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Abstract: Instant center is an important kinematic characteristic which can be used for velocity and
singularity analysis, configuration synthesis and dynamics modeling of multi-degree of freedom
(multi-DOF) planar linkage. The Aronhold–Kennedy theorem is famous for locating instant centers
of four-bar planar linkage, but for single-loop multi-DOF linkages, it fails. Increasing with the
number of the links of single-loop multi-DOF planar linkages, the lack of link relationship makes
the identification of instant center become a recognized difficulty. This paper proposes a virtual link
method to identify instant centers of single-loop multi-DOF planar linkage. First, three types of
instant centers are redefined and the instant center identification process graph is introduced. Then,
based on coupled loop chain characteristic and definition of instant center, two criteria are presented
to convert single-loop multi-DOF planar linkage into a two-loop virtual linkage by adding the virtual
links. Subsequently, the unchanged instant centers are identified in the virtual linkage and used to
acquire all the instant centers of original single-loop multi-DOF planar linkage. As a result, the instant
centers of single-loop five-bar, six-bar planar linkage with several prismatic joints are systematically
researched for the first time. Finally, the validity of the proposed method is demonstrated using loop
equations. It is a graphical and straightforward method and the application is wide up to single-loop
multi-DOF N-bar (N ≥ 5) planar linkage.

Keywords: loop chain; virtual link; instant center; multi-degree-of-freedom; Aronhold–Kennedy
theorem

1. Introduction

The concept of instant center is proposed by Bernoulli [1], which refers to the zero
velocity point for two rigid bodies in a planar motion. It is not only used to analyze
kinematics of linkages such as absolute velocity and angular velocity, but also to research
singular configurations [2–5], configuration synthesis [6] and dynamics modeling [7].
Generally, instant centers are obtained by Aronhold–Kennedy theorem [8], but if the
linkages contain more links or link loops, the traditional method fails. The instant center
which cannot be directly located by Aronhold–Kennedy theorem, is called “indeterminate
instant center” [9] or indeterminate secondary instant center in Refs. [10–24]. Moreover, it
exists in almost all linkages besides single-loop four-bar linkage and Stephenson linkage.
Therefore, the location of indeterminate secondary instant center is a difficulty of kinematics
analysis of planar linkages, which attracts many researchers’ interests. Dijksman [10]
proposed a graphical linkage reduction method to find coordinated centers of curvature by
changing the pentagonal loop into four-bar loop. The disadvantage of this method is that
the joint-joining operation may have to be carried out twice and each time in a different way.
Based on singular coefficient matrix of the derived velocity equations, Yan and Hsu [11]
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presented an analytical method to locate instant centers of single or multiple degrees
of freedom linkages. This method has tedious calculation. Klein [12] raised a graphic
method of trial-and-error type to identify the right position of the center. The defect
is that the process is complex and inefficient. Forster and Pennock [9,14–16] presented
both analytical method and graphical technique to solve instant center problem of single-
DOF, two-DOF planar indeterminate linkage and three-DOF planar six-bar linkage. The
essence of this method is first to determine one indeterminate secondary instant center
by combing two arbitrary possible positions, then to reverse all the indeterminate instant
centers, but its implementation method is roundabout. Based on instant centers of the cam
pair residing on the extension line of a primary adjacent link, Chang [17–19] introduced
a virtual cam method to help locate key instant centers of the linkages up to ten-bar.
This method is a graphical one and is accurate in AutoCAD, but the applicable rate is
not high. In addition, in some cases, it needs to work with Pennock’s method [9,14–16],
then the linkages can be solved. Di Gregorio [20] presented an algorithm to calculate
the positions of indeterminate secondary instant centers of the indeterminate linkages.
Although the analytical method uses only pieces of information of the linkage configuration,
the difficulty is how to write the equations together with the closure equations of the
mechanism to allow the computation of the instant centers’ positions as a function of
the generalized coordinate chosen to identify the mechanism configuration. Obviously,
it is not easy. Kung and Wang [21] proposed the concept of instant center walk and
instant center circuit and established the recursive formula to compute the coordinates
of the instant centers. However, the drawback is that the application is only for single-
DOF indeterminate linkages at non-singular configurations. According to the fact that an
indeterminate secondary instant pole of two-DOF spherical linkage lies somewhere on the
unique great circle for a specific configuration of the linkage, Zarkandi [22] provided two
techniques to convert a single-DOF spherical mechanism to a two-DOF one, and then locate
all the indeterminate secondary instant centers. The main issue is how to use the techniques,
and it is not universal for different linkages. Valderrama-Rodríguez [23,24] presented a
screw theory approach for the computation of instant rotation axes of the spherical linkages
requiring the solution and comparison of two quadratic equations. Although this method
is simpler than the previous literature, the calculation is relatively complex. Diab [25]
utilized the location of the instant centers to perform acceleration analysis of a four-bar
mechanism. On the basis of an adequate literature analysis, Sancibrian and Sarabia [6]
presented a synthesis method based on optimization in which the identification of instant
center is included in the objective function for rigid-body guidance synthesis Moreover,
this proved approach is robust, accurate and efficient. Depended on the fact that the
positions of instant centers can determine the velocity coefficients and the virtual work
of the external forces of the mechanism, Di Gregorio [7] provided a dynamic model and
an algorithm to solve the dynamic problems of single-DOF planar linkage. It is simple to
use and numerically effective. In addition, since the relationships between the positions of
the instant centers and the absolute velocities, instant centers are possibly used in some
other applications such as dynamic model of the spherical mechanisms [26,27], wrench
capability analysis of the redundant mechanisms [28], dynamic balancing analysis [29],
and even commercial packages. For dynamic model of the spherical parallel mechanism,
based on the principle of virtual work, the dynamic model can be built with the Jacobian
matrices including angular velocities. As we all know, in a certain mechanism, once the
instant centers are located, the corresponding angular velocities are decided. That is, the
instant centers are able to address the dynamic model. For wrench capability analysis
of the redundant planar parallel manipulator, joint torques, which are decided by the
forces and moments acting on the end-effector, are the kinematic condition to sustain the
wrench. They can be deduced by the derivatives of absolute velocities obtained from the
instant centers. For dynamic balancing analysis of a given mechanism [29], the positions
of instant centers can directly be used to calculate the angular momentum which effects
whether the sum of all forces and moments acting on the based are zero. For commercial
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packages, the identification of instant centers may be available as a plug-in of the AutoCAD
tool since the instant centers have a widespread application and the proposed method
is suited to be programmed. As for real devices where imperfections are unavoidable
in production processes, another application of instant center is found inspired by Profs.
Bucolo and Buscarino‘s paper [30]. In their research, the nonlinear dynamical circuits are
built to help investigate the performance of a novel control strategy for imperfect systems,
and the instant center may be used to calculate the dynamical equations which regulate
the behavior of the circuits. Although instant center, which is a basic kinematic property,
is a useful tool to analyze kinematics of the linkages [2–5,31], rigid-body synthesis [6],
dynamics modeling [7], and dynamic balancing analysis [29] of planar linkages, and it
can be used in spatial mechanisms [26,27], redundant mechanisms [28], imperfect systems
of real devices [30], and is even available in commercial packages, the identification of
instant center is difficult since the lack of relationship of the interval links in a N-bar loop
(N≥ 5). As discussed above, the existing methods can be classified three types: (1) graphical
method [10,12,17–19,22], (2) analytical method [11,20,23,24], and (3) both analytical method
and graphical method [9,14–16]. The graphical method has the advantage of visualization,
but the defects are complex process and low applicable rate. The analytical method has the
merit of high accuracy, but the calculation is normally complicated. Both analytical method
and graphical method has both advantages, but the implementation method is roundabout.
The generality and simplicity of instant center identification method is still a challenge.

The motivation of this paper is to propose a universal method to identify instant
centers of planar linkages, especially for single-loop multi-DOF planar linkages. Based on
coupled loop chain characteristic and definition of instant center, a single-loop multi-DOF
planar linkage is changed into the two-loop linkage with the added virtual links using the
proposed criteria, and the unchanged instant centers are identified according to Aronhold–
Kennedy theorem, then all the instant centers of the original single-loop multi-DOF planar
linkage can be obtained by the instant center identification process graph. The essence of
the proposed method is to cover the shortage of the lacking link relationships of the single-
loop linkage using virtual link operation, then obtain the indeterminate instant centers.
The virtual link operation is an auxiliary mean which does not affect the motion of the
original single-loop linkage. Moreover, the instant center identification of the single-loop
multi-DOF planar linkage can be the basic of the instant center identification for multi-loop
multi-DOF planar linkage which is discussed in our further research. That is, the proposed
method may solve the instant center problem of the planar linkages no matter how many
number of the links the linkages contain.

The first contribution of this paper is to provide a virtual link method to identify
instant centers of the single-loop multi-DOF planar linkage, which is a graphical method
and sticks to the definition of instant center. Compared to the previous literature [10–22],
the proposed method has three advantages: simplification, concision, and validity. Firstly,
to build virtual link operation, a few steps are carried out and normally, only one virtual
link added operation is required. There is no need to choose the specific link and to perform
repetitive complex steps [9,10,12,14–16]. Secondly, the location operation is completely
decided by the drawing graph, which also can be programmed and automated in AutoCAD.
The closure equations are unnecessary [11,20]. Thirdly, the proposed method is only
based on instantaneous configuration of the linkage and the definition of instant center,
and to ensure universality, the parameters of the virtual links are arbitrary. As a result,
the application of this method is universal no matter what the degrees of freedom and
the components of the joints of the linkage are [17–19]. The second contribution is to
redefine three types of instant centers. The new classification is more accurate and detailed
compared to the existing classification, which brings convenience for further research about
instant centers. The third contribution is that the instant center problem of the single-loop
five-bar, six-bar planar linkages with only rotation joints and several prismatic joints is
solved. Note that the instant centers of single-loop five-bar, six-bar planar linkages with
several prismatic joints are the first time to be located, to our best knowledge. The proposed
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method provides a geometry loop insight to reveal the relationship between the formation
of the instant center and the motion of the mechanism, and a new research idea for the
study of instant centers.

This paper is organized as follows. In Section 2, the mathematics definition is pre-
sented and three types of instant centers are redefined. In Section 3, based on coupled
loop chain characteristic and definition of instant center, two criteria to determine instant
centers are provided, and the instant center identification process graph is introduced.
Instant centers of the Stephenson six-bar linkage are identified to explain how the proposed
method works. Then, the steps of instant center identification of single-loop multi-DOF
N-bar (N ≥ 5) planar linkages are summarized. Subsequently, the mathematical proof is
shown in Section 4. Finally, in Section 5, instant centers of the single-loop five-bar and
six-bar planar linkages with only rotation joints and several prismatic joints are located
using the criteria, and conclusions are presented at the end of this paper.

2. Mathematic Definition and Classification of Instant Center

Instant center is defined as a point where the relative velocity of the two rigid bodies is
zero in a planar motion, but the absolute velocity may be not. For a given planar linkages,
the positions of instant centers are varying yielding to the input condition when the planar
linkage continuously moves. In fact, the continuous motion of the linkage is formed by
lots of instantaneous configurations. Each instantaneous configuration corresponds to
one specified input at this instant. That is, an instantaneous configuration coming from
the continuous motion linkage is a momentary configuration in which the corresponding
momentary input is specified. Moreover, different instantaneous configurations correspond
to different specified ratios of the inputs. If the same linkage moves from one instanta-
neous configuration to the other instantaneous configuration, the specified ratios of the
inputs should be accordingly changed. In this paper, instant centers of the instantaneous
configuration are discussed, i.e., the linkages researched in our paper are all discussed on
the condition that the linkages are all the instantaneous configurations, only one specified
ratio of the inputs corresponds to the corresponding instantaneous configuration. Since
the momentary input condition is specified in the instantaneous configuration, the passive
angles of the linkage can be decided at this instant. In another word, the link relationships
(i.e., instant centers) of the instantaneous configuration can be all obtained at the exact
points at this instant based on mathematic definition above. In Figure 1, the location of the
instant center I13 can be expressed as followed.

V13 = W1 × r1 = W3 × r3 (1)

where V13 is absolute velocity of the links 1 and 3, and Wi and ri (i = 1 or 3) denote the
angular velocity of corresponding link and distance between the binary link from the point,
respectively. Equation (1) represents the fact that the absolute velocity V13 of the instant
center I13 only relatives to the angular velocity Wi and the corresponding distance ri in a
instantaneous configuration where the momentary input condition is specified and the link
parameters of the planar linkage are determinate. It means that the identification of instant
center in the instantaneous configuration is only related to the positions and motions (i.e.,
distances and angular velocities discussed in above) of the participant links (links 1 and 3
in Figure 1) and is irrelevant to the other link of the instantaneous configuration. In another
word, when the positions and motions of participant links are the same regardless of
whether the remaining links of the linkage changed or not, the corresponding instant center
is the same. This property, evolved from the definition, is the theoretical basis to research
the single-loop multi-DOF planar linkage in the following sections of this paper. In addition,
it is used and proved in Ref. [32] for invariant link rotatability of N-bar kinematic chains. It
is worth noting that the property above is effective in instantaneous configurations, but it
fails when the linkage is in a continuous motion. The reason is that the passive angular
velocity of the participant links (for example links 1 and 3 in Figure 1) is timely drove by
the input link (link 4) and the limits coming from sizes of the links. Although the distances
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and the angular velocities of other links of the moving planar linkage do not occur in
Equation (1), they still influence the positions and motions of the participant links. All
the locations of the instant centers are continuously varying. However, for instantaneous
configurations, each instantaneous configuration corresponds to one specified input at
this instant. The ratio of the inputs of an instantaneous configuration is specified, the
momentary input is known and invariable.
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Figure 1. Planar four-bar linkage with instant centers.

In literatures above [9–24], instant centers are classified into two types: primary
instant center and secondary instant center. For a given linkage, primary instant center
is constantly the coincident point for a pair of rigid bodies of a planar linkage. The other
instant centers are all secondary instant centers no matter whether they can be located
with Aronhold–Kennedy theorem. However, in this paper, instant centers are classified
into three types in view of the access: first instant center, secondary instant center and
third instant center. First instant center is same to primary instant center of the existing
literatures. It is the easiest to be obtained and is also the base to locate the secondary and
third instant centers, such as I12, I23, I14, and I34 in Figure 1. The instant centers, which
can be directly received according to the established first instant centers using Aronhold–
Kennedy theorem, are called as secondary instant center. It is different to the concept
of secondary instant center of the existing literatures. In the new classification, all the
secondary instant centers can be located with Aronhold–Kennedy theorem. They have
exact positions. For Figure 1, the secondary instant centers are I13, I24. Apart from first and
secondary instant centers, the remaining instant centers of the linkages are third instant
center. Since its indeterminacy, the identification of third instant center is a difficulty for
single-loop multi-DOF planar linkages. Compared to secondary instant center, third instant
center can also be determined by Aronhold–Kennedy theorem, but the difference is that
secondary instant center can be acquired straightforwardly using the existing first instant
centers but third instant center is not. The third instant center I13, formed by the link 1 and
link 3 in Figure 2a, is this case. The instant center I13 is a point lying on the extension line
of link 5, but the exact location is unknown. That is, the location of third instant center
needs other addition information. According to whether third instant center exists on a
known line (at least two instant centers on the line are known, normally, the extension line
of the link), two types third instant center can be concluded. When a third instant center
lies on a known line, the third instant center is an A type third instant center. If not, it is
a B type. Taking third instant centers in Figure 2a for example, the instant center I13, I14,
I24, I25, and I35 (also represented as L13, L14, L24, L25, and L35, L means that the instant
centers are on the lines, but their exact locations are unknown) are all the A type third
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instant centers. Obviously, there is no B type third instant center. For Figure 2b, the instant
center I14, I25 and I36 are all the B type third instant centers. What is noteworthy is that the
shortest topological distance of the two links coming from the instant center can be used to
distinguish which type the third instant center belongs to. The discrimination process is
shown as follows. If the shortest topological distance is less than two units, which means
that there is only one link among the two links, the corresponding instant center is an A
type third instant center. For Figure 2a, the link 2 is the only link for the A type instant
center I13 formed by the links 1 and 3. The B type third instant center I14 has two links
(i.e., links 2 and 3) between the formed links 1 and 4 in Figure 2b. Compared to the listed
literatures, the new classification is more detailed and accurate.
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3. Virtual Link Method for Instant Center Identification
3.1. Criteria for Instant Center Identification

In order to explain the formation of the two proposed criteria, the instant center
identification of the Stephenson linkage containing two-loop, in Figure 3, is taken as an
example as follows.
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The Stephenson linkage has C6
2 = 15 instant centers (Figure 3). The seven instant

centers I12, I23, I34, I14, I35, I56, and I16 are the first instant centers, and the secondary
instant centers are the centers I13, and I24. The rest of the instant centers, such as I15, I36,
I46, I25, I26, and I45, are the A type third instant centers shown in Table 1. Since no B
type third instant center exists, instant centers of the Stephenson linkage are easy to be
located with Aronhold–Kennedy theorem. In order to efficiently use the existing first or
secondary instant centers to locate the third instant centers, the instant center identification
process graph is introduced, which makes the location operation visible and efficient.
The essence of the instant center identification process graph is the visualization of third
instant center identification using Aronhold–Kennedy theorem. For example, the third
instant center identification process graph of Stephenson linkage is shown in Figure 4.
The instant center identification process graph is built by the third instant centers and the
lines formed by other instant centers except for themself. The symbols “

√
”, “×”, solid

“↓” and hollow “↓” of the graph denote determinate instant center, indeterminate instant
center, determinate line and indeterminate line, respectively. The steps of the identification
process are shown as follows. Firstly, the third instant centers are all listed on the top.
Secondly, using Aronhold–Kennedy theorem, the third instant center can be divided into
four instant centers on two possible Aronhold–Kennedy lines. As for instant center I15, the
four centers are the instant centers I16, I56, I13, and I35. Thirdly, if the four instant centers are
all determinate instant centers, i.e., four

√
, then the two lines can be decided (i.e., two solid

↓). For instant center I15, the two lines are line I16I56 and line I13I35. Finally, the third instant
center can be identified in which the two determinate lines cross. For Figure 4, all the
instant centers of the Stephenson linkage can be directly obtained with Aronhold–Kennedy
theorem, but for single-loop multi-DOF N-bar (N ≥ 5) planar linkage with B type third
instant centers, the situation becomes complex. In this paper, the concept of coupled loop
chain characteristic and virtual link operation are proposed to solve the instant center
identification of single-loop multi-DOF N-bar (N ≥ 5) planar linkage.

Table 1. Instant centers of the Stephenson linkage.

First instant Center I12 I23 I34 I14 I35 I56 I16

Secondary Instant Center I13 I24

Third instant center
A type I15 I36 I46 I25 I26 I45
B type none
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3.1.1. Coupled Loop Chain Characteristic

In the view of loop chain, the instant centers of the Stephenson linkage (Figure 3) can
be located as follows. Firstly, three loop chains are found: loop 1-2-3-4, loop 1-4-3-5-6, and
loop 1-2-3-5-6. The coupled loop chain 3-5-6-1 is the common part of two loops if the loop
1-4-3-5-6 and loop 1-2-3-5-6 are grouped. For the loop 1-2-3-5-6, there exists one instant
center I13

1. However, for the other loop 1-4-3-5-6, the other instant center I13
2 can also

be obtained. Only when the instant centers I13
1 and I13

2 come cross, can the Stephenson
linkage be formed. In other words, only if the common instant centers I13

1 and I13
2 of two

loops coincide, the Stephenson linkage exists. In the loop 1-2-3-5-6 and loop 1-4-3-5-6, the
instant centers I13

1 and I13
2 are all A type third instant centers, which lie on the extension

lines of link 2 and link 4, respectively. That is, the instant center I13 occurs at the point of
the intersection of the two line when the instant center I13

1 and I13
2 coincide. Similarly, if

combining the two loops: loop 1-2-3-4 and loop 1-4-3-5-6, the same result can be obtained.
This property, here called coupled loop chain characteristic, is discussed and demonstrated
in Refs. [11–14,18].

3.1.2. Virtual Link Operation

According to discussion above, for single-loop multi-DOF N-bar (N ≥ 5) planar
linkage, two criteria and corresponding virtual link operation are presented to locate
instant centers as follows.

Criterion 1: For a single-loop multi-DOF N-bar (N≥ 5) planar linkage, add the virtual
links without changing instantaneous configuration to take shape the two-loop virtual
linkage in which the instant centers are easy to be determined. Based on mathematics
definition of instant center, some of the obtained instant centers in virtual linkage are
equivalent to the ones in the original linkage.

Criterion 2: Based on coupled loop chain characteristic, in a certain linkage, if several
common instant centers exist when combining any two loops of the linkage, once any pair
of common instant centers obtained from different loop chain come cross, the rest common
instant centers must coincide, accordingly.

Note that, virtual link operation is an assumption, and the virtual links are unreal.
Virtual link operation is an auxiliary means to change the single-loop linkage into a virtual
two-loop linkage which do not affect the motion of the original single-loop linkage. That
is, the virtual two-loop linkage is actually still the single-loop linkage. The inputs and the
motions of the links (not including the virtual links) in the virtual two-loop linkage are the
same compared to the original single-loop linkage. The corresponding mathematical proof
is discussed in detail in Section 4.

3.2. Process for Instant Center Identification

For single-loop multi-DOF N-bar (N ≥ 5) planar linkage, as shown in Figure 5a, there
are CN

2 instant centers including no secondary instant center. According to two criteria
above, the single-loop multi-DOF N-bar (N ≥ 5) planar linkage can be transformed into
the two-loop virtual planar linkage which is combined by a N-bar virtual loop and a
(N − 1)-bar virtual loop when N is odd number or two (N − 1)-bar virtual loops when N is
even number by adding the middle virtual links N + 1’ in Figure 5b (the number m of the
middle virtual links depends on what odd number or even number N (N ≥ 5) belongs to.
For example, 5 is the first odd number for N, the number m is one for single-loop five-bar
planar linkage. 7 is the second odd number for N, therefore, for seven-bar linkage, the
number m is two. The number m is three in nine-bar linkage. Similarly, 6 is the first even
number for N, so the number m is one for single-loop six-bar linkage, and the number m
is two for eight-bar linkage. It is three in 10-bar linkage. The rule of adding virtual links
is to ensure that the number of the two formed virtual loops are same or the difference
is 1). If the common instant centers of the two formed virtual loops are located, all the
instant centers of the two-loop virtual planar linkage can be identified, and then the instant
center problem of the original N-bar planar linkage can be solved with Aronhold–Kennedy
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theorem. Six steps are summarized for the instant center identification of single-loop
multi-DOF N-bar (N≥ 5) planar linkage as follows. The corresponding flow chart is shown
in Figure 6.
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Step 1: Calculate the number of instant centers and classify the instant centers accord-
ing to the proposed classification, then form the instant center Table.

Step 2: Form the instant center identification process graph and choose the right links
to build the common instant centers. The common instant centers can be formed by the
unchanged links after virtual link operation or directly come from the virtual links. The
common instant centers and virtual link operation are interdependent. In another word,
the rule of adding virtual links discussed above is the rule to choose the common instant
centers, to some extent.

Step 3: Check if the number N (N ≥ 5) belongs to odd number or not.
Step 4: Based on the results from Steps 2 and 3, add the corresponding virtual links to

form two-loop virtual planar linkage.
Step 5: Use Criterions 1 and 2 to locate the common instant centers of the two-loop

virtual planar linkage. If not, back to Step 3 to add new virtual links in the existing virtual
loop until the common instant centers can be obtained. Step 3-Step 4-Step 5 is a iteration
loop. The proposed method is suitable to be programmed.

Step 6: Determinate the remaining instant centers of the original N-bar planar linkage
which fails to be located in Step 5 using Aronhold–Kennedy theorem.

4. Mathematical Proof

Loop equation is a common mathematical tool to analyze the kinematics of planar
linkages. It is employed here to verify the validity of virtual link operation in the instanta-
neous configuration. Taking the single-loop five-bar planar linkage (red part in Figure 7a,
i.e., loop1-2-3-4-5), for example, the known variables are the input angles θ2, θ5 and the link
parameters a1, a2, a3, a4, and a5, i.e., the passive angles θ3, and θ4 are unknown. Choosing
the angle θ4 as the output, the loop equation of the single-loop five-bar planar linkage can
be expressed as
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Mathematical proof for single-loop five-bar planar linkage.
Loop ABCDE:

a1 + a2eiθ2 + a3eiθ3 − a4eiθ4 − a5eiθ5 = 0 (2)

Using Euler formula, Equation (2) can be written as the following two equations:

a1 + a2cos θ2 + a3cos θ3 − a4cos θ4 − a5cos θ5 = 0 (3)

a2sin θ2 + a3sin θ3 − a4sin θ4 − a5sin θ5 = 0 (4)
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Eliminating the unknown angle θ3 in Equations (3) and (4) according to the trigono-
metric function (sin θ 3)

2 + (cos θ 3)
2 = 1,

θ4 = M1(θ2, θ5) (5)

Differentiating Equation (5) with respect to time, yields,

W4 =
•
θ4 = M2(

•
θ2,

•
θ5) (6)

where Mi (i = 1, 2) are the coefficients in the light of θ2 and θ5, which can be obtained
with mathematical software Maple. Note that Mi is constant. Equation (6) shows that the
angular velocity W4 of the single-loop five-bar planar linkage is only related to the input
angle θ2, θ5.

After adding the virtual links, the single-loop five-bar linkage (Figure 7a) is changed
into a virtual Stephenson linkage (Figure 7b). According to discussion above, the sizes
and positions of the virtual links 1’, 3’, and 6’ are arbitrary, hence, there are no known
parameters added. Note that the links 1 and 3 (Figure 7a) and the links 1’and 3’ in Figure 7b
are different. Seeing from Figure 7a, the link 3 has only one angular velocity, the derivative
of angle θ3 in loop ABCDE. However, the link 3’ (Figure 7b) has three angular velocities:
the derivative of angle θ3 in loop ABCDE, the derivative of angle θ31 in loop GFCDE,
the derivative of angle (θ31 + 2π – β − η) in loop ABFG. As for the links 1 and 1’, the
similar result can be concluded. Therefore, the instant center I1’3’ in the virtual Stephenson
linkage is not same to the instant center I13 in the single-loop five-bar planar linkage. In
fact, the virtual link operation is an assumption. The virtual links are unreal. The virtual
Stephenson linkage is actually still the single-loop five-bar linkage. The inputs and the
motions of the links (not including the virtual links) in the virtual Stephenson linkage are
the same compared to the original single-loop five-bar linkage. The instant centers which
are formed by the virtual links 1’, 3’, and 6’, such as I1’2, I1’3’, I1’4, I1’5, I1’6’, I23’, I26’, I3’4, I3’5,
I3’6’, I46’, and I56’ in Figure 7b, do not change the motion of the original five-bar linkage.
That is, the instant centers I1’2, I1’3’, I1’4, I1’5, I23’, I3’4, and I3’5’ in the virtual Stephenson
linkage are all different to the instant center I12, I13, I14, I15, I23, I34, and I35 in the original
single-loop five-bar linkage.

The loop equation of the virtual Stephenson linkage (Figure 7b) can be expressed as
Loop ABFG:

a2eiθ2 + a31ei(2π+θ3−β) − a11eiα − a6eiθ6 = 0 (7)

Loop GFCDE:

a12ei(π−λ) + a6eiθ6 + a32eiθ31 − a4eiθ4 − a5eiθ5 = 0 (8)

Adding Equation (7) to Equation (8) to eliminate the passive angle θ6, Equation (9)
can be obtained as follows:

a2eiθ2 + a31ei(2π+θ3−β) − a11eiα + a12ei(π−λ) + a32eiθ31 − a4eiθ4 − a5eiθ5 = 0 (9)

In fact, the elimination operation above is to form the loop ABCDE (red part in
Figure 7b), i.e., Equation (9) is the loop equation of loop ABCDE, as a result, Equation (9)
should equal to Equation (2).

Using Euler formula, Equation (9) can be written as the following two equations:

a2cos θ2 + a31cos(θ 3 − β)− a11cosα− a12cos λ
+a32cos θ31 − a4cos θ4 − a5cos θ5 = 0

(10)

a2sin θ2 + a31sin(θ 3 − β)− a11sinα+ a12sin λ

+a32sin θ31 − a4sin θ4 − a5sin θ5 = 0
(11)
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Since the angle θ3 = θ31 − η, combining Equations (10) and (11) to eliminate the passive
angle θ3 with tangent-half-angle formula (firstly, cosθ3 = 1 − m2/(1 + m2),
sinθ3 = 2m/(1 + m2), where m = tan(θ3/2), are substituted into Equations (10) and (11),
then eliminate the common term m of the two equations), Equation (12) can be obtained.

θ4 = N1(θ2, θ5) (12)

Differentiating Equation (12) with respect to time, yields,

W4 =
•
θ4 = N2(

•
θ2,

•
θ5) (13)

where Ni (i = 1, 2) are the coefficients in the light of θ2 and θ5. Note that Ni are composed
of the unknown angles β, η, α, λ (β, η are the interior angles of the link 3’, α, λ are the
interior angles of the link 1’) and the arbitrary link parameters a11, a12, a6, a31, and a32 (a11,
a12 are the link parameters of the links 1’, a31, and a32 are the link parameters of the links
3’). Contrasted the single-loop five-bar linkage in Figure 7a with the virtual Stephenson
linkage in Figure 7b, since the parameters α, λ, β, η, a11, a12, a31, and a32 are random, that
is, a lot of virtual Stephenson linkages can be obtained, which correspond to the same
single-loop five-bar linkage. However, according to Equations (6) and (13), it is obvious that
the angular velocities W4 of Equations (6) and (13) are only related to the input angles θ2, θ5
no matter whether the virtual links are added or not. When the single-loop five-bar linkage
is in the instantaneous configuration, i.e., the ratio of the inputs (W2/W5) is specified, the
two angular velocities W4 all coming from the loop ABCDE in which the links 4 correspond
the same derivative of angle θ4, are the same. Then the instant centers I24, which is decided
by (W4/W2), are the same. That is, the virtual links of the virtual Stephenson linkage do
not change the motion of the original single-loop five-bar linkage. The virtual Stephenson
linkage is actually still the original single-loop five-bar linkage. Virtual link operation is an
auxiliary means to change the single-loop linkage into a virtual two-loop linkage which do
not affect the motion of the original single-loop linkage. Therefore, the unchanged instant
centers I24 and I25 in Figure 7a,b, formed by the common part of the original single-loop
five-bar linkage and the virtual Stephenson linkage, are the same. In other words, the
instant centers I24 and I25 obtained from the virtual Stephenson linkage can be used in the
instant center identification of the original single-loop five-bar linkage, and in the virtual
Stephenson linkage, the instant centers I24 and I25 are easy to be obtained. The validity of
virtual link operation is demonstrated.

5. Instant Center Identification of the Single-Loop Planar Linkages
5.1. Single-Loop Five-Bar Planar Linkage
5.1.1. Single-Loop Five-Bar Planar Linkage with Only Rotation Joints

The five-bar planar linkage (Figure 2a) is the simplest single-loop planar linkage
beside the four-bar planar linkage. It has ten instant centers which are shown in Table 2.
The instant centers I12, I23, I34, I45, and I15 are the first instant centers, and the A type third
instant centers include the instant centers I13, I14, I24, I25, and I35. Lacking the secondary
instant centers, the third instant centers cannot be determined as shown in Figure 8.

Table 2. Instant centers of five-bar planar linkage.

First Instant Center I12 I23 I34 I45 I15

Secondary Instant Center None

Third instant center
A type I13 I14 I24 I25 I35
B type none
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Figure 8. The instant center identification process graph of five-bar planar linkage without
virtual links.

Using Criterions 1 and 2, the instant centers of five-bar planar linkage (Figure 2a) can
be solved. After adding the virtual links, the virtual loops are formed and the secondary
instant centers occur. The created secondary instant center can be used to get the A type
third instant centers. Since the parameters and positions of inserted virtual links are
arbitrary, the transformation of the configuration is not out of generality. In Figure 9, the
original five-bar planar linkage (Figure 2a) is converted into the virtual Stephenson linkage
with the virtual links 2’, 5’, and 6’. Note that the virtual links 2’ and 5’ are different to the
links 2 and 5 (Figure 2a). The instant centers of the virtual Stephenson linkage are shown
in Table 3. With Aronhold–Kennedy theorem, the secondary instant centers I16’ and I2’5’
(which is also the common instant center of the loop 1-2’-6’-5’ and loop 2’-3-4-5’-6’) and the
A type third instant centers I13, I14, I2’4, I35’, I36’, and I45’ are easy to be located in Figure 10.
Compared the links 1, 3, and 4 (red segment in Figure 9) in the five-bar planar linkage
and the virtual Stephenson linkage, the locations and motions of links are invariant, that
is, the unchanged instant centers I13, and I14 of two planar linkage are equivalent. Seeing
from Figure 8, as a result, the remaining A type third instant centers (i.e., I24, I25, and I35) of
the single-loop five-bar planar linkage are solvable using the instant center identification
process graph. Note that the instant center I2’5’ obtained in loop 1-2’-6’-5’ is different to
the instant center I25 in loop 1-2-3-4-5 since the derivative of angle of the instant center I2’5’
coming from loop 1-2’-6’-5’ and the derivative of angle of the instant center I2’5’ coming
from loop 1-2-3-4-5 are different based on the discussion in Section 4.

Table 3. Instant centers of Stephenson linkage with the virtual links.

First instant center I12’ I2’3 I34 I15’ I45’ I2’6’ I5’6’

Secondary instant center I16’ I2’5’

Third instant center
A type I13 I14 I2’4 I35’ I36’ I46’
B type none
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5.1.2. Single-Loop Five-Bar Planar Linkage with Prismatic Joints

The instant center of a prismatic joint lies on the line which is perpendicular to the
motion pair, for example, L45 in Figure 11. There are three cases of single-loop five-bar
planar linkages with the different number of prismatic joints. Taking the linkages in
Figure 11a for example, the instant centers are shown in Table 4. Contrasted Table 2 with
Table 4, the difference of the instant centers between the single-loop five-bar linkage with
one prismatic joint and the single-loop five-bar linkage with only rotation joints is that
one first instant center (I45 in Table 2) is changed into an A type third instant center (I45 in
Table 4). Using the proposed method, the instant center problem of this kind linkages can
be solved as follows. The virtual links can be added in two ways: (1) after added operation,
the five-bar linkage is changed into a virtual four-bar loop with only rotation joints and
a five-bar loop with one prismatic joint; (2) the five-bar linkage is changed into a virtual
five-bar loop with only rotation joints and a four-bar loop with one prismatic joint, shown
in the Figures 12 and 13. For Figure 12, the linkage with the prismatic joint is changed
into a virtual Stephenson linkage with one prismatic joint containing loop1-2-3’-6’ with
rotation joints and loop1’-6’-3’-4-5 with the prismatic joint. However, some A type third
instant centers, such as L1’4, L24, L46’, and L45, in this case, cannot be obtained even under
exceptional conditions that the angle between the link 4 and the sliding block is 90◦. As
for Figure 13a, using the corresponding virtual link operation, the linkage is transformed
into a virtual Stephenson linkage including loop 1’-2-3-4’-6’ with rotation joints and loop
1’-6’-4’-5 with the prismatic joint. Although the instant centers L1’4’, L56’, and L4’5 in the
loop1’-6’-4’-5 cannot be located, the instant centers of loop 1’-2-3-4’-6’ with rotation joints
are solvable seeing from the case in Figure 9. The corresponding virtual link operations
are shown in Figure 13b. The instant center I1’4’ is the common instant center of the loop
1’-2-3-4’-6’ and loop 1’-6’-4’-5 with the prismatic joint. In another word, the instant center
I1’4’, obtained from the loop 1’-2-3-4’-6’, can be used to identify the rest instant centers L56’
and L4’5 in loop 1’-6’-4’-5 with the prismatic joint. The solution for single-loop five-bar
planar linkage with prismatic joint sounds like an iterative process. The instant centers
of the five-bar loop with rotation joints are solved, and then used in the identification
of the four-bar loop with the prismatic joint. The other cases are shown in Figure 13c,d
in which the five-bar planar linkage has two prismatic joints and three prismatic joints,
respectively. The five-bar planar linkage with two prismatic joints (Figure 13c) can be
changed into a four-bar loop with one prismatic joint and a five-bar loop with another
prismatic joint discussed in Figure 11a. The five-bar planar linkage with three prismatic
joints (Figure 13d) can be changed into a four-bar loop with one prismatic joint and a
five-bar loop with another two prismatic joints discussed in Figure 11b. For simplicity, this
repeated discussion is omitted.

Table 4. Instant centers of five-bar planar linkage with one prismatic joint.

First instant center I12 I23 I34 I15

Secondary instant center none

Third instant center
A type I13 I14 I24 I25 I35 I45
B type none
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Figure 11. Single-loop five-bar planar linkage with (a) one prismatic joint, (b) two prismatic joints, (c) three prismatic joints.
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joints and virtual links 1’, 3’, 6’, (d) three prismatic joints and virtual links 2’, 5’, 6’.

5.2. Single-Loop Six-Bar Planar Linkage
5.2.1. Single-Loop Six-Bar Planar Linkage with Only Rotation Joints

Single-loop six-bar planar linkage (Figure 2b) has 15 instant centers. The first instant
centers I12, I23, I34, I45, I56, and I16 and the third instant center I13, I14, I15, I24, I25, I26, I35,
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I36, and I46 are shown in Table 5, then the instant center identification process graph is
established in Figure 14. Similar to the instant center identification of single-loop five-bar
planar linkage, the instant center identification is shown as follows. The single-loop six-bar
planar linkage with only rotation joints becomes the virtual seven-bar linkage by adding
the virtual links 2’, 5’ and 7’ in Figure 15, which contains two virtual five-bar loops using
Criterion 1. The instant centers are listed in Table 6 after this change. In Figure 15, the
coupled loop chain 2’-7’-5’ is the common part of two virtual loop 1-2’-7’-5’-6 and 2’-3-4-5’-
7’, namely, the instant center I2’5’ formed by the common part of two virtual loop, is the
common instant center. Using Criterion 2, the wanted instant centers occur if the common
instant centers of the two loops coincide. It is clear that the single loop 1-2’-7’-5’-6 is just
the single-loop five-bar planar linkage discussed in Section 5.1 in which the instant centers
had been recognized in Figure 8. Therefore, the instant center I2’5’

1 is known and can be
used for the identification of the instant centers of the virtual loop 3-4-2’-7’-5’ when the
loop is taken as a single loop. In this way, the instant centers I15’, I17’, I2’5’, I2’6, I67’, I35’, I37’,
I2’4, and I47’ are immediately obtained, and the instant center I13 is figured out according to
the instant centers I12’, I2’3, I17’, and I37’ using Aronhold–Kennedy theorem. As the same
to the instant center I13, the instant centers I14, I36, and I46 are solved and brought into
the original six-bar linkage in Table 7, which makes all the instant centers of the linkage
determinate in Figure 14.

Table 5. Instant centers of six-bar planar linkage without virtual links.

First instant center I12 I23 I34 I45 I56 I16

Secondary instant center none

Third instant center
A type I13 I15 I24 I26 I35 I46
B type I14 I25 I36
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to discussion above, the instant center identification of the linkage is a iteration. The re-
sults coming from the linkages in Figure 15 can be used for the instant center locations in 
Figure 16a. The corresponding virtual link operation is shown in Figure 16d. Then, the 
similar steps are repeated in Figure 16b, the corresponding virtual link operation is shown 
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Figure 15. Single-loop six-bar planar linkage with virtual links.

Table 6. Instant centers of six-bar planar linkage with virtual links.

First instant center I12’ I2’3 I16 I27’ I34 I45’ I5’6 I5’7’

Secondary instant center none

Third instant center
A type I13 I15’ I17’ I2’4 I2’5’ I2’6 I35’ I46 I47
B type I14 I36

Table 7. Instant centers of six-bar planar linkage with Criterions 1 and 2.

First and identified I12 I23 I34 I45 I56
instant center I16 I13 I14 I36 I46

Instant center by Aronhold–Kennedy theorem I15 I24 I26 I35 I25

5.2.2. Single-Loop Six-Bar Planar Linkage with Prismatic Joints

Similar to single-loop five-bar planar linkage with prismatic joints, there show three
cases of single-loop six-bar linkages with several prismatic joints in Figure 16. According
to discussion above, the instant center identification of the linkage is a iteration. The
results coming from the linkages in Figure 15 can be used for the instant center locations
in Figure 16a. The corresponding virtual link operation is shown in Figure 16d. Then,
the similar steps are repeated in Figure 16b, the corresponding virtual link operation is
shown in Figure 16e. In Figure 16f, the consequences of Figure 16a,b are utilized for the
instant center identification of single-loop six-bar linkages with three prismatic joints. For
simplicity, the detailed process is not expanded.
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Figure 16. Single-loop six-bar planar linkage with (a) one prismatic joint, (b) two prismatic joints, (c) three prismatic joints,
(d) one prismatic joint and virtual links 3’, 6’, 7’, (e) two prismatic joints and virtual links 1’, 3’, 7’, (f) three prismatic joints
and virtual links 1’, 5’, 7’.
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6. Conclusions

Instant center can be used in spatial mechanisms [26,27], redundant mechanisms [28],
real devices [30], and is even available in commercial packages. It is a basic kinematic
property which helps analyze kinematics of the linkages [2–5,31], rigid-body synthesis [6],
dynamics modeling [7], dynamic balancing analysis [29], and imperfect systems of real
devices [30]. Based on coupled loop chain characteristic and definition of instant center, a
virtual link method to identify instant centers of the single-loop multi-DOF planar linkage
is proposed. The conclusions and advantages can be summarized as follows:

(1) Three types of instant centers are redefined and the instant center identification
process graph is introduced. Compared to the traditional classification of instant
center, the difference is that the new classification classifies the traditional secondary
instant center into three refined types: new secondary instant center, A type third
instant center and B type third instant center in view of the access. That is, the new
classification is more accurate and detailed, which brings conveniences for further
research about instant centers.

(2) According to the instantaneous configuration of the linkage and definition of instant
center, two criteria are presented and used to convert single-loop multi-DOF planar
linkage into a two-loop virtual linkage by adding virtual links to acquire all the
instant centers. Compared to the previous graphical methods, the proposed method
has less operation than Dijksman’s method and Klein’s method facing the instant
center identification of the simple planar linkage, such as single-loop five-bar planar
linkage, and it has higher applicable rate than Chang’s method. As for Pennock’s
method, the proposed method does not need the analytical calculation. However, its
disadvantage is that it must be programmed facing the instant center identification of
the single-loop N-bar (N > 6) planar linkage. Moreover, the proposed method only
works in the instantaneous configuration, for the continuous motion of planar linkage,
it fails.

(3) The instant centers of the single-loop five-bar, six-bar linkages with several prismatic
joints are the first time to be located.

(4) The proposed method provides a geometry loop insight to reveal the relationship
between the formation of the instant center and the motion of single-loop multi-DOF
planar linkage, and a new research idea for the study of instant centers.
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