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Abstract: A smart helmet-based wearable personnel proximity warning system was developed
to prevent collisions between equipment and pedestrians in mines. The smart helmet worn by
pedestrians receives signals transmitted by Bluetooth beacons attached to heavy equipment, light
vehicles, or dangerous zones, and provides visual LED warnings to the pedestrians and operators
simultaneously. A performance test of the proposed system was conducted in an underground
limestone mine. It was confirmed that as the transmission power of the Bluetooth beacon increased,
the Bluetooth low energy (BLE) signal detection distance of the system also increased. The average
BLE signal detection distance was at least 10 m, regardless of the facing angle between the smart
helmet and Bluetooth beacon. The subjective workload for the smartphone-, smart glasses-, and
smart helmet-based proximity warning system (PWS) was evaluated using the National Aeronautics
and Space Administration task load index. All six workload parameters were the lowest when using
the smart helmet-based PWS. The smart helmet-based PWS can provide visual proximity warning
alerts to both the equipment operator and the pedestrian, and it can be expanded to provide worker
health monitoring and hazard awareness functions by adding sensors to the Arduino board.

Keywords: mine safety; smart helmet; personnel proximity warning system; Bluetooth beacon;
Arduino

1. Introduction

In underground mines, worker safety accidents frequently occur, owing to collisions
between equipment and pedestrians or other equipment. The U.S. Bureau of Labor Statistics
stated that there were 45 fatalities due to equipment collisions in underground mines in
the United States between 2011 and 2019 [1]. Accidents were mainly caused by being
caught in running machinery, struck by powered vehicles, or compressed by equipment.
According to a disaster report published by the government of Western Australia, there
have been a total of 34 equipment collisions involving haulage trucks and charge-up trucks
in underground mines in Western Australia since 2015 [2].

Proximity warning systems (PWSs) have been developed to prevent equipment colli-
sion accidents in underground mines. PWSs provide visual and/or audible proximity alerts
to equipment operators of pedestrians or other equipment approaching within a certain
distance [3]. The National Institute for Occupational Safety and Health (NIOSH) in the
U.S. has developed PWSs using radio-frequency identification (RFID) and electromagnetic
signals. Ruff and Hession-Kunz [4] developed an RFID-based collision warning system
to provide a proximity warning to equipment operators when a pedestrian approaches a
front-end loader. Active tags were attached to the belt or cap of a pedestrian worker, and
an RFID reader was installed on the front-end loader to recognize the unique ID of the
active tag. This system sets the progressive sensing distance (near, middle, and far) and
provides visual and audible alerts to the equipment operator through lamps and buzzers.
Schiffbauer [5] suggested the hazardous area signaling and ranging device to provide
a proximity warning to the equipment operator approaching a continuous miner. The
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wire loop antenna was installed on a continuous miner to generate a magnetic field. The
receiver measured the magnetic field strength and provided visual, audible, and vibration
alerts to the equipment operator when the magnetic field strength exceeded a certain
threshold. Various commercial products based on PWSs developed by the NIOSH have
been released [6–10].

Bluetooth low energy (BLE) technology has been actively applied in the development
of PWSs in underground mines. BLE is a Bluetooth 4.0 communication technology in the
2.4 GHz band that was launched in 2010 [11]. Compared to the existing Bluetooth classic
technology, this enables high-speed data transmission with low power consumption [12].
Baek and Choi [13] proposed a Bluetooth beacon-based PWS that provides proximity
alerts to equipment operators using a smartphone. A Bluetooth beacon was attached to
the pedestrian worker’s helmet, haulage equipment, and dangerous areas. In addition, a
smartphone was mounted on the equipment. The smartphone measured the received signal
strength indicator (RSSI) of the BLE signal and provided visual, audible, and vibration
alerts when the RSSI exceeded a certain threshold. Park and Choi [14] implemented a
system in an underground limestone mine and successfully demonstrated the system
utility. However, existing PWSs provide only one-way proximity warnings to equipment
operators through in-cab screens, such as smartphones and tablets installed inside the
equipment. Consequently, it is difficult for pedestrian workers to be aware of the collision
risks in underground mines.

Various wearable PWSs have been proposed to provide proximity warnings to pedes-
trian workers. In contrast to conventional PWSs, signal transmitters were installed on the
equipment, and receivers were attached to pedestrian workers. Wearable PWSs can be clas-
sified into worn-type personal alarm devices (PADs), smart vests, and smart glasses. PADs
can be worn on the worker’s belt, pocket, and cap, and mainly provide audible or vibrating
alerts. Examples of commercialized PAD products are ELOsheld by ELOCKON [15], Smart-
zone proximity system by Komatsu & JoyGlobal [16,17], HazardAvert® by STRATA [18],
and more [19–22]. Smart vests provide vibration alerts using haptic or tactile sensors [23,24].
Recently, a smart glass-based PWS was developed using BLE technology [25]. Bluetooth
beacons were installed on the equipment, and the pedestrian worker wore smart glasses.
Smart glasses measured the RSSI of the BLE signal and provided a proximity warning when
the RSSI was above a certain threshold. However, existing wearable PWSs provide one-way
proximity warnings to pedestrian workers only. Therefore, it is necessary to develop new
PWSs that can provide proximity warnings in both directions, to the equipment operator
and the pedestrian worker simultaneously.

Recently, smart helmet technology has been widely used by bicycle and motorcycle
users [26]. A smart helmet is a technology that monitors a user’s health, surrounding
environment, and equipment status. In addition, it collects real-time data using wireless
sensors and communication technologies. The main functions of the smart helmet include
hazard–risk recognition, vehicle condition monitoring, and convenience. The smart helmet
immediately determines the user’s health condition [27], requests rescue [28], and provides
a risk alert [29]. In addition, it provides motorcycle speed and fuel level information to
the user in real-time [30] and has convenient functions such as navigation, music playing,
and device connection [31]. Efforts are being made to increase workplace safety and conve-
nience by applying smart helmet technology to various fields, such as construction [32],
manufacturing [33], and petrochemical work [34]. In the mining industry, many research
cases have been presented to implement worker health monitoring, hazard awareness,
and wireless communication [35–44]. However, a smart helmet-based PWS using BLE
technology has not yet been developed to provide bidirectional proximity warnings to
equipment operators and pedestrian workers in underground mines.

The purpose of this study is to develop a smart helmet-based PWS that can provide
simultaneous proximity warnings to both equipment operators and pedestrians in under-
ground mines. Bluetooth beacons are installed on mining equipment such as dump trucks,
excavators, and loaders, and pedestrian workers wear the smart helmet-based PWS. When
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the equipment approaches the pedestrian worker, the smart helmet recognizes the BLE
signal and emits an LED light. This study analyzed the BLE signal detection distance of
the smart helmet for two conditions in the underground mine. One was the Tx power
condition of the Bluetooth beacon and another was the facing angle condition between
the smart helmet and the Bluetooth beacon. The NASA task load index (NASA-TLX) [45]
was analyzed to evaluate the subjective workload felt by the equipment driver and the
pedestrian worker for PWSs based on smartphones, smart glasses, and smart helmets.

2. Design of the Proximity Warning System (PWS) Based on Bluetooth Beacons and
Smart Helmets

The design of PWS based on Bluetooth beacons and smart helmets is summarized
in Figure 1. The smart helmet worn by the worker receives a BLE signal transmitted
from the Bluetooth beacon and provides a visual alert when it comes close to the beacon.
The Bluetooth beacon can be attached to heavy equipment, a management vehicle, or a
dangerous area at the mine site, and the attached beacon continuously transmits the BLE
signal. The smart helmet can warn wearers of access to heavy equipment or vehicles and
access dangerous areas and warn drivers that there are workers nearby. Visual proximity
alerts are received through a smart helmet while working on the spot; therefore, both
workers and drivers can quickly detect and respond to dangerous situations.
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2.1. Design of BLE Transmission Units Using Bluetooth Beacon

Bluetooth beacons periodically transmit information, including the general-purpose
unique identifier of the beacon and media access control (MAC) address through the BLE
signal. The intensity of the BLE signal transmitted by the Bluetooth beacon is expressed as
Tx power, and the unit is dBm. The received intensity of the BLE signal can be quantified
using the RSSI value. RSSI is represented in a negative form by a value between −99 dBm
and −35 dBm. The propagation distance of the BLE signal may vary depending on the
signal transmission intensity and direction of the signal propagation of the Bluetooth bea-
con. An increase in the BLE signal transmission intensity increases the signal propagation
distance. The signal propagation direction is bidirectional, and the signal can be spread
uniformly in all directions, but this limits the propagation distance. The BLE signal is
first propagated relative to the Bluetooth beacon when the signal is transmitted as the
directional signal. The change in RSSI according to the BLE signal transmission intensity
and the direction of the radio wave of the Bluetooth beacon was previously analyzed [46].

Bluetooth beacons can communicate with peripheral devices in three ways: point-to-
point, broadcast, and mesh. The point-to-point method is a method of exchanging data
by pairing the master device transmitting a large amount of data and the slave device
receiving data at 1:1. The broadcast method is a method in which the observer receives
information when the broadcast periodically transmits its ID information to the peripheral
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devices. Bluetooth beacons are mainly broadcast missions, and observers mainly use PCs
and smartphones. The mesh method is connected to several master and slave devices [46].

In this study, RECO beacons (Perples, Seoul, Korea) were used as BLE transmission
devices. RECO beacons are certified by institutions in Korea, the United States, Europe,
and Japan and meet global beacon standards (Table 1). Figure 2 shows examples of
heavy equipment and vehicles at the mine site with RECO beacons. A Bluetooth beacon
was installed on the back of the room mirror on the front of the truck, and a Bluetooth
beacon was provided on the front of the heavy equipment. The Bluetooth beacons set the
directional signal such that the signal could be propagated further. The signal transmission
strength and period of the beacons were set to −4 dBm and 1 s, respectively.

Table 1. Specifications of the RECO beacon [47].

Item Value

Dimensions (Diameter × Height) 45 mm × 20 mm
Weight 11.6 g (0.4 oz)

Processor 32-bit ARM® Cortex®-M0
Battery CR2450 Lithium Coin Battery (3 V, 620 mAh)
Casing Acrylonitrile Butadiene Styrene (ABS) Plastic
Chipset Nordic nrf51822

Thermal Resistance 93 ◦C (200 ◦F)
Operating Temperature −10–60 ◦C (14–140 ◦F)

Wireless Technology Bluetooth 4.0 (i.e., BLE or Bluetooth® Smart)
Signal range 1 m~70 m (3.2 ft~230 ft)

Signal transmission period Min (10 ms), Max (2 s)
Transmission power Min (−16 dBm), Max (4 dBm)

Certification

South Korea
Korea Certification (KC)

Federal Communication Commission (FCC)
Conformité Européene (CE) marking

Ministry of Internal Affairs and
Communications (MIC) of Japan

USA
Europe
Japan
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2.2. Design of BLE Receiver Units Using an Arduino Board

Arduino is an open source electronic platform based on easy-to-use hardware and
software (Table 2). The Arduino board reads the input data, including sensor illumination
and button pressing and converts it into output data. Because the Arduino board and
software are open sources, users can independently build boards to adjust the system to
meet specific needs [48].

Table 2. Specifications of the Arduino Uno board [49].

Item Value

Model Arduino Uno R3
Microcontroller ATmega328P

Length 68.6 mm
Width 53.4 mm
Weight 25 g

Operating Voltage 5 V
Input Voltage 7–12 V (recommended), 6–20 V (limit)

Digital I/O Pins 14 (of which 6 provide PWM output)
PWM Digital I/O Pins 6

Analog Input Pins 6
DC Current per I/O Pin 20 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader
SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)
Clock Speed 16 MHz

LED_BUILTIN 13

In this study, a smart helmet was developed to develop a wearable personal PWS for
workers. The smart helmet was made by combining an Arduino Uno board, Bluetooth BLE
module (FBL780BC, Table 3), LED strap, and two-leg LEDs with the safety helmet worn by
mining workers. Figure 3a,b show the exterior shape of the equipment divided into front
and rear parts. The smart helmet provides visual warnings through LED straps (using
two-leg LEDs), and receiving power through portable batteries. The Bluetooth BLE module
(FBL780BC) supports Bluetooth Low Energy, a low-power function based on Bluetooth 4.1.

Table 3. Specifications of Bluetooth module [50].

Item Value

Model FBL780BC
Bluetooth specification Bluetooth4.1Low Energy Support

Communication distance 10 m
Frequency range 2402~2480 MHz ISM Band

Sensitivity −94 dBm
Transmit power 2 dBm (−3 dBm: Actual value after matching)

Size 15.5 mm × 18.5 mm
Input power 3.3 V

Current consumption Peripheral: 3 mA (Max), Central: 21 mA (Max: Scanning)
Operating temperature Min: −10 ◦C, Max: 50 ◦C
Communication speed 2400 bps~230,400 bps

Antenna Chip Antenna
Interface UART

The circuit diagram was used to visualize the connection method of the Arduino
board, LED, and Bluetooth module as shown in Figure 4. The process of the operating
algorithm of the smart-helmet PWS is illustrated in Figure 5. After the BLE signal was
received via the Bluetooth BLE module attached to the smart helmet, it was compared to
the MAC address of the Bluetooth beacon stored in the database. If the MAC addresses of
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the Bluetooth beacons are matched, the LED strap and two leg LEDs are turned on for 30 s
to provide a visual alert to the worker and the driver and, if not, they are not turned on.
The system is designed to operate repeatedly through infinite loops when power to the
Arduino board is turned on.
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3. Experiment of the Proximity Warning System Based on Bluetooth Beacon and
Smart Helmet
3.1. Performance Evaluation of Personal PWS Based on Smart Helmets

To evaluate the performance of the developed smart helmet-based personal PWS, a
field experiment was conducted at the Sungshin Minefield underground limestone mine
(37◦17′12” N, 128◦43′53” E) located in Jeongseon-gun, Gangwon-do, Korea. Figure 6 shows
the tunnels that have been tested in the field on a two-dimensional and three-dimensional
map and an actual photograph. As shown in Figure 2, a Bluetooth beacon was attached to
the back of the room mirror in front of the truck and the front of the heavy equipment, and
the workers wore a smart helmet programmed with a personal PWS system. A Bluetooth
module capable of receiving BLE signals is placed at the back of the helmet to recognize the
proximity of equipment outside the worker’s view. A field experiment was conducted to
measure the detection distance of the BLE signal received by the smart helmet by adjusting
the Tx power of the Bluetooth beacon. The angle between the Bluetooth beacon and the
smart helmet was adjusted to measure the detection distance of the smart helmet receiving
the BLE signal.



Appl. Sci. 2021, 11, 4342 8 of 18Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 19 
 

 

Figure 6. Underground map of the study area (Sungshin Minefield underground limestone mine, 

Jeongsun-gun, Gangwon-do, Korea) in 2- and 3-dimensions, and an actual photograph. 

Figure 7a shows the smart helmet measuring the detection distance of receiving the 

BLE signal for each Tx power. The Bluetooth module that receives the BLE signal was 

installed at the rear of the helmet, and the Bluetooth module and Bluetooth beacon at-

tached to the vehicle were arranged to face each other. The Bluetooth beacon, attached to 

the truck, approached a pedestrian standing on a mineway transport route 100 m away at 

a speed of 10–20 km/h. We then measured the detection distance at which the personal 

PWS receiving the BLE signal began warning pedestrians. The Tx power was set at 4 dBm 

intervals—from −12 dBm to 4 dBm—and measured 10 times for each Tx rower (50 times 

total). 

 

(a) 

Figure 6. Underground map of the study area (Sungshin Minefield underground limestone mine, Jeongsun-gun, Gangwon-
do, Korea) in 2- and 3-dimensions, and an actual photograph.

Figure 7a shows the smart helmet measuring the detection distance of receiving the
BLE signal for each Tx power. The Bluetooth module that receives the BLE signal was
installed at the rear of the helmet, and the Bluetooth module and Bluetooth beacon attached
to the vehicle were arranged to face each other. The Bluetooth beacon, attached to the truck,
approached a pedestrian standing on a mineway transport route 100 m away at a speed of
10–20 km/h. We then measured the detection distance at which the personal PWS receiving
the BLE signal began warning pedestrians. The Tx power was set at 4 dBm intervals—from
−12 dBm to 4 dBm—and measured 10 times for each Tx rower (50 times total).

Figure 7b shows an experiment that measures the detection distance of a smart helmet
receiving a BLE signal via adjusting the angle between the Bluetooth beacon and the smart
helmet. Similar to the above experiment, the truck approached at speeds of 10–20 km/h,
and the detection distance at which the warning commenced was measured. The angles
between the smart helmets and beacons were set at 45◦ intervals—from 0◦ to 180◦, and
measured 10 times for each angle (50 measurements in total).
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3.2. Subjective Workload Assessment of Smart Helmet-Based Personal PWS

Workload is a quantitative measure of the amount of mental stress a person expe-
riences while performing tasks within a particular system [51]. Workload is affected by
psychological (focus on work and anxiety), physical (physical difficulties and difficulty in
controlling machines), temporal (deadlines), and environmental (noise and relationships
with colleagues) factors [52]. If the workload is not properly adjusted when designing
the system, overload can occur, and the work efficiency can be reduced. Therefore, it
is necessary to improve the work efficiency by designing and operating a system with
minimal workload.

Subjective workload evaluation can be performed using a questionnaire. It is fre-
quently used in human–machine system development [53]. Representative subjective
workload evaluation methods include the NASA-TLX [45], subjective workload assess-
ment techniques [54], and workload profile techniques [55]. In this study, subjective
workload was evaluated using the NASA-TLX method. The psychological, physical, and
temporal effects on workers using the personal PWS while wearing smart helmets and
working at the mining site were evaluated. The NASA-TLX is a multidimensional grading
procedure that estimates the overall workload score based on a weighted average of six
factors [56]: mental, physical, temporal, overall performance, effort, and frustration. These
workload parameters are defined as follows:

• Mental demand: how many mental and cognitive skills are needed to accomplish
this task?

• Physical demand: how much physical ability do you need to perform this task?
• Temporal demand: how much duress did you feel due to the rate or pace at which

you performed multiple tasks?
• Overall Performance: how successfully do you think you have achieved the goals of

this task?
• Effort: how much mental and physical effort was required to achieve your work goals?
• Frustration Level: how much discomfort have you felt while working on this task?

The response of the worker to these the six workload parameters was evaluated. All
the parameters except for “Overall Performance” (scoring from good to bad) were graded
from low to high with values between 0 and 100 (in increments of 5). The weights of the six
parameters were calculated using pairwise comparisons, and the overall workload score
was calculated by averaging the product of each factors score and weight.
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Figure 8 is a schematic showing the experiment conducted. Three equivalent experi-
ments were performed under the same experimental conditions to compare the effect on
the subjective workload. In this study, the subjective workload evaluation was performed
on 10 experimental subjects aged 24 to 26 years old (average age was 24.9 years) at the same
location where individual PWS performance was evaluated. More than half (60%) of the
test subjects said they had knowledge of smart glasses, and the majority (80%) said they had
no knowledge of smart helmets. The test subjects used (a) a smartphone-based personal
PWS (driver’s position), (b) a smart glass-based personal PWS (worker’s position), and (c)
a smart helmet-based personal PWS (worker and driver’s position). For this experiment,
we used the smartphone-based personal PWS by Baek and Choi [13], the smart glass-based
personal PWS by Baek and Choi [25] and the smart helmet-based personal PWS developed
in this study.
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Figure 8. Overview of the subjective workload assessment. (a) Type 1: truck drivers wearing the smartphone-based PWS;
(b) type 2: pedestrian workers wearing the smart glasses-based PWS; (c) type 3: truck drivers and pedestrian workers
wearing the smart helmet-based PWS.

In the experiments, the test subject stood at the center of the transport route and
examined the condition of the transport route (worker’s position) or boarded a truck or
loader (driver’s position) to approach the subject. The smartphone provided a proximity
warning to the driver with a hazard warning image. Smart glass provides a proximity
alert to a worker with a hazard warning image. The smart helmet turned on the LED
to provide a visual warning to both the driver and worker. In one case, the test subject
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boarded a loader or truck (driver’s position) and when the device sensed that the worker
was nearby, the vehicle was stopped temporarily. The worker passed only after confirming
the evacuation. In another case, the test subject examined the transport route’s maintenance
status (worker’s position), and the operation was stopped when the device sensed that a
vehicle was approaching. The subject evacuated to the side of the transport route, and only
after the vehicle had passed did the operation resume.

Each of the 10 test subjects performed experiments (a) to (c) in random order, and
after the experiment, the workload was examined according to the NASA-TLX procedure.

4. Results

Figure 9a shows the worker wearing a smart helmet when a BLE signal is not received,
and Figure 9b shows the worker wearing a smart helmet when a BLE signal is received.
The MAC address of the Bluetooth beacons to be attached to the mining equipment was
stored in a personal PWS application program, and the smart helmet PWS was designed
to provide visual alerts through LEDs when the BLE signals were received. Through
the visual alarm, through LEDs, both the worker and driver can recognize the danger in
advance and prevent accidents.
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Figure 9. Experimental results showing the performance of the smart-helmet based PWS. (a) Worker
wearing the smart helmet when no BLE signal is received; (b) worker wearing the smart helmet
when a BLE signal is received.

Table 4 shows the statistics of the detection distance measurement when a proximity
alarm was provided according to the change in the Tx power of the Bluetooth beacon, and
Figure 10 shows the average detection distance per Tx power as a graph. The average
detection distance is 2.9 m at −12 dBm, 6.0 m at −8 dBm, 27.1 m at −4 dBm, 62.7 m at
0 dBm, and 66.9m at 4 dBm. As the Tx power increased, the smart helmet’s BLE signal
detection distance also increased.

Table 4. Statistical analysis results of BLE signal detection distance (m) of the smart helmet according to the Tx power of
Bluetooth beacon.

BLE Signal Recognition Distance (m)
Signal Transmission Strength of Bluetooth Beacon

−12 dBm −8 dBm −4 dBm 0 dBm 4 dBm

Mean 2.9 6.0 27.1 62.7 66.9
STD 1 1.4 3.8 3.0 11.5 8.7
Max 2 6.0 12.0 30.0 74.0 79.0
Min 3 1.0 3.0 22.0 35.0 50.0

1 Standard deviation 2 Maximum value 3 Minimum value.
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Figure 10. Average BLE signal detection distance of smart helmet according to Tx power of Bluetooth beacon (m).

Table 5 shows the statistics of the sensing distance measurement when a proximity
alarm was provided according to the facing angle between the smart helmet and the
Bluetooth beacon, and Figure 11 shows the average sensing distance per angle. The
average sensing distance was measured to be over 20 m for angles of 0◦, 45◦ and 90◦,
approximately 20 m for an angle of 135◦, and 10 m for an angle of 180◦. Therefore, it was
confirmed that the average BLE signal detection distance was at least 10 m, regardless of
the facing angle between the smart helmet and Bluetooth beacon.

Table 5. Statistical analysis results of the BLE signal detection distance (m) of the smart helmet according to the facing angle
between the smart helmet and Bluetooth beacon.

BLE Signal Recognition Distance (m)
Facing Angle between the Smart Helmet and the Bluetooth Beacon (Degree)

0◦ 45◦ 90◦ 135◦ 180◦

Mean 27.1 25.1 22.8 19.4 10.0
STD 1 3.0 4.7 6.6 5.9 4.3
Max 2 30.0 30.0 31.0 29.0 15.0
Min 3 22.0 18.0 9.0 13.0 4.0

1 Standard deviation 2 Maximum value 3 Minimum value.

Figure 12 is a radial plot of the average value of the scores of the six workload
parameters evaluated in three experiments for four types on 10 subjects. When the subjects
used a smartphone-based personal PWS, scores on mental demand, time demand, physical
demand, frustration, effort, and overall performance were all higher than when using
a smart helmet-based personal PWS. This may be due to the fact that when a subject
used a smartphone-based personal PWS while driving, they had to repeatedly check the
smartphone screen to check whether the worker was approaching the vehicle and felt
apprehensive due to increased eye movement. Conversely, when using a smart helmet-
based personal PWS, the subjects could concentrate only on driving and receive a visual
alert through the LED light of the smart helmet worn by the worker; therefore, both
hands were relatively free compared to when using a smartphone-based personal PWS.
Consequently, less workload is required to perform the task. Similar to using a smartphone-
based personal PWS, when workers wore smart glasses-based personal PWS, mental,
physical, and frustration scores were higher than when wearing smart helmet-based
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personal PWS. In particular, the frustration score differed the most because they were
unfamiliar with wearing smart glasses (glasses slipping and wearing ordinary glasses
under smart glasses), whereas the feeling of wearing a smart helmet was similar to that of
a general safety helmet.
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Figure 11. Average BLE signal detection distance of the smart helmet according to the facing angle between the smart
helmet and Bluetooth beacon (m).
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Figure 12. Average value of the evaluation scores of the six workload parameters of the NASA-TLX according to the type of
experiment. (a) Type 1: workload of truck drivers when using the smartphone-based PWS; (b) Type 2: workload of the
truck drivers when using the smart helmet-based PWS; (c) Type 3: workload of the pedestrian workers when using the
smart glass-based PWS, and (d) Type 4: workload of the pedestrian workers when using the smart helmet-based PWS.
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Figure 13 shows the total workload score calculated in the four experiments divided
into the driver side (a) and the pedestrian side (b). The drivers who used the smartphone-
based personal PWS scored approximately 32 points, whereas drivers who used the smart
helmet-based personal PWS scored approximately 6.3 points. Workers using the smart
glasses-based personal PWS scored approximately 30.6 points, whereas workers using
the smart helmet-based personal PWS scored approximately 5.9 points. The smart helmet
helped to increase work efficiency by effectively providing proximity warnings for equip-
ment or vehicles to the driver and worker simultaneously while freeing both hands of the
driver and worker. Moreover, compared to smart glasses, the wearability of the smart
helmet was convenient, which helps reduce worker stress.
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5. Discussion
5.1. BLE Signal Propagation in Underground Mines

In underground mines, there are several structural and environmental factors that
cause diffraction, reflection, and interference of BLE signal propagation. For example,
there exist excavations with crossings inclined at 90 degrees and curved sections. These
structures make stable line-of-sight propagation impossible. The mine wall has a high
roughness that causes diffraction and reflection of the signal. In addition, radio signal
attenuation occurs due to the rock mass. All mine areas have high relative humidity,
and dust particles are suspended in the air. Electrical installations for power supply
exist throughout underground mines. As a result, signal interference may occur due
to electromagnetic fields. Therefore, it is necessary to perform BLE signal testing to
understand the effects of disturbing factors that interfere with stable BLE signal propagation
in underground mines.

5.2. Advantages of Smart Helmet-Based PWS

Personal PWSs using a smart helmet have the following notable advantages at the
mining site. First, this system can solve the problems that occurred in existing PWSs. The
driver had to repeatedly check the smartphone to receive the proximity warning alerts.
It caused a decrease in the operators’ concentration on driving. Smart glasses caused
discomfort when workers wore regular glasses or when they slipped. On the other hand,
smart helmets can provide visual proximity alerts to both the operator and the pedestrian
without work interruption, enabling quick identification of dangerous situations and quick
evacuation. Workers who are wearing regular glasses, industrial goggles, and soundproof
headsets can also wear smart helmets without discomfort.

Second, smart helmet-based PWS is relatively easy to use for workers. Operators
and workers who use existing PWSs need to operate a touchpad controller to execute
PWS application. However, subjects who participated in the NASA-TLX test tended to
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feel difficulty in such an operation. On the other hand, the smart helmet-based PWS is a
relatively convenient and easy to execute system because only a power supply is required.

Finally, the proposed personal PWS can be implemented and utilized in the mining
site at a relatively low cost. Since this system utilizes Arduino, an open-source hardware,
relatively low cost is required to constitute system components (i.e., microcontroller board
and sensors). Therefore, it is possible to distribute multiple sets of smart helmets and
Bluetooth beacons to the worksite, regardless of the size of the mine.

6. Conclusions

In this study, we developed a personal PWS that uses a smart helmet to receive BLE
signals from Bluetooth beacons and provides visual proximity alerts to pedestrians and
equipment operators. The smart helmet-based PWS could provide bidirectional proximity
warnings to equipment operators and pedestrians in mines. A performance evaluation was
conducted at an actual underground mine site to evaluate the performance of the personal
PWS developed in this study. The BLE signal detection distance of the smart helmet
was measured according to the Tx power of the Bluetooth beacon and the facing angle
between the Bluetooth beacon and the smart helmet. The average BLE signal recognition
distance was 2.9 m at −12 dBm, 6.0 m at −8 dBm, 27.1 m at −4 dBm, 62.7 m at 0 dBm,
and 66.9 m at 4 dBm. As the Tx power of the Bluetooth beacon increased, the BLE signal
recognition distance of the smart helmet increased. In addition, when considering the
facing angle between the smart helmet and Bluetooth beacon with a Tx power of −4
dBm, it was confirmed that the average BLE signal detection distance was at least 10 m
regardless of the facing angle. The workload of the individual PWS for 10 subjects was
quantitatively analyzed using the NASA-TLX evaluation method. The use of smart helmets
to provide visual proximity alerts reduced mental effort and stress, and freed the hands of
workers to maintain work efficiency. The overall workload score calculated when using
the smart helmet was lower than when using the smart phone-based PWS and the smart
glass-based PWS. Therefore, a smart helmet is suitable for implementing personal PWSs at
the mining site.

In future work, smart helmet-based personal PWS can be expanded by adding sensors
to the Arduino board. For example, a heart rate sensor or an alcohol sensor can be
added to check the condition of the worker. Furthermore, by adding a temperature,
humidity, methane gas, and carbon monoxide sensor, the environment at the mine site can
be monitored, and when a high concentration of harmful gases is detected, the pedestrian
worker can be warned of danger. The worker could then follow appropriate protocols to
ensure safety.
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