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Abstract: This paper deals with the optimal siting and sizing problem of photovoltaic (PV) generators
in electrical distribution networks considering daily load and generation profiles. It proposes the
discrete-continuous version of the vortex search algorithm (DCVSA) to locate and size the PV sources
where the discrete part of the codification defines the nodes. Renewable generators are installed in
these nodes, and the continuous section determines their optimal sizes. In addition, through the
successive approximation power flow method, the objective function of the optimization model
is obtained. This objective function is related to the minimization of the daily energy losses. This
method allows determining the power losses in each period for each renewable generation input
provided by the DCVSA (i.e., location and sizing of the PV sources). Numerical validations in the
IEEE 33- and IEEE 69-bus systems demonstrate that: (i) the proposed DCVSA finds the optimal
global solution for both test feeders when the location and size of the PV generators are explored,
considering the peak load scenario. (ii) In the case of the daily operative scenario, the total reduction
of energy losses for both test feeders are 23.3643% and 24.3863%, respectively; and (iii) the DCVSA
presents a better numerical performance regarding the objective function value when compared with
the BONMIN solver in the GAMS software, which demonstrates the effectiveness and robustness of
the proposed master-slave optimization algorithm.

Keywords: discrete-continuous vortex search algorithm; energy renewable; photovoltaic generation;
optimal power flow; mathematic model; minimization losses

1. Introduction

Electric power systems are composed of four sectors: generation, transmission/sub-
transmission, distribution, and commercialization; the transmission and distribution
networks are in charge of connecting the generation and consumption points over hundreds
or thousands of kilometers [1]. In general, electric power transmission and distribution
networks differ in the voltage levels at which they operate, which implies transmission
voltages greater than 220 kV, between 57 and 220 kV for sub-transmission, and less than
57 kV for distribution [2]. However, the predominant voltage energy distribution level in
Colombia ranges between 11.4 and 13.8 kV, respectively [3]. These electric networks present
differences in their characteristics since the transmission usually uses meshed systems, and
the distribution uses radial characteristics [4,5]. Due to these differences in electrical energy
losses, the transmission levels are between 1.5% and 2% of the energy generated in peak
hours, while the energy distribution can vary between 6% and 18%. The above-mentioned
implies that, in the worst case, 18% of the distribution level energy is transformed into heat
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in the resistance lines and transformers in the distribution mainly [3,6]. Given the high
levels of losses in the energy distribution, it is necessary to quantify them to determine an
optimal solution to this problem [7].

There are different methods to reduce losses; for example, by reconfiguring the
network using the binary gravitational search algorithm based on the algebraic graph
theory [8]. Other examples include, through energy storage systems [9], and using particle
swarm meta-heuristic optimization and genetic algorithms, with the inclusion of a static
distribution compensator D-STATCOM that provides reactive power [7], and through the
location and optimal size of distributed generation [8].

This article aims to reduce losses in distribution networks using the localization and
the optimal size of PV systems, i.e., PV generators, in distribution systems with 33 and
69 nodes [6,10]. For this analysis, the generators inject active power according to their
typical behavior during hours of solar radiation. Furthermore, the characteristic demand
curve of the distribution networks is presented in this study. Due to the growing interest in
solar energy for its benefits to the clear contribution of the trimming of CO2, in recent years,
there has been an increase in research regarding this renewable energy, which focuses
on issues associated with optimization, performance, and solar systems cells, among
others, as mentioned in [11]. It means that the field of application of solar energy includes
a wide variety of energy solutions, such as carrying out studies to reduce power and
energy losses that integrate energy sources of renewable generation. For this, it is of vital
importance to resort to metaheuristic techniques through algorithms. These algorithms
use advantages that vary according to the implemented numerical optimization methods,
which are adaptable algorithms to any problem. This variety allows finding a space solution
that reduces losses [12] and costs of the distributed generation [13], which is because the
algorithm provides the information necessary to determine the optimal solution.

The study of losses is a complex mixed integer nonlinear programming problem
(MINLP). The MINLP structure of the optimization problem complicates the possibility of
finding a globally optimal solution due to the non-convex shape of the solution space [14].
Therefore, a hybrid discrete-continuous modification of the vortex search algorithm (DCVSA)
is proposed as a solution. So, it is necessary to use the unconventional method known
as successive approximations (SA) [15] to evaluate the power flow problem. The DCVSA
algorithm works through an optimization strategy that consists of a master stage responsible
for determining the optimal location and size of the PV systems. In the same way, it
considers that the location part belongs to the discrete segment and the size belongs to the
continuous section, and a slave stage constantly evaluates the flow of energy through SA.

In short, carrying out a detailed review of the specialized literature, it was evident
that, so far, there is no modification of the DCVSA to reduce energy losses based on the
location and optimal size of the PV systems, which represents a research opportunity for
this article. In this sense, Table 1 presents the information related to some of the methods
recently used to reduce energy losses in distribution systems from 2012 to 2021.

From now on, the organization of the document is the following. Section 2 presents
the problem formulation corresponding to the mathematical model, which involves the
respective equation of the objective function and the restrictions. Section 3 explains
and operates the solution methodology and its discrete-continuous hybrid coding and,
additionally, presents the electrical parameters of the case studies (33 and 69 node systems),
the demand loops, and the generation of a PV system. In Section 4, the reader can find
a review and validation of the DCVSA algorithm concerning the specialized literature;
the results obtained reducing energy losses are shown and compared. Section 5 presents
the main conclusions and possible future works derived from this research, followed by
acknowledgments and references.
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Table 1. Methods recently used to reduce energy losses in distribution systems.

Acronym Optimization Method Ref. Year
GA Genetic Algorithm [16] 2012
PSO Particle Swarm Optimization [16] 2012
LSFSA Loss Sensitivity Factor Simulated Annealing [17] 2013
TLBO Teaching Learning Based Optimization [18] 2014
PMC Parallel Monte Carlo [4] 2014
HSA Harmony Search Algorithm [19] 2014
QOTLBO Quasi-Oppositional Teaching Learning Based Optimization [20] 2014
HSA-PABC Harmony Search Algorithm and Particle Artificial Bee Colony Algorithm [21] 2014
MINLP Mixed-Integer Nonlinear Programming Formulation [10] 2014
REPSO Rank Evolutionary Particle Swarm Optimization [22] 2015
RBFNN-PSO Radial Basis Function Neural Network and Particle Swarm Optimization [23] 2015
AHA Algorithmic Heuristic Approach [24] 2016
GA-IWD Genetic Algorithm and Intelligent Water Drops [25] 2016
KHA Krill-Herd Algorithm [26] 2016
SOS Symbiotic Organism Search [27] 2017
PBIL-PSO Population-Based Incremental Learning and Particle Swarm Optimizer [4] 2018
ABCA Artificial Bee Colony Algorithm [28] 2018
MOHTLBOGWO Multi-Objective Hybrid Teaching-Learning Based Optimization-Grey Wolf Optimizer [29] 2019
MSSA Mutated Salp Swarm Algorithm [30] 2019
CHVSA Constructive Heuristic Vortex Search Algorithm [31] 2019
GAMS General Algebraic Modeling System [14] 2020
CBGA-VSA Chu and Beasley Genetic Algorithm and Vortex Search Algorithm [5] 2020
DSCA-SOCP Discrete Sine Cosine Algorithm and Second-Order Cone Programming [6] 2021

2. MINLP Model

The integration of PV systems with the optimal location and dimensioning in distribution
systems is a problem of the MINLP [14]. In the MINLP, the objective function is responsible
for minimizing energy losses considering restrictions such as the power balance in the
system, limits voltage at the nodes, characteristic demand curve, and generation limits of a
PV system in 24 h. The MINLP model, as recommended in [6], will be developed in the
complex domain for the sake of simplicity concerning the optimization approach that uses
the DCVSA algorithm.

2.1. Objective Function

The objective function considered in this work corresponds to the minimization of
energy losses in all the lines for the study period, which Equation (1) represents.

min Eloss = real {2 Z 2 Vih (Y”V]h)* }Ah (1)

ieN jeN heH

where Ej, represents the energy losses, V;, is the bus voltage i in time &, V, is the complex
voltage for bus j in period &, Y;; is the complex admittance matrix that links the nodes i
and j. It is necessary to clarify that N is the set that contains all the nodes of the system, H
is the set that holds all the evaluated periods, and (.)* is the complex conjugate operator.

2.2. Restrictions

The optimal location problem and sizing of PV systems to minimize energy losses
must accomplish different restrictions. Equation (2) describes the power balance that occurs
in the distribution system.

it thv —S4, = Vy, ) (Yijth) ,V{i,je N & he H} )
jeN
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where Sj, is the complex power of the slack node connected to bus i in period £, SZ:J is the
complex power of the PV system connected to bus i in period &, and S?h is the complex
power node demanded i in the term time h.

The second restriction corresponds to the voltage of each one of the system’s nodes
and is described by Equation (3).

Vmin S |Vih| S VmaX/ V{lé’ N & h €H} (3)
where V. and V,,,,, represent the lower and upper voltage bounds for each system node
in different periods.

The third restriction refers to the generation capacity of a PV system and is described
by Equation (4).
;PP < PP < z;Phuy, V{ie N} 4

where
z;€{0,1},v{ie N} 5)

z; describes the binary variable of the problem associated with the location of the PV
systems; if z; = 1, this represents the installation of a PV system in node i. Otherwise,
z; =0, P’" and Pl are the minimum and maximum active power limits that a PV system
can inject, and Pip “ is the active power injected by a system PV in node i. It considers
that the PV systems will only have an active power injection; therefore, for this model
QY =o0[14].

Finally, Equation (6) describes the maximum number of PV systems set up in the
distribution system.

2 Z <N, po (6)
ieN
where Ny, is the maximum number of PV systems to install.

The MINLP model proposed for this case study allows evaluating the effect of active
power injection in reducing energy losses through PV systems considering 24 h where
both the demand and the generation of a system PV change hour by hour. However, due
to the complexity of the MINLP model, it is necessary to use meta-heuristic optimization
techniques [32], such as the DCVSA algorithm, which the next section details.

3. Materials and Methods

In this section, the proposed solution methodology is presented, which considers a
master-slave strategy, where a DCVSA version of the algorithm is used in the master stage,
which is in charge of defining the location and optimal size of the PV systems. In the slave
stage, SA uses a multi-period power flow method responsible for solving the power flow
equations for the generation data of a PV system assigned in the master stage. It, thus,
determines energy losses for the study period. Below, each phase of the methodology
is presented.

3.1. Vortex Search Algorithm (VSA)

The VSA is a solution based on a meta-heuristic approach that allows optimization
of problems such as MINLP, whose operating principle is based on the search for vortices
that adaptively change in size. It has two stages; the explorer stage is in charge of looking
for a solution space, and the exploiting phase is in a load of evaluating the answers to find
the optimal one within the solution space.

This algorithm can model through hyper-ellipses enclosed one after another; the first
solution space of the explorer stage defines a hyper-ellipse whose center is the first answer
to the problem [33]. For the case under study, the dimension proposed is six; since it
establishes a maximum of three possible PV systems, whose vectors must contain three
different locations. These locations correspond to the nodes where the PV system localizes
and three sizes according to their capacity. x™" and x™3 represent the minimal and
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op =

maximum value of the vector and are value between 2 and N, with N being the maximum
number of nodes in the network, where the minimum and maximum value of the PV
system capacity is given between 0 and 2000 kW, as stated in [6]. Therefore, Equation (7)
helps to find the center of the hyper-ellipse.

min max ,.min max ..min max ,.min max ,.min max ..min max
XA AT x4 x4 xg e x4 X
2 ! 2 ! 2 ! 2 ! 2 ! 2

@)

Furthermore, it has a set of neighboring solutions C!(x) where i corresponds to the
position of the potential solution and t represents the current iteration of the algorithm,
which initializes at 0. Said solutions within the solution space, defined by dimension six,
are randomly generated using a Gaussian distribution, represented by Equation (8).

fx) = p(x :¥ex —lx— Ty (x -
i) = el D) = o p{ 3=z -} ®

where d represents the dimension, x is the solution vector d x 1 of a random value, y is
the vector d x 1 of the sample mean, and X is the covariance matrix. If the value of the
diagonal elements of X are equal and those outside the diagonal are zero, then the resulting
shape of the distribution will be a hyper-ellipse; therefore, the value of X can be calculated
using equal variances with zero covariance, as presented in Equation (9).

2 =0 [Tixa ©)

where o represents the variance of the distribution, and I represents the identity matrix of
dimension d x d. Equation (10) calculates the initial standard departure oy of the distribution.

max ,max ,Mmax ,max ,max ,.max : min ,min ,min ,min ,min ,.min
T, X, 219, PN, ', ) — min {0, a0, N, 2, 20, i

5 (10)

where 0y is also considered the initial radius rg of the outer hyper ellipse, that is, the first
solution space [34]. As a first step, by multiplying the initial radius by Equation (12), this
solution space is expanded to obtain complete coverage.

The set of neighboring solutions obtained and contained in C!(x), verified within the
algorithm and taking into account the lower and upper limits set in p, are defined by
Equation (11).

Cf(x)/ xmin <x< ymax

t f— . .
Ci(x) = { XM (xmax — ymin)rapnd,  otherwise (11)

where rand is a function that generates a random number between 1 and 0 with a normal
distribution; after it verifies the limits, at this point, the exploiter stage comes into operation.
It selects the most optimal response within the solution space of C! obtained in (11) so that
it is the new center y of the hyper-ellipsoid [35].

Subsequently, in the hyper-ellipsoid, the effective radius is reduced to r¢, so it must
readjust the new radio to suit the process of searching for neighboring solutions through
the inverse incomplete gamma function during each iteration. Equation (12) represents the
incomplete gamma function.

X [o0]
['(a) = /e*ftH -dt+/e**t”*1 -dt, a>0, x>0 (12)
0 x

In MATLAB, gammaincinv (giniv) is the inverse incomplete gamma function, which
computes the opposite of the incomplete gamma function concerning the integration limit
x as gammaincinv(x,a). For the case under study, x = 0.1 and a €0, 1] where Equation (13)
explains a.
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tr

(13)

tmax

where tnax is the maximum number of iterations, and tr is a number that initializes equal to
the maximum number of iterations but decreases by one unit as the iteration concludes. On
the other hand, it is defined that fmax can vary depending on the size of the system, which
implies that the variation of a2 will change in the steps determined by fnax. According to
the above, Equation (14) defines the new radius of the new hyper-ellipsoid.

max min
xmax — x

1 .
ry = — - gammaincino(x, a) - 7
x

(14)

From the new radius r; [36], a new set of solutions is generated stored in Cf (x), which
implies that the value of the ensemble of neighboring solutions will be closer and closer as
the radius decreases by each iteration.

Finally, the process of calculating the new radius, new center, and new solution spaces
will successively repeat until it accomplishes one out of two termination conditions; if it
reaches the maximum number of proposed iterations fmax or if, after some consecutive
iterations 7, it reaches the maximum number of sequential iterations T4y in which the
center of the hyper-ellipsoid remains constant.

3.2. Hybrid Discrete-Continuous Vortex Search Algorithm (DCVSA) Encoding

The case study proposed in this article implemented a DCVSA version, where the
structure of Equation (15) sets a solution space.

cl = [n, 2, k| PPC  Phox, ., q] (15)

where i corresponds to the position of the potential solution and ¢ to the current iteration.
Furthermore, k represents a number of a random node, n the number of the last node in
the system, and g a random number between Prfgn and PF0..

The candidate solutions of the solution space are divided into two parts. The first part
represents the discrete variables of the problem since they are the nodes that can install
the PV systems, while the second part depicts the continuous variables since they are the
generation capacity that PV systems may have.

According to the above, and considering the restrictions of the MINLP model, the
DCVSA algorithm will work as follows:

v' Inits slave stage, the algorithm will solve the power flow from the SA method to
identify the energy losses described in Equation (16). Figure 1 presents the solution
diagram for the power flow problem using the SA method.

Elpss = real {2 > Y Vi (i) }Ah (16)

ieN jeN heH

v Inits master stage, with hybrid coding, DCVSA will explore and exploit the solution
space to identify the optimal location and dimensioning to reduce energy losses.
Algorithm 1 represents the computational logic to implement the DCVSA based on
the structure proposed in [7].
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Figure 1. Flowchart of the proposed power flow method based on successive approximations.

3.3. Case Studies: Distribution Systems

The problem of optimal location and sizing of PV systems to reduce energy losses
was raised and validated in the 33-node system, shown in Figure 2, and in the 69-node
system, shown in Figure 3. These figures show the radial configuration of the distribution
systems, whose base parameters are V5, = 12.66 kV and S5, = 1000 kVA taken at the
slack node. For each one, the installation of three PV systems with a capacity of 0-2000 kW
was considered.

22

26 27 28 29 30 31 32 33
slack

7 8 9 101112 13 14 15 16 17 18

Figure 2. IEEE radial 33-node test system.
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Algorithm 1: Implementation of the DCVSA algorithm for the optimal location
and dimensioning of PV systems in distribution networks.

Enter data of the distribution network;

Establish the number of PV systems to install to define the center yg with (7);

Create the neighboring solutions of the center of the solution space C!(x) with (8);

Define the initial radius ry of the hyper-ellipse with (10);

Verify the upper limit x"***
with (11);

Solve the power flow for each of the solutions C!(x) with (1);

Calculate the value of energy losses for each of the solutions C!(x) with (16);

Find the minimum value of energy losses for each solution C!(x) with (1);

for t=1: t;;;,x do

Replace the center of the hyper-ellipse i with the best solution of C!(x);

Determine the new radius of the hyper-ellipse r; with (14);

Generate the new set of neighboring solutions C!(x) with (8);

Verify the upper limit x"**
Cl(x) with (11);

Solve the power flow for each of the solutions C!(x) with (1);

solutions C!(x) with (1);
if T > Ty then
Present the solution of the problem as the center y of the current
hyper-ellipsoid;
break;
end
end
Result: Report the optimal solution found

and lower limit x™" of the candidate solutions

and lower limit ™" of the candidate solutions C!(x)

Find the value of Ej,senergy losses for each of the solutions C!(x) with (16);
Determine the minimum value of energy losses min{ Ej,ss } for each of the

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65

28 29 30 31 32 33 34 35

Figure 3. IEEE radial 69-node test system.

5 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27

The electrical parameters of connection between active and reactive power nodes,
resistance, and reactance of the systems are shown [14]. Likewise, it is necessary to mention
that these systems are urban distributions that feed industrial users as they have a single
main generator that supplies a demand of 3.715 MW and 2.300 MVAr at peak hours in the

33-node system and 3.802 MW and 2.694 MVAr in the method of 69 nodes.

Table 2 demonstrates the variation in active power that a PV system can inject and the

characteristic demand for the study proposed in this article.

According to Table 2, the pick Ioad scenario occurs at hour 19, while the PV system

consumption and energy availability for the PV system can be found in [14].

will have variable generation from 8:00 a.m. to 7:00 p.m. The data of the percentage of
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Table 2. Characteristic data of demand and generation of a PV system.

Hour Demand (p.u) PV System Generation (p.u) Hour Demand (p.u) PV System Generation (p.u)
1 0.4240 0 13 0.8013 0.926
2 0.4108 0 14 0.7899 0.851
3 0.3999 0 15 0.7774 0.521
4 0.4083 0 16 0.7774 0.255
5 0.4744 0 17 0.8022 0.035
6 0.5301 0 18 0.8926 0.028
7 0.5669 0 19 1 0.015
8 0.6326 0.0490 20 0.9682 0
9 0.7202 0.2490 21 0.8890 0
10 0.7805 0.300 22 0.7832 0
11 0.8268 0.683 23 0.6175 0
12 0.8369 0.835 24 0.5212 0

4. Results

The results of the cases under study were obtained for the optimal location and
dimensioning of PV systems. They consider the behavior of a PV system and the characteristic
demand of the systems for the reduction of energy losses. The DCVSA algorithm was
modified and implemented with the SA method to solve the power flow. These results were
obtained from MATLAB software, in version 2020b, the validation of which was executed
on a PC with an Intel (R) Core (TM) i7-7700 CPU @ 3.60 GHz processor and memory 32.0
GB installed RAM running on a version of Windows 10 Pro.

4.1. Reduction of Power Losses in Peak Hours

Taking into consideration that the specialized literature reports the power losses for
the peak hour, hour 19, Tables 3 and 4 present the results for the study cases informed by
the different methods, including the proposed DCVSA method.

Table 3. Location and sizing of PV systems in the 33-node system.

Method Pjpss (KW) Nodes Localization Sizing (MW)
MOHTLBOGWO 72.1100 {13, 24, 30} {0.9960, 0.9380, 0.8520}
CBGA-VSA 72.7853 {13, 24, 30} {0.8018, 1.0913, 1.0536}
DSCA-SOCP 72.7853 {13, 24, 30} {0.8018, 1.0913, 1.0536}
MSSA 72.7854 {13, 24, 30} {0.8010, 1.0910, 1.0530}
MINLP 72.7862 {13, 24, 30} {0.8000, 1.0900, 1.0500}
GAMS 72.7900 {14, 24, 30} {0.7709, 1.0969, 1.0658}
HSA-PABC 72.8129 {14, 24, 30} {0.7550, 1.0730, 1.0680}
AHA 72.8340 {13, 24, 30} {0.7920, 1.0680, 1.0270}
QOTLBO 74.1008 {12, 24, 29} {0.8808, 1.0592, 1.0714}
KHA 75.4116 {13, 25, 30} {0.8107, 0.8368, 0.8410}
REPSO 76.9100 {06, 14, 31} {1.2274, 0.6068, 0.6870}
CHVSA 78.4534 {06, 14, 31} {1.1846, 0.6468, 0.6881}
LSFSA 82.0300 {06, 18, 30} {1.1124, 0.4874, 0.8679}
PBIL-PSO 91.5000 {12, 15, 31} {0.4035, 0.5245, 0.6422}
PMC 91.6000 {12, 18, 31} {0.4993, 0.3966, 0.6744}
TLBO 104.000 {09, 18, 31} {0.8847, 0.8953, 1.1958}
SOS 104.190 {06, 28, 29} {2.2066, 0.2000, 0.7167}
PSO 105.350 {08, 13, 32} {1.1768, 0.9816, 0.8297}
GA 106.300 {11, 29, 30} {1.5000, 0.4228, 1.0714}
GA-IWD 110.510 {11, 16, 32} {1.2214, 0.6833, 1.2135}
HSA 135.690 {16, 17, 18} {0.5927, 0.2133, 0.1913}

DCVSA 72.7853 {13, 24, 30} {0.8018, 1.0913, 1.0536}
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Table 4. Location and sizing of PV systems in the 69-node system.

Method Pioss (KW) Nodes Localization Sizing (MW)
MSSA 69.4077 {11, 18, 61} {0.5260, 0.3800, 1.7180}
CBGA-VSA 69.4077 {11, 18, 61} {0.5268, 0.3801, 1.7190}
DSCA-SOCP 69.4077 {11, 18, 61} {0.5268, 0.3801, 1.7190}
CHVSA 69.4088 {11, 17, 61} {0.5284, 0.3794, 1.7186}
MINLP 69.4090 {11, 17, 61} {0.5300, 0.3800, 1.7200}
KHA 69.5730 {12, 22, 61} {0.4962, 0.3113, 1.7354}
AHA 69.6669 {12, 21, 61} {0.4710, 0.3120, 1.6890}
QOTLBO 71.6345 {18, 61, 63} {0.5334, 1.1986, 0.5672}
MOHTLBOGWO 71.7400 {18, 61, 62} {0.5230, 1.0000, 0.7730}
GAMS 72.0900 {12, 61, 64} {0.8131, 1.4447, 0.2896}
LSFSA 77.1000 {18, 60, 65} {0.4962, 0.3113, 1.7354}
GA-IWD 80.9100 {20, 61, 64} {0.9115, 1.3926, 0.8059}
TLBO 81.0000 {25, 60, 63} {0.7574, 1.0188, 1.1784}
SOS 82.0800 {57, 58, 61} {0.2588, 0.2000, 1.5247}
PSO 83.2000 {17, 61, 63} {0.9925, 1.1998, 0.7956}
HSA 86.6600 {63, 64, 65} {1.6283, 0.1416, 0.0149}
PBIL-PSO 86.9000 {26, 61, 66} {0.1789, 1.0532, 0.4209}
GA 89.0000 {21, 62, 64} {0.9297, 1.0752, 0.9925}
PMC 91.6000 {63, 68, 69} {1.2000, 0.0577, 0.3954}
DCVSA 69.4077 {11, 18, 61} {0.5268, 0.3801, 1.7190}

4.1.1. Distribution System of 33 Nodes

For the 33-node system, when there is no type of generation by a PV system, the power
loss at the rush hour is 210.9876 kW. Considering the inclusion of three PV systems that
inject active power into the system for this value, the power loss reduction is quantified
for each method, as shown in Table 3. The value of power losses is directly affected by the
location and capacity of each of the PV systems. The power demanded in the nodes where
the PV systems are installed decreases thanks to the renewable generation provided; thus,
the maximum loss reduction can be found through optimization techniques.

From the results obtained from the numerical validation carried out with the methods
presented in Table 3, it states that:

v The best method for solving the power loss reduction problem through the location
and optimal generation size is MOHTLBOGWO, whose solution is the discrete vector
of {13, 24, 30} as the location at the node of the generation and {0.9960, 0.9380, 0.8520}
MW of installed capacity for a reduction in percentage losses of 65.8226%.

v' The results obtained by the DCVSA demonstrate the effectiveness of the proposed
algorithm since it achieves the reduction of losses of the CBGA-VSA and DSCA-SOCP
methods with a solution vector of nodes {13, 24, 30} and installed power of
{0.8018, 1.0913, 1.0536} MW to achieve a percentage reduction of 65.5026% in power
losses.

v" The DCVSA method proposed in this document presents a reduction in power losses
of 65.5026% for the peak hour, with a total injection of the active power of 2.9476 MW.
This result obtains a higher reduction in power losses than 86% of the methods
presented in Table 3.

v The power loss reduction of the proposed algorithm concerning the lower power loss
reduction presented by HSA is higher by 29.8144%. Likewise, it represents that the
DCVSA power loss reduction is 0.32% lower than the method with the highest power
loss reduction presented by MOHTLBOGWO.

4.1.2. Distribution System of 69 Nodes

In the 69-node system, when there is no type of generation by a PV system, the power
losses at peak hour are 224.9519 kW. Through this power, it is possible to quantify the
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reduction in power losses of each of the methods reported by the specialized literature, as
shown in Table 4.
The results of the numerical validation shown in Table 4 state that:

v" Unlike the 33-node system, there are four methods among the most efficient for
reducing power losses, with a location vector of {11, 18, 61}, of which one is the
method proposed in this article. The reduction percentage of the power, the MSSA,
DCVSA, CBGA-VSA, and DSCA-SOCP methods present 69.1455%, with the difference
that the first proposes a total of 2.624 MW of installed power for the PV systems, while
the three other systems rise to 2.6259 MW.

v" The DCVSA method proposed in this article presents a reduction in power losses
for the peak hour of 69.1455% with a power injection in the nodes {11, 18, 61} of
{0.5268, 0.3801, 1.7190} MW. This result presents a higher reduction in power losses
than 84% of the methods represented in the comparative Table 4.

v' It validates the performance of the proposed algorithm concerning the presented
lower reduction in power losses, which, unlike the 33-node system, is not HSA but
PMC, which implies that the DCVSA is 9.8654% better.

4.2. Reduction of Energy Losses for 24 h

Once the MINLP model and the DCVSA solution method proposed in this article are
validated, the results of the energy loss reduction are analyzed for 24 h. Table 2 shows the
characteristic demand curve and the variation in the generation of the PV system. In that
sense, for the 33-node and 69-node systems, three scenarios are proposed in Table 5.

Table 5. Scenarios to quantify the reduction of energy losses.

Scenario Characteristic
(1) Power losses without PV system
2) Power losses with constant PV system
3) Power losses with variable PV system

As shown in Table 5, the first scenario evaluates energy losses when there is no
generation from a PV system. The second scenario considers a constant PV system of 1 p.u
during 24 h. The third scenario is the closest to reality, as it poses a variable PV system
with the characteristic curve of energy availability presented in Table 2.

4.2.1. Distribution System of 33 Nodes

Figure 4 shows the results obtained for the scenarios set out in Table 5, in this
test system, with a solution vector in terms of location of {14, 24, 30} and sizing of
{1.1332, 1.5824, 1.5531} MW. In the hours in which there is active power generation
(7:00-20:00) by the PV systems, it shows a reduction in energy losses, while in the hours
where there is no injection of active power (1:00-7:00 and 20:00-24:00), scenario (3) is similar
to the behavior obtained in scenario (1).

On the other hand, from 11:00-15:00, scenario (3) presents a higher reduction in energy
losses than scenario (2). It indicates that for that period, the most beneficial thing is not to
inject 100% of the capacity of the PV systems; therefore, there must be a balance between
the energy generated and the demand. If this balance does not occur, the PV systems will
contribute energy losses through the electric current injected into the system by I?R.
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Figure 4. The behavior of power losses for each hour of the study period in the 33-node system.

Table 6 shows the results of the energy losses for the three scenarios proposed in the
33-node system. These results were obtained through the sum of the power losses for each
hour of the day. With the DCVSA algorithm, when considering the up-and-down behavior
of the PV systems concerning scenario (1), a reduction in energy losses of 23.3643% was
obtained. It is also possible to analyze that scenario (2) has a decrease of energy losses of
52.1867 % regarding scenario (1); however, this result is hypothetical since the production
availability of PV systems is not ideal and only considers those hours where there is solar
radiation.

Table 6. Power losses for 33-node system scenarios.

Scenario Ejoss (kWh/day)
) 2508.6343
(2) 1199.4596
3) 1922.5098

4.2.2. Distribution System of 69 Nodes

Figure 5 shows the results obtained for the scenarios set out in Table 5, in this
test system, with a solution vector in terms of location of {17, 61, 64} and sizing of
{0.7735, 2.0000, 0.5835} MW. It displays that, as in the 33-node system, in the hours in
which there is active power generation (7:00-20:00) by the PV systems, there is a reduction
in energy losses. Meanwhile, in the hours where there is no active power injection generated
(1:00-7:00 and 20:00-24:00), scenario (3) has similar behavior scenario (1).

On the other hand, as in the 33-node system, from 11:00-15:00, scenario (3) presents a
higher reduction in energy losses than scenario (2). Due to searching for the optimal energy
reduction vector, it may be oversized for those hours since the capacity of the PV system
changed according to the demand hour by hour. This may not be beneficial because the
losses could increase beyond expected— not as the demand increased but as a surplus
generation.
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Figure 5. The behavior of power losses for each hour of the study period in the 69-node system.

Table 7 shows the results of energy losses for the three scenarios proposed. With the
DCVSA algorithm, a reduction in energy losses of 24.3863% was obtained when considering
the up-and-down behavior of the PV systems concerning scenario (1). It is also possible to
analyze that scenario (2) had a reduction in energy losses of 54.8861 % regarding scenario
(1); however, this result is hypothetical because, as mentioned above, the production
availability of PV systems is not ideal.

Table 7. Power losses for 69-node system scenarios.

Scenario Ejoss (kWh/day)
(1) 2664.7952
() 1202.1918
3) 2014.9508

4.2.3. Comparative Analysis for Reducing Energy Losses with GAMS

To validate the reduction of energy losses proposed in scenario (3) and the proposed
algorithm, a comparative analysis using the GAMS software and its BONMIN solver
was carried out to solve the exact mathematical model given by Equations (1)—(6) [37].
According to the above, for the systems of 33 and 69 nodes, Tables 8 and 9 present the
solution vectors of the PV systems results obtained for scenario (3) with the GAMS-BONMIN
method and the DCVSA method proposed in this article.

Table 8. Comparison of energy losses for the 33-node system.

Method Nodes Localization Sizing (MW) Ejoss (kWh/day)

GAMS-BONMIN {08, 24, 25} {1.9082, 0.8805, 0.4963} 2034.9850
DCVSA {14, 24, 30} {1.1332, 1.5824, 1.5531} 1922.5098
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Table 9. Comparison of energy losses for the the 69-node system.
Method Nodes Localization Sizing (MW) Ejoss (kWh/day)
GAMS-BONMIN {05, 61, 64} {0.8470, 1.8750, 0.3490} 2051.4900
DCVSA {17, 61, 64} {0.7735, 2.0000, 0.5835} 2014.9508

From Table §, it is evident that, for the 33-node system, the GAMS-BONMIN method
presents a percentage of reduction of energy losses of 18.8808% concerning scenario (1),
which shows it is inferior to the proposed method. The DCVSA represents an efficiency
increase of 4.4835% since the solution vector considers {14, 24, 30} as the nodes to install
the PV systems and {1.1332, 1.5824, 1.5531} MW as their installed capacity.

On the other hand, in Table 9, the comparison of the two methods can be observed
again, but this time for the system of 69 nodes, where the GAMS-BONMIN method with the
proposed solution vector achieves a reduction in energy losses of 23.0151%. For this system,
DCVSA obtains a reduction in energy losses 1.3712% greater than the GAMS-BONMIN
method. The difference in the decrease of energy losses for the 69-node system is not that
wide since the location of the PV systems is very similar; only node 5 for GAMS-BONMIN
changes to node 17 for DCVSA, and the difference in installed power is 0.286 MW higher
for the DCVSA method.

4.3. Additional Comments

The results of Section 4.2, for the 33-node system, were obtained after running the
DCVSA algorithm with an average response of 1679.1267 seconds. Likewise, in this test
system, the average response time was 4771.6179 seconds. The maximum difference in
energy losses was 12.4286 kWh/day considering the characteristic demand curve and the
generation variation of a PV system for both networks. This maximum difference can
improve by increasing the sampling and the number of iterations for the DCVSA; since for
systems, such as the 69-node, and those with more branches, having a higher number of
variables results in a slower convergence.

Regarding the response of the solution vectors for the 33-node system to reduce power
and energy losses, it states that the location for reducing power losses was {13, 24, 30}. In
the same way, it denotes that the position for decreasing energy losses was {14, 24, 30},
where the total installed power for PV systems is 2.9467 MW and 4.2687 MW, respectively.
This means that the overall installed capacity required to reduce energy losses over a period
of 24 h cannot be measured only taking into account the peak hour since an increase of
30.9686% is necessary concerning the total required during the 24 h.

Likewise, in the 69-node system, it is outstanding to mention that the location nodes
of the PV systems were different for the power and energy cases since in the first, it was
{11, 18, 61}, and in the second, it was {17, 61, 64}. On the other hand, it displays that the
capacity of the installed power to reduce losses in hour 19 was 2.6258 MW. Furthermore,
for the decrease of energy losses, it was 3.3569 MW, which indicates that the installation of
PV systems considering 24 hours a day should increase by 21.7785%.

5. Conclusions

The injection of the maximum capacity of PV systems is not an optimal solution for
reducing losses in distribution systems. On the contrary, under some scenarios, wastes may
present an increase. Thus, it is necessary to propose optimization strategies that allow the
decrease of losses, the optimal location, and the measurement of PV systems. This study
addresses the loss reduction problem by implementing the MINLP model and the DCVSA
meta-heuristic solution method.

As input, first, the demand curve and the PV generation available for 24 h were
characterized. This analysis considered the drop of power losses for the peak hour and the
decrease of power losses for the total period. The peak hour analysis evidences the efficacy
of the DCVSA method developed concerning the specialized literature. The assay of energy
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losses for the overall period proves the effectiveness of the DCVSA method developed for
GAMS-BONMIN.

The proposed DCVSA algorithm reduced power losses by 65.5% and 69.15% for
33-node and 69-node systems. From the analysis of energy losses, DCVSA reduced them
by 23.36% and 24.39% for the 33-node and 69-node systems, respectively. The execution
times and the maximum difference in energy losses presented in the simulations denote
the effectiveness and accuracy of the DCVSA and the proposed MINLP model.

Finally, regarding this article, future studies can be derived, such as: (i) the inclusion
of other systems that provide renewable energy to distribution networks (i.e., wind and
geothermal generation), (ii) broadening of the application of methods for reducing power
losses, including energy storage systems, focused on energy studies, and (iii) changing
the proposed MINLP mathematical model to obtain a convex equivalent that guarantees a
unique solution.
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Nomenclature
Other Symbols
e Euler number.
ij Indices of nodes in the system.
t Current iteration of the algorithm.
tr The maximum number of iterations decreasing by one for each iteration .

Mathematical Operators

()" Complex conjugate operator.

(- T Transpose matrix operator.

() Inverse matrix operator.

r Incomplete gamma function.

Dy Diagonal of the conjugate matrix V; (V).

giniv Inverse incomplete gamma function in MATLAB.

Liva Identity matrix of dimension d x d.

rand Function for a random number between 1 and 0 with normal distribution.
Parameters

€ Maximum error of the successive approximations method.

Sflh Complex power demanded at the node 7 in period 1 (VA).

thv Complex power of the PV system connected to the bus i in period & (VA).

S5, Complex power of the slack node connected to the bus i in period & (VA).
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