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Abstract: In this study, the feasibility of using Lamb waves in functionally graded (FG) nano copper
layered wafers in nondestructive evaluation is evaluated. The elastic parameters and mass densities
of these wafers vary with thickness due to the variation in grain size. The power series technique is
used to solve the governing equations with variable coefficients. To analyze multilayered structures,
of which the material parameters are continuous but underivable, a modified transfer matrix method
is proposed and combined with the power series method. Results show that multiple modes of
Lamb waves exist in FG nano copper wafers. Moreover, the gradient property leads to a decrease in
phase velocity, and the absolute value of the phase velocity variation is positively correlated with the
gradient coefficient. The phase velocity variation and variation rate in Mode 2 are smaller than those
in other modes. The findings indicate that Mode 4 is recommended for nondestructive evaluation.
However, if the number of layers is greater than four, the dispersion curves of the Lamb waves in the
multilayer structures tend to coincide with those in the equivalent uniform structures. The results
of this study provide theoretical guidance for the nondestructive evaluation of FG nanomaterial
layered structures.

Keywords: functionally graded nano copper; lamb wave; power series technique; modified transfer
matrix method

1. Introduction

Since the introduction of functionally graded (FG) nano copper in 2011 [1], this novel
material with a graded grain size distribution has attracted increasing scientific interest
due to its high strength and high ductility [2–4]. The interest in materials with graded
grain size distributions is not limited to nano copper and also includes titanium [5,6],
zirconium [7], metallic glass [8], Fe–Mn austenitic steel [9], and low-carbon steel [10]. The
grain refinement mechanism, microstructure characteristics, and material properties of
samples of a gradient nano/microstructured surface layer on pure copper are investigated
through several experiments [11]. Copper rod samples with gradient grain structures are
also developed, measured in terms of microhardness, analyzed through electron backscatter
diffraction, and simulated numerically [12]. With the in-depth study on FG nano copper
materials [13,14] and their superiority in terms of strength and ductility, these materials will
be widely utilized in engineering fields. The nondestructive evaluation of structures made
of these materials is an important research topic in laboratory and engineering applications.

The guided wave technique, which is one of the most popular nondestructive eval-
uation methods is used to analyze Lamb, shear horizontal, Love, and Rayleigh waves.
Related previous studies focused on the waves in homogenous structures [15,16]. Scientists
began to investigate waves in structures made of FG materials in the 1990s. Researchers
proposed various analytical methods, including directly analytical method, special func-
tion solution, the Wentzel–Kramers–Brillouin (WKB) method, the Legendre series method,
and the power series method. The directly analytical method is used to solve different
wave propagation problems when the material parameters vary with the same exponential
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function [17,18]. In this case, the governing differential equation with variable coefficients
can be transformed into a differential equation with constant coefficients to obtain an
analytical solution. If the governing equations can be decoupled and the material param-
eter variations follow specific laws, the special function method can be applied to solve
wave propagation problems [19–21]. The WKB method is used to study the horizontal
shear waves in different FG layered structures with one displacement component [22,23].
However, this approach is only applicable to wave propagation problems with large wave
numbers [20]. As asymptotic methods with series form, the Legendre [24–26] and power
series methods [27] are utilized to analyze waves in various FG structures. Especially, the
Legendre series method has been applied, not only for solving wave propagation behavior
of macroscopic structure [28], but also that of microstructure using the combined modified
couple stress theory [29,30]. Numerical analyses of wave propagation in inhomogeneous
media are also conducted. The main idea of the numerical solution is to divide the FG
medium into a multilayer model. The material parameters in each layer of the model
are assumed to be homogenous [31–33]. The transfer matrix method, which is based on
the continuity of the stress and displacement in the interface, is used to solve the wave
propagation problem in multilayered structures [15,34]. This numerical technique can also
be applied to solve wave propagation problems in various FG layered structures [35,36].
Considering that Lamb waves have been widely used in nondestructive evaluation in
engineering application, Kuznetsov analyzed and compared the similarity and discrep-
ancy of dispersion properties of Lamb wave propagation in both functionally graded and
homogeneous plates [37,38]. Considering the nondestructive evaluation of FG nano metal
layered structure, we focused on different guided waves in a single layer FG nano metal
wafer or a multilayered FG nano metal wafer. An early report has been published on
horizontal shear (SH) waves in these structures [39].

In the present study, the Lamb waves in an FG nano copper layered structure are
investigated analytically. The grain size of the FG nano copper is assumed to vary along the
thickness direction, and the other material parameters are deduced using the Mori–Tanaka
effective field result proposed by Wang et al. [40]. The governing differential equations for
describing the Lamb waves in a simple FG nano wafer are solved using the power series
method. In addition, the Lamb wave propagation problem in a multilayered FG nano
metal wafer with continuous and non-differentiable material parameters is solved through
a modified transfer matrix method combined with the power series technique. On the basis
of the abovementioned methods, numerical examples are analyzed, and the propagation
properties of the Lamb waves in an FG nano copper wafer are discussed.

2. Statement of the Problem
2.1. Governing Equations

In this study, the Lamb waves in two types of FG nano copper layered wafer are
considered (Figure 1). The wave propagation direction is the positive direction of the x1
axis, and the thickness is along the x3 axis. If the grain size of the FG nano copper wafer
varies with thickness and is a function of x3, then the corresponding material parameters,
including the elastic parameters and mass density, are not constants, but are functions of x3.
Figure 1a presents a simple FG nano copper wafer with thickness h and a monotonously
changing grain size, whereas Figure 1b displays a multilayered FG nano copper wafer
composed of several simple wafers with interfaces that have continuous grain sizes. The
thickness of each simple wafer is h, and the total thickness is H. Therefore, the grain size is
alternately increasing and decreasing.
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Figure 1. Two types of FG nano copper wafer. (a) Simple FG nano copper wafer; (b) multi-layered FG nano copper wafer.

Denoting the displacement component along the xj direction as uj, the relationship
between the strain and the displacement is expressed as:

εij =
1
2
(
ui,j + uj,i

)
(1)

where εij is the strain tensor, and the comma followed by subscript i indicates space
differentiation with respect to the corresponding coordinate xi.

The constitutive equation for elastic materials is written as:

σij = cijklεkl (2)

where σij is the stress tensor, cijkl is the elastic parameter, and the repeated index in the
subscript implies summation with respect to that index. The two independent elastic
parameters for isotropic elastic materials can be expressed by the Lamé parameters λ and
µ. The elastic parameters of the FG nano copper wafer that depend on the grain size are
not constants, but are functions of position.

The motion equation is expressed as:

σij,j = ρ
..
ui (3)

where ρ is the mass density, which depends on the grain size and is a function of x3.
The displacement components of the Lamb waves propagating in the FG nano copper

wafer are expressed as:

u1 = u1(x1, x3, t), u2 = 0, u3 = u3(x1, x3, t) (4)

and the governing equations for the mechanical displacements are defined as:

(λ + 2µ) ∂2u1
∂x1

2 + λ ∂2u3
∂x1∂x3

+ µ
(

∂2u3
∂x1∂x3

+ ∂2u1
∂x3

2

)
+ dµ

dx3

(
∂u3
∂x1

+ ∂u1
∂x3

)
= ρ ∂2u1

∂t2

(λ + 2µ) ∂2u3
∂x3

2 + λ ∂2u1
∂x1∂x3

+ µ
(

∂2u1
∂x1∂x3

+ ∂2u3
∂x1

2

)
+ dλ

dx3

∂u1
∂x1

+ d(λ+2µ)
dx3

∂u3
∂x3

= ρ ∂2u3
∂t2

(5)

2.2. Boundary Conditions

The traction-free boundary conditions should be satisfied in the wave propagation
in a simple or layered wafer. Moreover, the interface continuity conditions should be
considered when investigating wave propagation in the latter. The boundary and the
continuity conditions of a layered wafer composed of N single layers of wafer can be
expressed as follows, where superscript 〈l〉 represents the lth wafer.

(i) Lamb waves in a simple wafer Traction-free conditions: σ33 = 0 and σ13 = 0 at
x3 = 0, h

(ii) Lamb waves in a multilayered wafer Traction-free conditions: σ
〈1〉
33 = 0 and σ

〈1〉
13 = 0

at x3 = 0 and σ
〈N〉
33 = 0 and σ

〈N〉
13 = 0 at x3 = H Continuity conditions: σ

〈l〉
33 = σ

〈l+1〉
33 ,

σ
〈l〉
13 = σ

〈l+1〉
13 , u〈l〉1 = u〈l+1〉

1 , and ul
3 = u〈l+1〉

3 at x3 = lh
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2.3. Material Parameters

The nanocrystalline material can be considered as a two-phase composite that com-
prises the interface and the grain phases (Figure 2). By assuming that both phases are
isotropic, Wang [40] derived the effective modulus of elasticity of nanocrystalline materials
using the Mori–Tanaka effective field method. The results included the effective bulk
modulus (or volume modulus) K, shear modulus G, and Young’s modulus (or elastic
modulus) E of nanocrystalline materials. In this study, the Lamé parameters λ and µ and
mass density ρ of FG nano copper are derived on the basis of Wang’s approach.

Figure 2. Microstructure model of nanocrystalline materials [40].

K and G can be expressed in terms of E and Poisson’s ratio ν.

K =
E

3(1− 2ν)
, G =

E
2(1 + ν)

(6)

Km =
Em

3(1− 2νm)
, Kc =

Ec

3(1− 2νc)
, Gm =

Em

2(1 + νm)
, Gc =

Ec

2(1 + νc)
(7)

where subscripts m and c represent the parameters of the interface phase and the crystal,
respectively. In this study, the Poisson’s ratio of the interface phase is assumed to be the
same as that of the crystal, that is, vm = vc. Based on the Mori–Tanaka effective field method,
the relationship between the elastic moduli of the interface phase and the crystal is defined
as [40].

Em

Ec
=

E(r)
E(r0)

=

[
(n + 1)

( r0
r
)n+3 − (m + 1)

( r0
r
)m+3

]
(n−m)

(8)

where m and n are material constants, r is the average atomic spacing, and r0 is the
equilibrium position. The relationship of the average atomic spacing and mass density of
the interfacial phase ρm is expressed as [40].

r0

r
=

(
ρm

ρc

) 1
3

(9)

The volume fraction of the crystal cc is determined as [40].

cc =

(
L3

L + d

)3

=

(
1 +

d
L

)−3
(10)

where L is the average radius of the grain and d is the average thickness of the interfa-
cial phase.

From Reference [40], the parameter β1 and β2 are defined as:

β1 =
2(4− 5vm)

15(1− vm)
and β2 = 3− 5β1 (11)
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The shear and effective bulk moduli of nanocrystalline materials are obtained as:

K = Km +
ccKm(Kc − Km)

Km + β2(1− cc)(Kc − Km)
, G = Gm +

ccGm(Gc − Gm)

Gm + β1(1− cc)(Gc − Gm)
(12)

The Lamé parameters λ and µ can be determined in terms of K and G as:

λ = K− 2
3

G, µ = G (13)

The mass density also depends on the volume fraction of the crystal.

ρ = ρccc + ρm(1− cc) (14)

where ρc and ρm are the mass densities of the ideal crystal and the interfacial phase, respectively.

3. Solution to the Problem

In this section, the governing equations are simplified to be a set of ordinary differential
equations with variable coefficients. For a simple FG layer, the governing equations are
solved based on the power series method. Furthermore, the modified transfer matrix
method is proposed to solve the wave propagation equations in layered structures.

3.1. Ordinary Differential Equations with Variable Coefficients and Power Series Solution

The solutions to the governing equations for Lamb waves propagating in an FG nano
copper wafer are expressed as:

u〈1〉1 = U〈1〉1 (x3)exp(ikx1 −ωt), u〈1〉3 = U〈1〉3 (x3)exp(ikx1 −ωt), and u〈1〉2 = 0 (15)

where i is the imaginary unit, ω is the frequency and satisfies ω = ck, k and c are the wave
number and wave velocity, respectively, U1(z) and U3(z) are the unknown amplitudes
of the displacement, and superscript 〈l〉 represents the lth wafer for the layered wafer
(l = 1 ∼ N). This superscript is not present in the simple wafer. The relationship between
the wave number and wave length l is expressed as kl = 2π. Given that the form of the
governing equation is similar, the superscript is ignored when solving the above equations.

Substituting Equation (15) to Equation (5) yields:

µ d2U1
dx3

2 + dµ
dx3

dU1
dx3

+ i(λ + µ)k dU3
dx3

+
(
ρc2 − λ− 2µ

)
k2U1 + i dµ

dx3
kU3 = 0

(λ + 2µ) d2U3
dx3

2 + i(λ + µ)k dU1
dx3

+ d(λ+2µ)
dx3

dU3
dx3

+ ik dλ
dx3

U1 +
(
ρc2 − µ

)
k2U3 = 0

(16)

Equation (6) is a set of a set of ordinary differential equations with variable coefficients.
In this study, power series method, which both the coefficients and solution are expressed
as power series form, is applied for solving the equations.

Considering that the Lamé parameters and mass density are functions of thickness,
they can be expressed in power series form as:

λ = f1

( x3

h

)
= ∑∞

n=0 anb1c

( x3

h

)n
, µ = f2

( x3

h

)
= ∑∞

n=0 anb2c

( x3

h

)n
, and ρ = f3

( x3

h

)
= ∑∞

n=0 anb3c

( x3

h

)n
(17)

where anb1c, anb2c, and anb3c are the nth coefficients of the Taylor series of λ, µ, and ρ, respectively.
To solve Equation (16) with variable coefficients, the solution is assumed to also follow

the power series form.

U1 = ∑∞
n=0 sn

( x3

h

)n
, U3 = −i ∑∞

n=0 tn

( x3

h

)n
(18)

By substituting Equations (17) and (18) to Equation (16) and equating the coefficient
of (x3/h)n to zero, the following recursive equations are obtained.
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[
∞
∑

n=0
anb2c

( x3
h
)n
][

∞
∑

n=0
sn+2(n + 2)(n + 1)

( x3
h
)n
]
+

[
∞
∑

n=0
an+1b2c(n + 1)

( x3
h
)n
][

∞
∑

n=0
sn+1(n + 1)

( x3
h
)n
]

+(kh)
[

∞
∑

n=0
an+1b2c(n + 1)

( x3
h
)n
][

∞
∑

n=0
tn
( x3

h
)n
]
+ (kh)

[
∞
∑

n=0

(
anb1c + anb2c

)( x3
h
)n
][

∞
∑

n=0
tn+1(n + 1)

( x3
h
)n
]

+(kh)2
[

∞
∑

n=0

(
anb3cc2 − anb1c − 2anb2c

)( x3
h
)n
][

∞
∑

n=0
sn
( x3

h
)n
]
= 0[

∞
∑

n=0

(
anb1c + 2anb2c

)( x3
h
)n
][

∞
∑

n=0
tn+2(n + 2)(n + 1)

( x3
h
)n
]
− (kh)

[
∞
∑

n=0
(n + 1)an+1b1c

( x3
h
)n
][

∞
∑

n=0
sn
( x3

h
)n
]

−(kh)
[

∞
∑

n=0

(
anb1c + anb1c

)( x3
h
)n
][

∞
∑

n=0
sn+1(n + 1)

( x3
h
)n
]
+ (kh)2

[
∞
∑

n=0

(
anb2cc2 − anb2c

)( x3
h
)n
][

∞
∑

n=0
tn
( x3

h
)n
]

+

[
∞
∑

n=0

(
an+1b1c + 2an+1b2c

)
(n + 1)

( x3
h
)n
][

∞
∑

n=0
tn+1(n + 1)

( x3
h
)n
]
= 0

(19)

By equating the coefficient of x3
h to zero, the following recursive relationships are achieved.

n
∑

i=0
(i + 2)(i + 1)an−ib2csi+2 +

n
∑

i=0
(n− i + 1)(i + 1)an−i+1b2csi+1 + (kh)

n
∑

i=0
(n− i + 1)an−i+1b2cti

+(kh)2 n
∑

i=0

(
an−ib3cc2 − an−ib1c − 2an−i2

)
si + (kh)

n
∑

i=0
(i + 1)

(
an−ib1c + an−ib2c

)
ti+1

= 0
n
∑

i=0
(i + 2)(i + 1)

(
an−ib1c + 2an−ib2c

)
ti+2 + (kh)2 n

∑
i=0

(
an−ib3cc2 − an−ib2c

)
ti

−(kh)
n
∑

i=0
(n− i + 1)an−i+1b1csi − (kh)

n
∑

i=0
(i + 1)

(
an−ib1c + an−ib2c

)
si+1

+
n
∑

i=0
(n− i + 1)(i + 1)

(
an−i+1b1c + 2an−i+1b2c

)
ti+1 = 0

(20)

where s0, s1, t0, and t1 are undetermined coefficients. For i ≥ 2, all si and ti values are
linear functions of s0, s1, t0, and t1.

To decouple the undetermined coefficients, the following matrix is constructed.(
s0j, s1j, t0j, t1j

)
= I (21)

where j = 1− 4 and I is a 4× 4 unity matrix. The equivalent form of Equation (18) is
written as:

U1 = ∑4
j=1 Cj ∑∞

n=0 snj

( x3

h

)n
, U3 = −i ∑4

j=1 Cj ∑∞
n=0 tnj

( x3

h

)n
(22)

where Cj(j = 1− 4) represents the undetermined constants. For n ≥ 2, the values of snj
and tnj can be determined using Equation (20). The physical meaning of Cj(j = 1− 4) is
the displacement components and the dimensionless derivatives of displacements U1, iU3,
hd U1

dx3
and ihd U3

dx3
at x3 = 0, respectively.

The boundary conditions should be considered when analyzing the Lamb waves
propagating in a simple FG nano copper wafer. By substituting Equation (22) into the
boundary conditions, the linear algebraic equations with respect to Cj(j = 1− 4) can be
obtained. Considering the sufficient and necessary condition that a nontrivial solution
should exist, the determinant of the coefficient matrix should be equal to zero. This
condition leads to the following dispersion relationship for Lamb waves in a simple FG
nano copper wafer. ∣∣Tij

∣∣ = 0 (23)

where:
T11 = λ0kh, T14 = −

(
λ0 + 2µ0

)
, T22 = 1, T23 = kh
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T3j = ∑∞
n=0

[
λhsnjkh−

(
λh + 2µh

)
(n + 1)t(n+1)j

]
,

T4j = ∑∞
n=0

[
tnjkh + (n + 1)s(n+1)j

]
, j = 1− 4

All other terms are equal to zero. Superscripts 0 and h represent the material parame-
ters of the lower and upper surfaces of the simple FG nano copper wafer, respectively.

3.2. Modified Transfer Matrix Method

The transfer matrix method is commonly used in the study of laminated structures.
For example, when scientists investigate the wave propagation problem in FG structures,
these structures can be simplified as multilayer structures with layers that are assumed to be
homogeneous. Interface continuity conditions include stress and displacement continuity
conditions. When multilayer structures are used to simulate FG structures, the strain in the
interface is discontinuous because of the discontinuous properties of the elastic parameters
in the interface.

The elastic parameters in the interface of the layered structure depicted in Figure 1b are
continuous; thus, the strain components are continuous. The present study assumes that
the displacement and strain components are continuous, the displacement components can
be expressed as power series forms, and the strain components are related to the derivatives
of the displacements with respect to the coordinates. Mathematically, the displacement
components and their derivatives are continuous in the surface.

Let x〈l〉3 = x3 − (l − 1)h, where l denotes the lth layer. The derivative of an arbitrary

function with respect to x3 is equal to the derivative of the function with respect to x〈l〉3 . The
governing equations for the Lamb waves in N-layered structures include l groups. These
equations are similar to Equation (16), where the displacement amplitude components U1

and U3; material parameters λ, µ, and ρ; and x3 are replaced by U〈l〉1 , U〈l〉3 , λ〈l〉, µ〈l〉, ρ〈l〉,

and x〈l〉3 , respectively.
On the basis of the power series solution mentioned above, the solutions for the

governing equations of each layer are obtained in the same form as Equation (22).

U〈l〉1 = ∑4
j=1 C〈l〉j ∑∞

n=0 s〈l〉nj

(
x〈l〉3
h

)n

, U〈l〉3 = −i ∑4
j=1 C〈l〉j ∑∞

n=0 t〈l〉nj

(
x〈l〉3
h

)n

(24)

where: (
s〈l〉0j , s〈l〉1j , t〈l〉0j , t〈l〉1j

)
= I (25)

The values of n, s〈l〉nj , and t〈l〉nj can be determined using Equation (20). The material
parameters for odd and even layers are different. Similarly, the coefficients of the equation
and the obtained solutions are different.

The governing equation in the first layer is solved, and the displacement amplitude
components U〈1〉1 and U〈1〉3 are calculated based on the solution. Then, the relationship be-
tween the displacement components and the dimensionless derivatives of the displacement
concerning coordinates at x〈1〉3 = h and C〈1〉j (j = 1− 4) is obtained as:(

U〈1〉1

∣∣∣
x〈1〉3 =h

, h dU〈1〉1

dx〈1〉3

∣∣∣∣
x〈1〉3 =h

, iU〈1〉3

∣∣∣
x〈1〉3 =h

ih dU〈1〉3

dx〈1〉3

∣∣∣∣
x〈1〉3 =h

)T

= A
(

C〈1〉1 , C〈1〉2 C〈1〉3 C〈1〉4

)T
(26)

where superscript T represents the matrix transposition and A is a 4× 4 matrix named the
transfer matrix of odd layers.

By considering the physical meaning of C〈1〉j (j = 1− 4) and the continuous condition
in the interface, we obtain:(

U〈1〉1

∣∣∣
x〈1〉3 =h

, h dU〈1〉1

dx〈1〉3

∣∣∣∣
x〈1〉3 =h

, iU〈1〉3

∣∣∣
x〈1〉3 =h

ih dU〈1〉3

dx〈1〉3

∣∣∣∣
x〈1〉3 =h

)T

=
(

C〈2〉1 , C〈2〉2 C〈2〉3 C〈2〉4

)T
(27)
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Subsequently, the governing equation in the second layer is solved, and the transfer
matrix of the even layer B, which can be used to describe the relationship between the dis-
placement components and the dimensionless derivatives of the displacement concerning
coordinates at x〈2〉3 = h and C〈2〉j (j = 1− 4), is calculated as:(

U〈2〉1

∣∣∣
x〈2〉3 =h

, h dU〈2〉1

dx〈2〉3

∣∣∣∣
x〈2〉3 =h

, iU〈2〉3

∣∣∣
x〈2〉3 =h

, ih dU〈2〉3

dx〈2〉3

∣∣∣∣
x〈2〉3 =h

)T

= B
(

C〈2〉1 , C〈2〉2 C〈2〉3 C〈2〉4

)T
. (28)

Therefore, the relationship of C〈l〉j (j = 1− 4), where l = 1− N, is expressed as:(
C〈2m+1〉

1 , C〈2m+1〉
2 C〈2m+1〉

3 C〈2m+1〉
4

)
= B

(
C〈2m〉

1 , C〈2m〉
2 C〈2m〉

3 C〈2m〉
4

)T(
C〈2m〉

1 , C〈2m〉
2 C〈2m〉

3 C〈2m〉
4

)
= A

(
C〈2m−1〉

1 , C〈2m−1〉
2 C〈2m−1〉

3 C〈2m−1〉
4

)T
.

(29)

The displacement components and the dimensionless derivatives of the displacement
concerning coordinates of the lower and upper surfaces can be expressed in terms of
C〈1〉j (j = 1− 4).(

U〈1〉1

∣∣∣
x3=0

, h dU〈1〉1
dx3

∣∣∣∣
x3=0

, iU〈1〉3

∣∣∣
x3=0

ih dU〈1〉3
dx3

∣∣∣∣
x3=0

)T

=
(

C〈1〉1 , C〈1〉2 C〈1〉3 C〈1〉4

)T

(
U〈N〉1

∣∣∣
x3=H

, h dU〈N〉1
dx3

∣∣∣∣
x3=H

, iU〈N〉3

∣∣∣
x3=H

ih dU〈N〉3
dx3

∣∣∣∣
x3=H

)T

, N is even.

= B•A• . . . •B•A
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T

31
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NN
N N

x H x H
x H x H

N

UUU h U h
x x

C C C C

, N is even. 

( )
3 3

3 3

T

31
1 3

3 3

T1 1 1 1
1 2 3 4

dd, , i i
d d

,

= =
= =

 
 
 
 

= A B B A  

NN
N N

x H x H
x H x H

N

UUU h U h
x x

C C C C

, N is odd. 

The traction-free boundary conditions in the lower and upper surfaces can be written 
as: 𝜆 + 2𝜇 ⟨ ⟩⟨ ⟩ ⟨ ⟩ +i𝑘𝜆 𝑈⟨ ⟩ ⟨ ⟩ = 0,𝑖𝑘𝑈⟨ ⟩ ⟨ ⟩ + ⟨ ⟩⟨ ⟩ ⟨ ⟩ = 0 

(31)𝜆 + 2𝜇 ⟨ ⟩⟨ ⟩ ⟨ ⟩ +i𝑘𝜆 𝑈⟨ ⟩ ⟨ ⟩ = 0,𝑖𝑘𝑈⟨ ⟩ ⟨ ⟩ + ⟨ ⟩⟨ ⟩ ⟨ ⟩ = 0,  

where subscripts 0 and H represent the material parameters of the lower and upper sur-
faces, respectively. 

The total transfer matrix is defined as: 

is odd

is even

 
=    


A B B A
F

B A B A

  

  
N

N

N

N
 (32)

where 𝑭 is a 4 × 4 matrix with component 𝐹 , (i, j = 1–4). Substituting Equations (30) 
and (32) to Equation (31) yields: 𝜆 𝑘ℎ𝐶⟨ ⟩ − 𝜆 + 2𝜇 𝐶⟨ ⟩ = 0,𝐶⟨ ⟩ + 𝑘ℎ𝐶⟨ ⟩ = 0 

(33)𝜆 + 2𝜇 𝐹 𝐶⟨ ⟩ − 𝑘ℎ𝜆 𝐹 𝐶⟨ ⟩ = 0 

N

(
C〈1〉1 , C〈1〉2 C〈1〉3 C〈1〉4

)T

(
U〈N〉1

∣∣∣
x3=H

, h dU〈N〉1
dx3

∣∣∣∣
x3=H

, iU〈N〉3

∣∣∣
x3=H

ih dU〈N〉3
dx3

∣∣∣∣
x3=H

)T

, N is odd.

= A•B• . . . •B•A
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The traction-free boundary conditions in the lower and upper surfaces can be written 
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where subscripts 0 and H represent the material parameters of the lower and upper sur-
faces, respectively. 

The total transfer matrix is defined as: 

is odd

is even

 
=    


A B B A
F

B A B A

  

  
N

N

N

N
 (32)

where 𝑭 is a 4 × 4 matrix with component 𝐹 , (i, j = 1–4). Substituting Equations (30) 
and (32) to Equation (31) yields: 𝜆 𝑘ℎ𝐶⟨ ⟩ − 𝜆 + 2𝜇 𝐶⟨ ⟩ = 0,𝐶⟨ ⟩ + 𝑘ℎ𝐶⟨ ⟩ = 0 

(33)𝜆 + 2𝜇 𝐹 𝐶⟨ ⟩ − 𝑘ℎ𝜆 𝐹 𝐶⟨ ⟩ = 0 

N

(
C〈1〉1 , C〈1〉2 C〈1〉3 C〈1〉4

)T

(30)

The traction-free boundary conditions in the lower and upper surfaces can be writ-
ten as:

(λ0 + 2µ0)
dU〈1〉3

dx〈1〉3

∣∣∣∣
x〈1〉3 =0

+ikλ0 U〈1〉1

∣∣∣
x〈1〉3 =0

= 0, ik U〈1〉3

∣∣∣
x〈1〉3 =0

+
dU〈1〉1

dx〈1〉3

∣∣∣∣
x〈1〉3 =0

= 0

(λH + 2µH)
dU〈N〉3

dx〈N〉3

∣∣∣∣
x〈N〉3 =h

+ikλH U〈N〉1

∣∣∣
x〈N〉3 =H

= 0, ik U〈N〉3

∣∣∣
x〈N〉3 =h

+
dU〈N〉1

dx〈N〉3

∣∣∣∣
x〈N〉3 =h

= 0,
(31)

where subscripts 0 and H represent the material parameters of the lower and upper
surfaces, respectively.

The total transfer matrix is defined as:

F =


A•B•···•B•A
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The traction-free boundary conditions in the lower and upper surfaces can be written 
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where subscripts 0 and H represent the material parameters of the lower and upper sur-
faces, respectively. 

The total transfer matrix is defined as: 

is odd

is even
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A B B A
F

B A B A

  

  
N

N

N

N
 (32)

where 𝑭 is a 4 × 4 matrix with component 𝐹 , (i, j = 1–4). Substituting Equations (30) 
and (32) to Equation (31) yields: 𝜆 𝑘ℎ𝐶⟨ ⟩ − 𝜆 + 2𝜇 𝐶⟨ ⟩ = 0,𝐶⟨ ⟩ + 𝑘ℎ𝐶⟨ ⟩ = 0 

(33)𝜆 + 2𝜇 𝐹 𝐶⟨ ⟩ − 𝑘ℎ𝜆 𝐹 𝐶⟨ ⟩ = 0 

N

N is odd

B•A•···•B•A
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The traction-free boundary conditions in the lower and upper surfaces can be written 
as: 𝜆 + 2𝜇 ⟨ ⟩⟨ ⟩ ⟨ ⟩ +i𝑘𝜆 𝑈⟨ ⟩ ⟨ ⟩ = 0,𝑖𝑘𝑈⟨ ⟩ ⟨ ⟩ + ⟨ ⟩⟨ ⟩ ⟨ ⟩ = 0 

(31)𝜆 + 2𝜇 ⟨ ⟩⟨ ⟩ ⟨ ⟩ +i𝑘𝜆 𝑈⟨ ⟩ ⟨ ⟩ = 0,𝑖𝑘𝑈⟨ ⟩ ⟨ ⟩ + ⟨ ⟩⟨ ⟩ ⟨ ⟩ = 0,  

where subscripts 0 and H represent the material parameters of the lower and upper sur-
faces, respectively. 

The total transfer matrix is defined as: 

is odd

is even

 
=    


A B B A
F

B A B A

  

  
N

N

N

N
 (32)

where 𝑭 is a 4 × 4 matrix with component 𝐹 , (i, j = 1–4). Substituting Equations (30) 
and (32) to Equation (31) yields: 𝜆 𝑘ℎ𝐶⟨ ⟩ − 𝜆 + 2𝜇 𝐶⟨ ⟩ = 0,𝐶⟨ ⟩ + 𝑘ℎ𝐶⟨ ⟩ = 0 

(33)𝜆 + 2𝜇 𝐹 𝐶⟨ ⟩ − 𝑘ℎ𝜆 𝐹 𝐶⟨ ⟩ = 0 

N

N is even
(32)

where F is a 4× 4 matrix with component Fij, (i, j = 1–4). Substituting Equations (30) and (32)
to Equation (31) yields:

λ0khC〈1〉1 − (λ0 + 2µ0)C
〈1〉
4 = 0, C〈1〉2 + khC〈1〉3 = 0

(λH + 2µH)
4
∑

j=1
F4jC

〈1〉
j − khλH

4
∑

j=1
F1jC

〈1〉
j = 0

kh
4
∑

j=1
F3jC

〈1〉
j +

4
∑

j=1
F2jC

〈1〉
j = 0

(33)
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Equation (33) is a set of linear algebraic equations with respect to C1
j (j = 1− 4). In

accordance with the sufficient and necessary condition that a nontrivial solution should
exist, the determinant of the coefficient matrix should be equal to zero. This condition leads
to the following dispersion relationship for Lamb waves in a layered FG nano copper wafer:∣∣Tij

∣∣ = 0 (34)

where:
T11 = λ0kh, T14 = λ0 + 2µ0, T22 = 1, T23 = kh

T3j = (λH + 2µH)F4j − khλH F1j, T4j = khF3j + F2j, j = 1− 4

All other terms are equal to zero.

4. Numerical Results and Discussion
4.1. Materials

The material parameters of the FG nano copper materials are as follows.

EC = 115GPa, ρC = 8900
kg
m3 , νm = νC = 0.3, m = 3, and n = 8 (35)

The mass density of the interface region ρm is taken as 80% of ρc [40]. The correspond-
ing Young’s modulus, which is determined based on Equation (8), is Em = 0.322EC.

The grain size of the FG nano copper in a simple FG nano wafer varies exponentially
along the thickness direction.

d/L = 0.001ep(x3/h)

where p is the gradient coefficient. When p is equal to 0, the wafer is a homogenous
structure. The variations of grain size, λ and µ, and ρ with thickness for different p values
are plotted in Figure 3.

Figure 3. Variations of the material parameters with thickness for different p values: (a) grain size,
(b) λ, (c) µ, and (d) ρ.
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The grain size of the FG nano copper in a multilayered FG nano copper wafer is
defined as:

d/L =

{
0.001ep(x3/h) Odd layer
0.001ep(1−x3/h) Even layer

As an illustration, the variations of the grain size, λ and µ, and ρ of a three-layer
structure with thickness for different p values are shown in Figure 4. The differences
among the material parameters at p = 1 and p = 0 (homogenous wafer) are minimal
(Figures 3 and 4). A larger value of p signifies a higher inhomogeneity.

Figure 4. Variations of the material parameters of a three-layer structure with thickness for different
p values: (a) grain size, (b) λ, (c) µ, and (d) ρ.

4.2. Lamb Waves in a Simple FG Nano Copper Wafer

The dispersion curves of Lamb waves propagating in a simple FG nano copper wafer
are plotted in Figure 5. Similar to Lamb waves in a homogeneous wafer, Lamb waves
in the FG nano wafer have many modes. For homogeneous (p = 0) and FG nano copper
wafers (p = 1, 3), the phase velocity of the first mode increases with the increase in the
dimensionless wave number. In other words, the first mode is the abnormal dispersion
mode. Conversely, the phase velocities of other modes decrease with the increase in wave
number, thereby representing a normal dispersion. Compared with the same order modes,
the larger the value of p, the smaller the phase velocity. The dispersion curves of p = 0
and p = 1 almost coincide. The most obvious phase velocity change is observed at p = 5,
followed by p = 3.
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Figure 5. Dispersion curves of Lamb waves in a single FG nano copper wafer.

The gradient properties of the FG nano copper structure lead to the variation in the
phase velocity. The relationship between this variation and p can be applied to nondestruc-
tive evaluation. We select kh = 2π (i.e., the thickness is equal to the wave length) and
calculate the change in phase velocity (4c = c− c0, where c0 and c are the phase velocities
in the homogenous and FG wafers, respectively) for the first four modes. The change (4c)
and the relative change rate (4c

c0
) of the phase velocity are plotted in Figure 6. The figure

shows that 4c is negative, and −4 c increases as p increases. The most obvious phase
velocity change is observed in Mode 4 (Figure 6a). The relative change rate of the phase
velocity increases with the increase in p, thereby indicating that the former is positively
correlated with the latter (Figure 6b). The most obvious relative change rate of the phase
velocity ( |4c|

c0
) is detected in Mode 4, whereas the lowest is observed in Mode 2. The relative

change rates of Modes 1 and 3 are similar. In conclusion, higher order modes should be
selected to measure p.

Figure 6. Relationship between the change in phase velocity and p in a simple FG nano cooper wafer: (a) change in phase
velocity and (b) relative change rate of the phase velocity.

4.3. Lamb Waves in a Multilayered FG Nano Copper Wafer

The dispersion curves of the Lamb waves in a three-layer wafer are calculated
(Figure 7). Numerous modes of Lamb wave propagation exist in a multilayered FG nano
copper wafer. The dispersion curves are similar to that of a simple FG nano copper wafer.
For each mode, the larger the value of p, the smaller the phase velocity. The dispersion
curves for p = 0 and p = 1 almost coincide, and the phase velocity at p = 3 slightly
decreases. To provide a theoretical basis for nondestructive evaluation, the variations of
the change and relative change rate of the phase velocity with p at kh = 2π are plotted in
Figure 8a,b, respectively.



Appl. Sci. 2021, 11, 4442 12 of 15

Figure 7. Dispersion curves of the Lamb waves in a three-layer FG nano cooper wafer.

Figure 8. Relationship between the change in phase velocity and p in a three-layer FG nano cooper wafer: (a) change in
phase velocity and (b) relative change rate of the phase velocity.

When the thickness of the wafer is equal to the wavelength, the absolute values of the
change in phase velocity |∆c| and the relative change rate |∆c|

c0
increase with the increase

in p. If the wafer thickness is 5 mm and p is 3, the absolute values of the change in phase
velocity for the first four modes are 8.349, 6.503, 10.839, and 25.781 m/s, respectively. The
frequencies of Lamb waves with a given wavelength vary with different phase velocities.
The frequency reduction is defined as4ω = −4 ck, and the frequency reduction values for
the first four modes are 3497.23, 2723.97, 4540.24, and 10,799.15 Hz, respectively. Although
the relative variable of phase velocity is limited to less than 1.2% (Figure 8b), the absolute
value of the frequency change is expressed in kilohertz. The gradient properties lead to
the significant changes in frequency. The most obvious phase velocity change with the
gradient parameters is observed in Mode 4, followed by Modes 3, 1, and 2 (Figure 8a).
The |4c|

c values of Modes 1 and 3 almost coincide, whereas those of Modes 4 and 2 are the
largest and lowest values among the four, respectively.

To reveal the Lamb wave properties in a multilayered FG nano copper wafer, the
Lamb waves in an effective homogenous wafer are selected for comparison. The material
parameters of the latter, which are selected as the average material parameters of the FG
nano copper wafer, satisfy the following conditions.

λ =

∫ h
0 λdx3

h
, µ =

∫ h
0 µdx3

h
, ρ =

∫ h
0 ρdx3

h
(36)

where λ and µ are the Lamé coefficients and ρ is the mass density of the effective homoge-
nous wafer. At p = 3,

λ = 64.41 GPa, µ = 42.97 GPa, and ρ = 8866.72
kg
m3
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The dispersion curves of the first four modes of the two-layer, four-layer, and effective
homogenous wafers are displayed in Figure 9. The dispersion curve of the four-layer FG
nano copper wafer is closer to the curve of the effective homogenous wafer than that of the
two-layer FG nano copper wafer. The findings suggest the difference in the Lamb wave
propagation in a multilayered FG nano copper wafer weakens with the increase in the
number of layers.

Figure 9. Dispersion curves of the Lamb waves in a two-layer, four-layer, and effective homoge-
nous wafers.

5. Conclusions

In this study, Lamb waves’ propagation in an FG nano copper single wafer and in an
FG nano copper layered wafer are investigated analytically. The power series method is
employed for solving the ordinary differential equations with variable coefficients. The
modified transfer matrix method based on the power series solution is then proposed to
solve the wave propagation problem in a multilayered wafer. Compared with the Lamb
waves in a regular homogenous copper wafer, those in the FG nano copper lead to the
decreased in phase velocity. It can be obtained from the theoretical results that the gradient
coefficients can be measured by using the change of phase velocity of Lamb waves. For both
a single layer structure and a multilayered structure, the findings show that the variation in
the phase velocity in Mode 2 is the least obvious among the four modes considered in the
analysis, whereas that in Mode 4 is the most obvious. Therefore, Mode 4 is recommended
to be used in nondestructive evaluation. For a multilayered FG nano copper wafer, if the
number of layers is greater than four, the dispersion curves of the Lamb waves in this
structure tend to coincide with those in an effective homogeneous structure. It is suggested
that Lamb waves’ technique is not suitable for testing a multilayered FG nano copper wafer
in which the number of sub-layers is larger than four. These results provide theoretical
guidance for the nondestructive evaluation of FG nano layered structures.
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