic modulus of the main cable, Ac is the cross-sectional area, q is the self-
weight of the main cable per unit length, l0 is the unstrained length of the cable segment.
Figure 3 illustrates the iteration scheme of the segmental catenary method. For a two-pylon
suspension bridge, a guess of the axial force F1 =

(
Fx1, Fy1, Fz1

)
at one end of the main

cable is made first. The unstrained length l01 and ly1 and lz1 of first segment are obtained by
solving the transcendental equations described in Equations (34) and (36). The axial force
of next segment, which will be used to solve the l02 and ly2 and lz2 is then readily calculated
by introducing the tensile force of the first hanger. F1 will be adjusted by comparing the
coordinates of the IP at the other pylon in y- and z-directions, i.e., yIP and zIP with the
calculated ŷIP and ẑIP as well as the ymid with ŷmid to achieve a convergent solution.
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A comparison between the SCM and present NFEM is shown in Table 1. The SCM
focuses on each cable segment to develop its analytical expression of the cable shape
using algebraic equations (Equations (34) and (36)) in the Lagrangian coordinate system
with respect the unstrained cable length l0. The present NFEM solves the differential
equations of the whole cable in the Eulerian coordinate system with respect the bridge
axis coordinate x using the nonlinear finite element approximation. The SCM requires the
inputs of the axis stiffness of the cable, i.e., Ec Ac to determine the unstrained cable length
while no information regarding the cable material or cross section is needed in the NFEM
for solving the cable shape. It is noteworthy that the unstrained cable length, which is of
great importance during the construction stage, can also be calculated using the NFEM by
subtracting the elongation from the final length of the cable.

Table 1. Comparison between the SCM and NFEM.

Method Object Coordinate System Governing Equations Axis Stiffness of Cable

entry 1 Cable segment Lagrangian (with respect to l0) Algebraic equations Yes
entry 2 Whole cable Eulerian (with respect to x) Differential equations No

3. Cases Study
3.1. Case 1: 2D Parallel Main Cables of an Earth-Anchored Suspension Bridge

An earth-anchored suspension bridge with 2D parallel main cables is utilized, as
shown in Figure 4. The main span is 1666 m, and the side span is 500 m with a sag of
172.64 m in the main span. The designed sag-span ratio is 9.65. A single box girder with the
width of the 49.7 m is adopted. The height of the bridge tower is 265 m and the elevations
of the two IP points at the tops of the pylons are 267.414 m. There are two parallel vertical
cable planes, each of which consists of a main cable as well as 29 hangers in the side span
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and 103 hangers in the main span. The spacing between two parallel cables in z-direction
is 41 m. The cable segment lengths in the x-direction are 35 m + 28 × 16 m + 17 m in the
side span and 17 m + 102 × 16 m + 17 m in the main span. The cable self-weight per unit
length q = 54.088 kN/m. The elastic modulus and the cross area of the main cable are
Ec = 1.96E11N/m2 and Ac = 0.706 m2. The origin of the Eulerian coordinate system is set
at the midpoint of the bridge with zero elevation.
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Two-layer iterations are implemented to perform the shape finding process for the 
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Figure 4. Layout of the suspension bridge using parallel main cables.

The nodal force or the tension of each hanger Tyi in y-direction is estimated from the
dead loads of the stiffening girder by introducing the boundary conditions of the girder.
The displacements of the intersection point between the girder and pylon in y-direction
are coupled. The intersection point between the girder and transition pier is coupled in y-
and z-directions as well as the rotation degree of freedom with respect to the x-axis. The
estimated hanger tension forces in y-direction are shown in Figure 5. The maximum value
of 3781.2 kN occurs at the first hanger in the side span while the most hangers have the
tension of 2372.5.2 kN. The sag is given as f = 172.64 m at the beginning, which indicates
ymid = 267.414 − 172.640 = 94.774 m.
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Two-layer iterations are implemented to perform the shape finding process for the
main cable by following the scheme in Figure 2. The outer-layer and inner-layer iteration
tolerances are set as ε1 = 1.0× 10−4 and ε2 = 1.0× 10−6. Figure 6 illustrates the iteration
results, in which a convergent horizontal component of the axial force, i.e., H0 is achieved
in five outer-layer iteration steps. Between each adjacent outer-layer iterations, less than
four-step inner-layer iterations are required for solving the cable shape. The main cable
shape from the initial input coordinates of to the final shape finding result that corresponds
the final outer- and inner-layer iteration is plotted in Figure 7. The shape finding using
the commonly used segment catenary method (SCM) is also conducted as a benchmark
for comparison purpose. Both the final main cable shapes obtained from this study and
the SCM are given in Figure 8a, showing a reasonable agreement with each other. The
maximum relative difference at all hanger nodes is 0.0011%. Moreover, the parabolic curve
of the main cable in the middle span calculated by the y = yIP + 4 f

(
x2 − L2/4

)
/L2 is

also compared with the present solution, as shown in Figure 8b. The difference between
these two methods is also insignificant with the maximum relative error of 0.0948%. This
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is mainly because of the sag-span ratio of this suspension bridge about equal to 1/10
such that the dead loadings along the along the bridge approximately follow the uniform
distribution. Furthermore, the static displacement of the final main cable under the action
of self-weight and hanger tension forces is analyzed using the FEM, as shown in Figure 9.
As can be seen, all nodal displacements of the main cable are less than 0.007 m. It is
sufficiently small to believe that the main cable has achieved the target configuration. It is
noteworthy that the time costs in this case for both the NFEM and the SCM are less than
one second.
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3.2. Case 2: 3D Spatial Main Cables of an Earth-Anchored Suspension Bridge

Three dimensional spatial main cables are applied to the same suspension bridge
used in Case 1. The spacings between two cables at the position of the anchorage and the
IP points in z-direction are set as 63.0 m and 3.0 m, respectively, as shown in Figure 10.
The vertical (y-direction) force components of all hangers given in Figure 5 are identical
to Case 1. Same tolerances are also employed in this case, say ε1 = 1.0 × 10−4 and
ε2 = 1.0× 10−6. The iteration process is shown in Figure 11. Similar to the Case 1, five
outer-layer iterations are implemented to obtain a convergent H0. All inner-layer iterations
are less than five steps to meet the tolerance requirement. The main cable shape from the
initial input coordinates in y- and z-directions to the final target configurations is illustrated
in Figure 12. The final shape of the 2D parallel main cables in Case 1 is also plotted in
Figure 12a. As can be seen, the shapes in y-direction of 2D planar cable and 3D spatial
cable match well with each other. This can be explained by comparing the governing
equations for the cable shape described by Equations (9) and (11). The difference of the
cable shapes in x-o-y plane for parallel and spatial cases in mainly attributed to the z′.
For the long-span suspension bridge studied in this case, the slope in z-direction of the
spatial cable is small as compared to the slope in y-direction, resulting in that the effect
of the z′2 in Equations (9) and (10) is insignificant. This can also be demonstrated from
the final main shape in Figure 12. The calculated maximum y′2 and z′2 using the central
difference method are 0.2593 and 0.0033, respectively.
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Figure 13 illustrates the solution of hanger tension components in z-direction along
the bridge span. The positive tension indicates that the inclination of the hanger tilts
inward. The maximum positive tension in z-direction occurs at the middle span with the
value of 331.637 kN. The negative tensions for outward inclined hangers at two side spans
reach the maximum for first or end hanger. This is because the vertical component of
the tension for first or end hanger as shown in Figure 5 is large. Figure 14 compares the
cable shape between this study and the results obtained by SCM. The maximum relative
differences at all hanger nodes in y- and z-direction are 0.0022% and 0.7318%, respectively,
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suggesting a reasonable agreement with each other. To further validate the accuracy of the
final cable shape, a finite element model of the spatial main cable is also established. The
static displacement under the action of self-weight and hanger tension forces is illustrated
in Figure 15. It can be found that the maximum displacements in y- and z-direction of the
main cable are 0.008 m and 0.012 m, which are sufficiently small and acceptable for the
engineering applications.
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3.3. Case 3: 3D Spatial Main Cables of a Self-Anchored Suspension Bridge

Another case is the Yongjong Grand Bridge in Korea, whose shape finding was
investigated by many pioneering studies [16,22,26]. The Yongjong Grand Bridge is the
first highway and railway self-anchored suspension bridge with three dimensional main
cables. The total length of the bridge is 550 m with a 300-m main span and two 125-m side
spans. The sag in middle span is 60 m. Tyi has a uniform value of 3.048 KN. The cross-
sectional area of the main cable is 0.1355 m2. The y and z coordinate values of the IP point
are yIP = 114.573 m and zIP = 1.50 m, respectively by setting the origin of the Eulerian
coordinate system at the midpoint of the bridge with zero elevation. The main cable is
divided into 24 segments by 23 hangers. The coordinates of the connection points between
hangers and the beam, i.e., ydi and zdi are estimated from the data given by Kim et al. [16]
and Luo et al. [26], as listed in Table 2. The IP point is located at x = 125.0 m, and the
mid-point of the main span is at x = 275 m.

The iteration process for the Yongjong Grand Bridge using present method is illus-
trated in Figure 16. Both the outer-layer and inner-layer iterations meet the tolerance
requirement in five steps. The solved horizontal component of the cable axial force is
48,149.1 kN, which is close to the value, 49,541 kN given by Kim et al. [16] with the relative
error of 2.89 %. The solution of the cable shape is compared with the results obtained by
Kim et al. [16] and Luo et al. [26] in Table 3. As can be seen, the relative differences in y-
direction between the present study and Kim et al. [16] are less than 0.027%. In z-direction,
the absolute values of the relative difference are less than 0.340%. The location of the IP was
further studied by Luo et al. [26], which is different from the coordinates used in the present
study and Kim et al. [16]. The maximum absolute value of the relative difference between
present study and Luo et al. [26] in y and z directions are 0.041% and 0.524%, respectively,
which are slightly larger than the errors between the present study and Kim et al. [16].
However, the present method is proved to be accurate enough to find a reasonable cable
shape of the suspension bridge for engineering applications.
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Table 2. Coordinate values of joint points for suspenders and girder.

x (m) ydi (m) zdi (m)

125.000 48.870 15.960
137.500 48.994 15.960
150.000 49.108 15.960
162.500 49.210 15.960
175.000 49.302 15.960
187.500 49.383 15.960
200.000 49.453 15.960
212.500 49.512 15.960
225.000 49.561 15.960
237.500 49.599 15.960
250.000 49.626 15.960
262.500 49.642 15.960
275.000 49.647 15.960
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Table 3. Comparison between the results in this study and other studies.

x(m)
Kim et al. (2002) (A) Luo et al. (2004) (B) This Study (C) A vs. C (%) B vs. C (%)

y (m) z (m) y (m) z (m) y (m) z (m) (yA − yC)/yA (zA − zC)/zA (yB − yC)/yB (zB − zC)/zB

125.000 114.573 1.500 113.763 1.681 114.573 1.500 - - - -
137.500 104.938 3.632 104.968 3.625 104.927 3.644 0.010 −0.330 0.039 −0.524
150.000 96.160 5.586 96.180 5.576 96.141 5.605 0.020 −0.340 0.041 −0.520
162.500 88.230 7.360 88.243 7.350 88.208 7.382 0.025 −0.299 0.040 −0.435
175.000 81.147 8.955 81.155 8.944 81.125 8.976 0.027 −0.235 0.037 −0.358
187.500 74.905 10.369 74.910 10.357 74.885 10.386 0.027 −0.164 0.033 −0.280
200.000 69.502 11.601 69.505 11.590 69.485 11.612 0.024 −0.095 0.029 −0.190
212.500 64.935 12.650 64.937 12.639 64.923 12.654 0.018 −0.032 0.022 −0.119
225.000 61.201 13.514 61.203 13.504 61.194 13.510 0.011 0.030 0.015 −0.044
237.500 58.300 14.191 58.301 14.183 58.296 14.179 0.007 0.085 0.009 0.028
250.000 56.228 14.678 56.230 14.671 56.227 14.661 0.002 0.116 0.005 0.068
262.500 54.985 14.973 54.987 14.966 54.987 14.951 −0.004 0.147 0.000 0.100
275.000 54.573 15.071 54.573 15.065 54.573 15.049 0.000 0.146 0.000 0.106

4. Conclusions

This paper develops a novel shape finding approach for main cable-only systems
under specified loads. The governing differential equations for the main cable in Eulerian
coordinate system are constructed. Two-layer numerical iterations are then conducted
to solve the governing equations using the nonlinear finite element approximation. The
proposed method is applied to three cases, i.e., 2D parallel and 3D spatial main cables of an
earth-anchored suspension bridge as well as the 3D spatial main cables of a self-anchored
suspension bridge to achieve the target configuration of the main cable. Comparisons
with the SCM and other studies are also performed to validate the accuracy of the present
method. Some conclusions can be summarized as follows:
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(1) The proposed shape finding technique enables an efficient and accurate estimation of
the target configuration of the main cable for the suspension bridge.

(2) The present NFEM performs the form-finding for the whole cable in the Eulerian
coordinate system using a few iteration steps without any information of the cable
material or cross area as compared with the commonly used SCM. The unstrained
cable length can also be calculated by subtracting the elongation from the final length
of the cable.

(3) Both the SCM and the present NFEM methods have enough efficiency and accuracy
for finding final cable shape of the suspension bridge. The proposed technique
provides an alternative to be used by the bridge designers and engineers for the rapid
estimation of both 2D parallel and 3D spatial cable curves in the preliminary design
stage.
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