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Abstract: The main principle of vibration-based damage detection in structures is to interpret
the changes in dynamic properties of the structure as indicators of damage. In this study, the
mode shape damage index (MSDI) method was used to identify discrete damages in plate-like
structures. This damage index is based on the difference between modified modal displacements in
the undamaged and damaged state of the structure. In order to assess the advantages and limitations
of the proposed algorithm, we performed experimental modal analysis on a reinforced concrete
(RC) plate under 10 different damage cases. The MSDI values were calculated through considering
single and/or multiple damage locations, different levels of damage, and boundary conditions. The
experimental results confirmed that the MSDI method can be used to detect the existence of damage,
identify single and/or multiple damage locations, and estimate damage severity in the case of single
discrete damage.

Keywords: damage detection; plate-like structure; operational modal analysis; mode shape; modal
assurance criterion (MAC) matrix; mode shape damage index (MSDI); discrete damages

1. Introduction

During service life, structures are subjected to different loads, external factors, and un-
predictable influences that can cause considerable structural damage. Regular inspections
of structures are essential for early damage detection, analysis, and repair of damaged
structures in order to extend the service life while assuring safety and reliability. Due to the
lack of regular inspections and poor maintenance of structures, the damage can decrease
the bearing capacity and endanger safety. The widely accepted structure inspection is
based on visual inspections or locally limited nondestructive testing methods for damage
assessment such as acoustic or ultrasonic methods, magnet field methods, radiography,
eddy current methods, thermal field methods, and X-rays [1]. The mentioned methods
have numerous limitations, such as the small inspection area and the location of damage
needing to be known in advance. The problem is that the part of the structure where the
inspection is carried out has to be accessible.

The difficulties in damage detection can be overcome by analyzing the dynamic
response of structures obtained using the vibration-based monitoring system [2]. Global
behavior of the structure is defined by its dynamic properties that can be determined using
relatively simple measurement methods at a single or several locations in the structure.
The main reason for using vibration-based monitoring is that structural damages such
as changes in boundary conditions and bending cracks cause the loss of stiffness and
consequently a change in dynamic properties (natural frequencies, mode shapes, and
damping ratios).

Four levels of damage detection in structures are defined as follows [3]: detecting the
presence of damage, detecting the damage location, determining the severity of the damage,
and predicting the remaining service life. Different methods have been proposed on the
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basis of the change in natural frequencies [4–9]; mode shapes [10,11]; and their derivatives
such as the change in modal flexibility [12,13], the change in modal curvature [14,15],
the change in modal strain energy [16–18], and other modal methods used for damage
detection on plate-like structures [19]. Furthermore, a number of non-modal methods are
used for damage detection on plate-like structures, such as the frequency response function
(FRF) method [20] and guided waves approach [21]. They are mainly used with some
other algorithms (artificial neural networks, genetic algorithm, Bayesian approach, etc.),
requiring additional effort to detect damage.

Mentioned methods are primarily used for the first two levels of damage assessment,
i.e., damage detection and localization. Some of them can even be used to quantify the
severity of the damage but mostly to identify the difference between lower and higher
levels of damage [7,16,18]. When multiple structural damages are considered, determining
damage severity becomes a challenge [22]. Most of the methods are applied to numerical
and experimental models of rods, plates [23], and beams with simulated damages or
real-life structures such as bridges [10,24].

Modal assurance criterion (MAC) [25–27], among other indicators, is used for damage
detection based on mode shape changes. The MAC is a scalar quantity related to the degree
of consistency between two mode shapes, and it can be used for the direct comparison of
mode shapes in the undamaged and damaged condition. This criterion is not sensitive to
small differences between mode shapes and cannot be used for the damage localization,
but it can serve as an indicator of damage in the structure [28,29]. In order to detect
and localize damages in structures, researchers proposed the mode shape damage index
(MSDI) algorithm on the basis of a modified MAC matrix (∆MAC), which considers mode
shapes that are almost identical and excludes dissimilar mode shapes [30]. During this
research, finite element analysis (FEA) was performed to obtain the mode shapes of plate
models with different damage cases and boundary conditions. It was concluded that the
MSDI method can be used to accurately locate single and multiple damages on plate-like
structures and that it has the capability to distinguish damages with different levels of
severity. By comparing the MSDI method to the l1-norm regularized finite element model
updating method, researchers obtained similar results in damage localization [31].

The advantage of the MSDI method is that it does not require an additional tool,
for example, a finite element model or algorithm-based massive measurement data such
as artificial intelligence [32], machine learning [33], and deep learning [34] for damage
detection. Unlike existing damage detection methods based on mode shape changes, this
method is based on a minor difference between compared undamaged and damaged
mode shapes. In this way, it is possible to determine the damage at the earliest stage of its
occurrence, and at the same time exclude the influence of uncertainties (noise) that may
significantly affect the change in mode shapes.

The aim of this study was to validate the MSDI method on the basis of the experimental
model of a reinforced concrete (RC) plate under 10 different damage cases. Operational
modal analysis (OMA) [35] was used for the determination of dynamic properties (natural
frequencies, mode shapes, and damping ratios) of the plate in the undamaged and damaged
state. The MSDI values were calculated for all damage cases and graphically presented.

The article is structured as follows. The governing equations of the MSDI algorithm
are shown in Section 2.1. The experimental setup and procedure as well as the damage
simulation are presented in Section 2.2. The results are summarized and discussed in
Section 3. Section 3.1 deals with the effect of the damage level on the MSDI values at a
single damage location. Section 3.2 deals with the effect of the damage zone size, and
Section 3.3 deals with damage detection at multiple damage locations. Section 4 presents
the conclusions.
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2. Materials and Methods
2.1. The Mode Shape Damage Index (MSDI)

The MAC criterion provides a degree of consistency between two states (undamaged
and damaged), and it ranges between 0 and 1. The MAC matrix is defined as

MAC(k,l) =

∣∣∣{φu
k
}T
{

φd
l

}∣∣∣2({
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represents the k-th mass-normalized mode shape vector in the undamaged

state and
{

φd
l

}
represents the l-th mass-normalized mode shape vector in the damaged

state. The values of the diagonal elements of the MAC matrix represent the correlation
between corresponding mode shapes. If there is no damage and no noise in the signal, the
diagonal elements of the MAC matrix are equal to 1, while values that are less than 1 reveal
a weak correlation between the two mode shapes that can indicate the presence of damage
(reduction of stiffness). The non-diagonal elements of the MAC matrix are usually equal to
0 because their values represent the correlation of inconsistent modes. Therefore, the MSDI
damage localization algorithm uses only the diagonal elements (k = l) of the MAC matrix
represented by the squared value of the trace of the MAC matrix defined as

γtrMAC = (trMAC)2. (2)

This value ranges between zero and n2, where n represents the number of correlated
mode shapes. If γtrMAC = n2, then the compared mode shape vectors are highly correlated
and almost identical, which means that there is no change in stiffness. When the value tends
to 0, the vectors of the compared mode shapes are entirely inconsistent. The uncertainties
such as noise in the signal, which can occur in the experimental determination of mode
shapes, are ignored.

Further, a modified matrix named ∆MAC was developed, which is sensitive even to a
small difference between correlated mode shapes in the undamaged and damaged state.
The diagonal elements of the ∆MAC matrix are defined as follows

∆αkl = αkl
γtrMAC , k = l, (3)

where αkl and ∆αkl are the diagonal elements of the original MAC matrix and the modified
∆MAC matrix, respectively. Theoretically, if there is no change in stiffness and no noise
in the signal, the mode shapes match entirely, and the modified ∆MAC matrix equals the
original MAC matrix.

The mode shape damage index (MSDI) is a damage indicator based on the difference
between modified modal displacements in the undamaged and damaged state in each i-th
node of a structural element (i.e., plate) as follows

|MSDIi| =
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are the modified modal displacements in each i-th node given by
the following equations (
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where
(
φu

k
)

i and
(
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)
i

denote the values of modal displacements of the k-th mode shape
in the undamaged state and the l-th mode shape in the damaged state in each i-th node of
the plate. The normalized modal displacements are squared to highlight a local change
of the mode shape in the damaged state compared to the undamaged state. Furthermore,
modal displacements are multiplied by the corresponding value ∆αkl calculated from
the modified matrix ∆MAC. In this way, only mode shapes with a reasonable degree of
correlation are considered, and the ones that do not match are excluded from the damage
localization. If even small damages are present at the i-th node, the MSDI value becomes a
nondimensional negative value, presented as an absolute value. Theoretically, if there is no
damage, i.e., no changes in the stiffness of the system (assuming there is no change in mass
and damping), the MSDI value equals 0 in each i-th node of the plate.

2.2. Dynamic Testing of the Plate Model

To further validate the MSDI method and investigate its robustness, we performed
experimental research on a model of a reinforced concrete (RC) plate with plan dimensions
2.3 × 1.55 m and 7 cm of thickness. The plate was reinforced with the Q196 reinforcement
mesh in the tension zone, and the thickness of the concrete cover was 2.5 cm. The me-
chanical properties of the concrete, i.e., the characteristic compressive strength (f ck) and
the modulus of elasticity (E), were determined on 28-day-old test specimens according to
standards EN 12390-3 and EN 12390-13, respectively. The experimentally obtained values
were f ck = 70 MPa and E = 36 GPa. The model of an RC plate was divided into rectangular
elements (16 cm × 15 cm); rows were marked in letters (A–J) and columns in numbers
(1–14), as shown in Figure 1. A total of 165 (1–165) measurement points on the RC plate
were used for the experimental modal analysis.
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Figure 1. Measurement points on the RC plate.

The operational modal analysis (OMA) [35] was applied for the detection of dynamic
properties (natural frequencies, mode shapes, and damping ratios). The measurements
were taken with the Brüell&Kjaer Multi-Analyzer system (type 3560-C) using five channels.
The modal analysis, including signal processing and modal extraction procedures, was
further performed using Pulse software. Five piezoelectric accelerometers (Brüell&Kjaer
4508-B, sensitivity 10 mV/ms−2) were used for acceleration measurements. OMA was
conducted by moving four accelerometers through 41 measuring stages using one referent
measurement point at position no. 155 (41 × 4 + 1 = 165 measurement points) (Figure 1).
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The impact hammer was used to excite the plate randomly. This kind of excitation aims
to simulate an operational environment where the excitation is difficult or impossible to
measure. Methods of frequency domain decomposition (FDD) [36] and enhanced frequency
domain decomposition (EFDD) [37] were used for the estimation of modal parameters.
The procedure is based on the singular value decomposition (SVD) of the power spectral
density (PSD) matrix of the measured responses.

To achieve constant boundary conditions, we suspended the plate using very elas-
tic ropes (Figure 2). The applied boundary conditions, a nearly ideal free-free set-up,
were quickly implemented and easily repeated in the laboratory after each testing phase.
The plate was tested in an undamaged state and then discrete damages were applied
successively by removing parts of the surface from the top of the concrete plate.
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The plate was again tested after each successive damage simulation. A total of
16 experimentally obtained vertical mode shapes for the undamaged state (Figure 3) and
each phase of the damaged state were observed in the analysis.
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Simulation of Discrete Damages

In the experimental research, discrete damage was applied by removing a part of the
surface from the top of the concrete plate (Figure 4). The size of the discrete damaged
rectangle was 15 × 16 cm, and the depth varied from 2 to 3 cm. The advantage of discrete
damages lies in the fact that the damage location and the change in stiffness are precisely
defined. Furthermore, it is possible to simulate a full range of damages, and the MSDI
method can be tested using more than one damage location. In sequence, a total of 10 dis-
crete damage cases were simulated on the concrete plate. It is known from the literature
that stiffness has a dominant influence on the changes in mode shapes [38]. Therefore,
the loss of mass was neglected in the experimental part of this research. Furthermore, the
method was previously validated on numerical models [30,31] based only on the reduction
of stiffness without including the effect of changes in mass.
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Figure 4. Discrete damages on the RC plate: (a) chiseling; (b) one of the damage locations on the
concrete plate.

The first discrete damage was applied at the element E8 (damage case DC1) by
reducing the concrete thickness for 2 cm. Afterward, an additional 1 cm of concrete was
removed (damage case DC2). The remaining discrete damages were simulated by removing
3 cm of concrete at the plate elements as follows: F8, E7, C4, C3, J9, A12, H13, and H4.
Locations of all discrete damages are presented in Figure 5. Different damage cases are
listed in Table 1.
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Table 1. Damage cases simulated on the concrete plate.

Damage Case Elements Depth (cm)

DC1 E8 2
DC2 E8 3
DC3 E8 + F8 3
DC4 DC3 + E7 3
DC5 DC4 + C4 3
DC6 DC5 + C3 3
DC7 DC6 + J9 3
DC8 DC7 + A12 3
DC9 DC8 + H13 3

DC10 DC9 + H4 3

3. Results and Discussion

On the basis of experimental research, we performed a sensitivity analysis of the MSDI
method, considering the effect of the damage level, the effect of the damage zone size, and
ultimately the effect of multiple damages.

3.1. Effect of Damage Level at a Single Damage Location

The first two damage cases at a single damage location were analyzed to determine
the effect of the damage level when using the MSDI method. Damage cases DC1 and DC2
at element E8 simulated two levels of damage, “small” (depth of 2 cm) and “moderate”
damage (depth of 3 cm). The damage location was determined by the MSDI method and
presented as a colored graphical representation in Figure 6 for the first two damage cases.
The MSDI values were calculated according to Equation (4). The peak values indicate the
location of the damage on the plate in 3D view, and the damaged area is presented in 2D
view. The exact location of the discrete damage, the element E8, was accurately identified.
Moreover, the increase from small to moderate damage was followed by the increase of the
MSDI value.
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Furthermore, it is interesting to compare diagonal elements of the MAC and ∆MAC
matrices both in numerical and experimental examples. In the numerical analysis, almost
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all coefficients participate with the maximum value 1 when damage is detected [30] because
there are no measurement uncertainties. The comparison of experimentally obtained values
is presented in Figure 7 for the first 16 mode shapes of the plate for damage cases DC1
and DC2. Some of the mode shapes for both damage cases were inconsistent (Figure 7a,
mode shapes 11, 13, 14; Figure 7b, mode shapes 11, 13, 14, 15) in the undamaged and
damaged states as a result of noise in the measurement signal and some other uncertainties
(experimentally unrepeatable boundary conditions). It is shown that only a few mode
shapes participated with values close to 1 (Figure 7a, mode shapes 1, 4, 6), whose weighting
factor ∆αkl on modal displacements (Equations (5) and (6)) was sufficient for damage
localization. Mentioned uncertainties are challenging to simulate or predict by numerical
analysis. Thus, it is essential to emphasize the importance of validating damage detection
methods on the basis of experimental results.
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3.2. Effect of Damage Zone Size

In this section, the influence of the damage zone size on the sensitivity of the MSDI
method was considered. The third level of damage can be described as “large” damage,
simulated by the loss of depth which is equal to “moderate” damage (3 cm) but with
more than one damaged element. These substantial damages were simulated as damage
cases DC3 (elements E8 and F8) and DC4 (elements E8, F8, and E7). Figure 8 summarizes
the results of the effect of the damage zone size. In both damage cases, the damage was
accurately localized. Moreover, the method can be used to determine larger damaged
zones, i.e., several adjacent damaged elements. The MSDI values kept increasing with the
addition of more damage.
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3.3. Effect of Multiple Damages

The remaining damage cases were analyzed to primarily investigate the effect of
multiple damages on the MSDI method. In damage cases DC5 (DC4 + element C4) and
DC6 (DC5 + element C3), the effect of multiple damages and the effect of the damage zone
size were considered by adding another damage location on the plate. When we compared
the results for both damage cases in Figure 9, we found that the MSDI method was able
to register both damages, regardless of the damage zone size. The peak MSDI values at
the two locations coincided with the reduction of stiffness. Moreover, the damage severity
was smaller at the single damaged element C4 (see Figure 9, DC5) than the damaged zone
C4-C3 (see Figure 9, DC6).
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The following two multiple damage cases DC7 and DC8 included damaged elements
at the free edges of the plate. The results shown in Figure 10 indicate that the method
effectively identified multiple damages regardless of the location of the damaged zone.
Nevertheless, as previously concluded in the finite element analysis [30], the damage sever-
ity was influenced by the damage location. Therefore, the severity of multiple damages
cannot be determined by using this method.
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The last two damage cases DC9 and DC10 considered two additional random single
damage locations in elements H13 and H4. The results of simulated damages are shown in
Figure 11, and it can be found that all simulated damages were accurately localized by the
proposed algorithm regardless of the damaged zone size or the damage location.

The diagonal elements of the MAC and ∆MAC matrices are shown for the damage
cases DC5 to DC10 in Figure 12. It is noted that the number of mode shapes that were
participating in damage detection decreased with the introduction of new damages. The
first reason was that the intensity (αkl value) decreased due to the low degree of consistency
between estimated modal vectors in the undamaged and damaged states. The second
reason was that some mode shapes entirely disappeared due to a significant change of
consistency between estimated modal vectors. Even though a smaller number of mode
shapes were used for damage detection based on the MSDI method, they were still able to
provide useful information about the location of structural damage.

The accuracy of the MSDI method for damage localization depends on the number of
measurement points (degrees of freedom) for some element or structure. In order to apply
this method in practice within the structural health monitoring system (e.g., bridges, tall
buildings), one must optimize the number of measuring points.

To obtain better reliability of the damage detection by using the presented method, we
recommend as many experimentally obtained mode shapes as possible. In the paper, all
experimentally observed mode shapes are presented and were used in the MSDI method,
although a large number of mode shapes (for instance, Figure 12, DC 9) did not participate
at all in damage detection or participate with significantly reduced impact.

The environmental (e.g., temperature) and serviceability effects were not considered
in this research. It is necessary to consider the effects of temperature changes depending
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on the boundary conditions of the structure. Under the influence of different temperatures,
the mode shapes can be changed significantly, and this can affect the MSDI analysis.
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4. Conclusions

In this study, experimental validation of the mode shape damage index (MSDI) method
for damage detection was performed on a reinforced concrete plate. Ten discrete damage
cases were simulated by removing a part of the top layer on the concrete plate. On the
basis of the measurement of the vibration response, we determined the dynamic properties
of the plate in the undamaged and damaged conditions by applying the operational modal
analysis. This method is particularly challenging due to many factors that can affect the
accuracy of measurement and, therefore, can directly affect the damage analysis results.
Namely, damage-induced changes in mode shapes are minimal, and every error in the
experimental analysis of mode shapes can significantly affect the accuracy of damage
detection. By applying the MSDI method on the experimental model, it is evident that the
mode shapes that did not match for any reason were excluded from the damage analysis.
Even though a smaller number of mode shapes were used for damage detection in the MSDI
method, they can still provide useful information about the location of structural damage.

The conclusions from previous numerical research are confirmed. The MSDI method
can be used to detect the existence of damage, identify single and/or multiple damage
locations, and distinguish damages with different levels of severity. It must be emphasized
that the severity of damage detected with this method depends on boundary conditions
and the location of the damage.

The MSDI method can easily be implemented in the vibration-based damage detection
system. This method does not require the numerical model for the damage assessment,
and the measurement is simplified due to the fact it uses only the ambient response of
the structure for the estimation of modal parameters. It is also possible to combine this
method with some of the existing methods. For example, the change in natural frequency
of structure can serve as an indicator of the damage existence, and then by applying the
MSDI method, the damage location can be determined.

Although this method shows promising results and successful validation through
experimental tests, there are still many challenges for future research in structural damage
identification. By applying the MSDI method, it is still not possible to determine damage
severity. Hence, future research is recommended in that direction. Furthermore, various
uncertainties that may affect the results by using this method need to be considered, for
instance, inconsistent boundary conditions, various ambient conditions (e.g., tempera-
ture, humidity), various types of damages (e.g., bending cracks, corrosion, wear), and
serviceability effects (traffic) in a laboratory environment and in real structures.
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