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Abstract: This study reports a Q-switching-based, 2058-nm holmium (Ho) fiber laser incorporating a
saturable absorber (SA) based on graphene oxide (GO). The SA was prepared with a side-polished
fiber, while GO particles were deposited onto the fiber-polished surface to realize an all-fiber SA.
A continuous-wave thulium-doped all-fiber laser, which was configured with a master-oscillator
power-amplifier (MOPA) structure, was constructed as a pumping source. By inserting the fabricated
SA into an all-fiber ring resonator based on 1-m length of Ho-doped fiber, Q-switched pulses could
readily be obtained at a wavelength of 2058 nm. The pulse width was observed to vary from 2.01
to 1.56 us as the pump power was adjusted from ~759 to 1072 mW, while the repetition rate was
tunable from 45.56 to 56.12 kHz. The maximum values of average optical power and pulse energy
were measured as ~11.61 mW and 207.05 n], respectively, at a ~1072 mW pump power.
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1. Introduction

Q-switched lasers operating at the ~2-um spectral region are attractive coherent light
sources for numerous applications such as medicine, LIDAR, material processing, and
gas sensing [1-4]. Compared with other types of lasers, fiber lasers have a range of
benefits like low heat accumulation, environmental stability, alignment-free operation, and
compactness [5]. Depending on the requirement of an external electrical signal source,
Q-switched fiber lasers can be categorized into two groups: passive and active. Active
Q-switching technique is commonly used in most of commercial products of pulsed fiber
lasers with output pulse widths from nanoseconds to microseconds, due to its features of
a high energy output and a controllable pulse repetition rate. Comparatively speaking,
passive Q-switching technique is still of intensive research interest due to its future potential
associated with a simple configuration that does not require an external modulator.

One of the common approaches to implement passive Q-switching in a rare-earth-
doped fiber-based laser configuration is to incorporate a passive device with a function of
saturable absorption into a laser resonator. This type of a passive device is called “saturable
absorber (SA)”. Until now, III-V-compound semiconducting materials have been used for
commercial-grade SAs and such commercial-grade SAs were successfully employed for gen-
erating Q-switched pulses from a laser cavity [6]. However, various limitations were found
for the SAs based on III-V-compound semiconducting materials and the limitations include
the essential requirement of high-cost, clean-room fabrication facilities and the narrow
operating bandwidth. For the purpose of overcoming the issues related to the SAs based on
[I-V-compound semiconducting materials, intensive investigations have been conducted
to find material substitutes. Until now, a range of promising candidates have been reported
and those materials include carbon nanotubes (CNTs) [7-11], graphene [12], graphene
oxide (GO) [13,14], topological insulators (TIs) [15-22], transition metal dichalcogenides
(TMDCs) [23-32], transition metal monochalcogenides (TMMCs) [33], black phosphorus
(BPs) [34-36], gold nano particles [37-39], chromium-doped fiber [40], and MXenes [41,42].
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Among the aforementioned nonlinear absorption materials, graphene has been re-
garded as highly promising for high-performance devices in the field of photonics owing
to its distinct and outstanding characteristics, such as its no energy bandgap structure,
high carrier mobility, fast relaxation, large optical third-order nonlinearity, and optical
transparency over a wide spectral band region [43,44]. Therefore, graphene has proven
to be useful in many photonic applications such as four wave-mixing [45], optical mod-
ulators [46], polarizers [47], and SAs [48-52]. In particular, the use of graphene for the
realization of SAs has received significant attention due to its inherent advantages of fast
recovery time, large operating bandwidth, and high optical damage threshold. Since Bao
et al. first reported that graphene could be used as an effective SA material in 2009 [12],
the graphene-based SAs have been intensively investigated for their application to pas-
sively mode-locked or Q-switched lasers at various wavelengths [48-52]. Apart from
graphene, GO and reduced GO, which are low-cost variations from graphene have also
been investigated in terms of saturable absorption [13,14,53,54].

In general, fiber lasers operating in the wavelength band from 1.9 to 2.1 pum can be
realized using thulium (Tm)-doped fiber, thulium-holmium (Tm-Ho) codoped fiber, or
holmium (Ho)-doped fiber as a gain medium. It should be noticed that a Tm-doped fiber
cavity generates a pulsed laser output at around 1.9-um wavelengths, whereas a Ho-doped
fiber cavity does so at around 2 um. Until now, most of the investigations in short pulse
generation in the wavelength band from 1.9 to 2.1 pum have been focused on the use of
a Tm-doped fiber cavity due to easy availability of semiconductor pumping sources at
~0.79 and ~1.56 um [55-58]. Ho-doped silica fiber produces photon emission over a wave-
length region of 2.05~2.17 pm [59] and is pumped by laser sources operating at ~1.1 and
~1.9 pm. One should note that semiconductor-based pump sources are not easily available
at wavelengths of ~1.1 and ~1.9 pm [60-62]. Until now, there have been quite a few reports
on Ho-doped fiber-based pulsed lasers, and they were based on various pulse formation
techniques such as gain-switching [63-65], nonlinear polarization rotation (NPR) [66],
and saturable absorption [67]. It should be noted that the previous works on Ho-doped
fiber-based pulsed lasers mostly focused on mode-locked pulse generation with various
nonlinear saturable absorption materials, such as CNTs [67,68], graphene [69,70], and
BP [71]; however, only a few investigations have been reported with respect to Q-switched
pulse generation from a Ho-doped fiber cavity with an SA [72-75]. More specifically,
Chamorovskiy et al. demonstrated a Q-switched Ho-doped fiber laser incorporating a
CNT-based SA [72], Sholokhov et al. reported a Q-switched Ho-doped fiber laser with
a heavily Ho-doped fiber SA [74], and Wang et al. demonstrated the use of a heavily
Ho-doped fiber SA for the realization of high-power Q-switched pulses from a Ho-doped
fiber laser [75].

In this work, a Q-switched Ho-doped fiber laser using a low-cost SA based on GO is
experimentally demonstrated. The SA, which has an all-fiber structure, was implemented
through deposition of GO particles onto the flat polished surface of a side-polished fiber.
In order to pump a Ho-doped fiber gain medium in the laser ring resonator, our built
continuous-wave (CW) Tm-doped fiber laser at 1928 nm, which was followed by a power
amplifier operating was used. By inserting the GO-based SA in the prepared Ho-doped
fiber-based ring resonator, the pulsed output was found to be readily obtainable at a
wavelength of 2058 nm due to passive Q-switching. The measured temporal width of
the output pulses was 1.56 ps at a 56.12 kHz repetition rate. Both output pulse width
and repetition were tunable by changing the pump power. It should be noticed that this
study’s constructed laser has an all-fiber ring configuration unlike the Q-switching-based
Ho-doped fiber laser incorporating a SA based on CNT, demonstrated by Chamorovskiy
et al. in which a Fabry-Pérot cavity was employed with a free-space coupled mirror-type
SA [72]. The main goal of this work is to demonstrate the ultimate potential of graphene
oxide (GO) as a base material for the implementation of our SA since it is a low-cost
alternative to expensive high-purity graphene in terms of saturable absorption. Note that
GO-based SAs have not been used for passive Q-switching of a fiber laser operating at the
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wavelength band beyond 2 pm, even if they have been well-investigated at wavelengths of
1,1.5,and 1.9 um.

2. Characterization and Preparation of the GO-Based Saturable Absorber

The conventional, low-cost GO was obtained from a commercial company for this
experimental demonstration. The measured Raman spectrum of the GO particles is illus-
trated in Figure 1a. The D band and G band were observed at 1348 and 1592 cm ™!, each.
The D peak is known to be induced by the lattice disorder of graphene [76], while the
G peak is caused by the phonon excitation at the Brillouin zone center [77]. The X-ray
photoelectron spectroscopy (XPS) spectrum was also measured and the spectrum in the C
1s region of the GO particles is shown in Figure 1b. After curve fitting, it was found that
the fitted C 1s peaks could be decomposed by three peaks at ~284.8, ~286.7, and ~287.9
eV, which correspond to groups of C-C/C=C, C-O, and C=0, respectively. These peaks
correspond to those of the previously reported values [78].
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Figure 1. (a) Raman spectrum and (b) XPS spectrum (C 1s) of the graphene oxide (GO) particles.

Figure 2a illustrates the linear optical absorption spectrum for the GO particles, which
was measured with a spectrophotometer. The linear absorption spectrum indicates that
the GO particles have a broad absorption band that include the 2.0~2.1 um regime. A
schematic diagram of the GO-deposited side-polished fiber is shown in Figure 2b. One side
of a standard single-mode fiber (SMF) was finely polished to obtain a side-polished fiber,
which enables us to induce evanescent field interaction with the deposited GO particles.
The physical distance between the polished surface and core edge was ~5 um. The polished
length of the fiber was ~3 mm, and the length covered with GO was ~8 mm. The used
GO has a single layer with a thickness of ~500 nm. Note that the used GO has no atomic
layer structure. The insertion loss (IL) of the side-polished fiber was ~0.7 dB and its
polarization-dependent loss (PDL) was ~0.04 dB. After the GO particles were deposited
onto the polished surface, the IL was changed into ~2.8 dB, while the PDL became ~3.4 dB.
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Figure 2. (a) Linear optical absorption spectrum of the GO particles. (b) Schematic diagram of
GO-deposited side-polished fiber.

Next, nonlinear transmission measurement was performed as a function of the input
pulse peak power for the fabricated GO-deposited SA, using an experimental setup in
Figure 3a. The incident beam was coupled into the GO-based SA in the transverse electric
(TE) mode. For this measurement, we used a passively mode-locked fiber laser with a
repetition rate of ~36.94 MHz and a temporal width of ~711 fs at 1902 nm. Since an ultrafast
laser source operating at a 2.0~2.1-pm wavelength region did not exist in our laboratory,
this particular measurement was carried out at 1.9 pm with our built mode-locked Tm-
doped fiber laser. The nonlinear transmission curve of the GO-based SA, is illustrated in
Figure 3b together with its corresponding fitting curve [79]:

1 1, (1)

T(I)=1—AT- exp(Isat

where T(I) and AT are the transmission and modulation depth, respectively. I and Iy, are the
input-pulse energy and saturation energy, respectively. T;;s represents the nonsaturable loss. The
modulation depth and saturation power were estimated at ~13.1% and ~12.5 W, respectively.
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Figure 3. (a) Measurement setup for nonlinear transmission curve. (b) Measured nonlinear transmission curve of the
prepared GO-based saturable absorber (SA). (PC: polarization controller, VOA: variable optical attenuator).

3. Q-Switching of a 2058-nm Fiber Laser

The whole laser schematic diagram including a Ho-doped fiber ring resonator and
a Tm-doped fiber-based high power pumping source is presented in Figure 4. Our laser
was constructed with single-clad Ho-doped fiber rather than double clad one, since our
targeted laser did not require a high output power. We chose a 1900-nm Tm-doped fiber
laser as a pumping source for the Ho-doped fiber considering the fact that the pump
absorption based on the transition of °I; — °I, allows for better quantum efficiency than
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that of °Ig — °I, [80]. Taking into account that our prepared SA had a transmission
type configuration, our laser cavity was constructed with a simple ring structure. The
all-fiber continuous-wave (CW) thulium-doped master oscillator and power amplifier
(MOPA) source consists of a CW seed oscillator, a Tm-Ho-codoped fiber prestage amplifier,
and a Tm-doped fiber main-amplifier. The output beam from the seed oscillator was first
amplified with a preamplifier stage and then further amplified with a main power amplifier
stage. The output wavelength of the CW seed oscillator was ~1928 nm. The output of
the seed oscillator was coupled into a preamplifier stage via a 1550/2000-nm wavelength
division multiplexer (WDM). For the prestage amplifier, 1-m length of Tm-Ho-codoped
fiber an absorption of 13 dB/m at 1550 nm was used. A commercially available 1550
nm erbium-doped fiber amplifier (EDFA) was used as a pumping source for the prestage
amplifier. The main stage amplifier was comprised a 793 nm laser diode (LD),a (2 + 1) x 1
combiner, and 3-m length of double-clad (DC) Tm-doped fiber. The cladding absorption of
the DC-Tm-doped fiber at 793 nm was ~4.5 dB/m. The core and inner cladding diameter
were 10 and 130 pm, respectively. The 1928-nm pumping beam, which had a maximum power
of ~1.1 W was launched into the Ho-doped fiber ring resonator through a 1930/2080-nm WDM.
A 1-m-long Ho-doped fiber (Nufern SM-HDEF-10/130) was used as a gain medium for the
cavity. To ensure unidirectional light propagation, an isolator was used. A 90:10 output
coupler was utilized to extract the laser output, and the output pulses were obtained from
the 10% port through a 90:10 coupler.

1550 nm THDF (1 m)
Amplifier
Optical Isolator\ Optical Isolator
Seed — —
Oscillator
1550/2000 nm
Output WDM
90:10 10%1/
. Go~b \
E)
Coupler Sq ed DC TDF (3 m) 793 nm
LD
) PC
Optical HDF (1m) ’
Isolator
WDM

790/2000 nm
combiner

Figure 4. Experimental setup of the Q-switched, holmium-doped fiber laser. (THDEF: thulium-holmium co-doped fiber, DC

TDF: double-clad thulium-doped fiber, HDF: holmium-doped fiber, PC: polarization controller, WDM: wavelength division

multiplexer).

In order to induce lasing from the all-fiber resonator, the pump power was enlarged.
The CW lasing was observed to start when the pump power reached ~660 mW. Subse-
quently, the CW lasing mode was converted into the Q-switching mode as soon as the
pump power arrived at ~759 mW. The measured optical spectrum of the Q-switched pulses
at a pump power of ~759 mW is shown in Figure 5a. The peak wavelength was ~2058 nm
and interestingly, multiple peaks were observed in the optical spectrum, implying that
gain competition among many longitudinal modes occurred, such longitudinal mode in-
stabilities in fiber laser devices were reviewed in [81,82]. This intermode gain competition
can be associated with the fact that no mode-selective filtering component was used in the
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laser configuration. Figure 5b illustrated the output oscilloscope traces at various pump
power levels. It is clearly evident that stable Q-switching operation were maintained over
a wide range of pump powers above the threshold of ~759 mW. The temporal period of
the output pulses was observed to decrease when the pump beam power became larger.
This sort of pulse temporal behavior depending on pump power is a typical phenomenon,
which is generally reported in passively Q-switched fiber lasers using an SA [16,24,35].
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Figure 5. (a) Measured optical spectrum of the output pulses at pump power of 759 mW. (b) Measured oscilloscope traces
of the output pulses at a variety of pump powers.

Subsequently, the average optical power, pulse energy, and repetition rate of the
output pulses were monitored while changing the pump power. The results are illustrated
in Figure 6. The pulse width decreased from 2.01 to 1.56 pus as the pump power was
adjusted from ~759 to 1072 mW, while the repetition rate changed from 45.56 to 56.12 kHz,
as shown in Figure 6a. The pump power-dependent pulse width change could be attributed
to the pump-induced gain compression effect [16,35,83]. The pulse energy as well as the
average output power was observed to increase as the pump power was enlarged, as
shown in Figure 6b. The maximum values of pulse energy and average output power were
~11.62 mW and 207.05 n]J, respectively, each at the maximum pump power of ~1072 mW.
Finally, a performance comparison between previously demonstrated Q-switched Ho-
doped fiber lasers with SAs and our laser is presented in the Table 1. It is obvious from the
table that our laser exhibited better performance than the laser using a CNT-based SA in
terms of pulse energy. From a perspective of pulse energy scalability, the Ho-doped fiber
SA is the best among the three due to its high damage threshold. Apparently, nanomaterial-
based SAs have damage threshold issues, which are critical to obtaining high energy pulses
directly from a laser cavity.
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Figure 6. (a) Measured repetition rate and temporal width of the output pulses as a function of the pump power. (b) Mea-
sured pulse energy and average output power of the output pulses as a function of the pump power.
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Table 1. Performance comparison between previously demonstrated Q-switched Ho-doped fiber
lasers with saturable absorber (SAs) and our laser.

Center Max.
o Min. Pulse Max. Pulse
SAs Wavelength Repetition Width (us) Energy (n]) Reference

(nm) Rate (kHz)
CNT 2097 170 0.32 118 [72]
Ho-fiber 2050 190 0.45 7000 [74]
GO 2058 56.12 1.56 207.05 This work

4. Conclusions

A passively Q-switched 2058 nm laser with an all-fiber configuration incorporating a
GO-based SA has been experimentally demonstrated in this study. The all-fiber SA was
fabricated with GO particles deposited onto the polished side surface of a standard optical
fiber. It was discovered that stable microsecond pulses could be generated at 2058 nm
when the prepared SA was inserted into a ring resonator incorporating a Ho-doped fiber
gain medium. The minimum pulse width was ~1.56 us at a ~1072 mW pump power.

These experimental results are believed to be a useful part of a database of pulsed
Ho-doped fiber lasers, which have not been extensively investigated until now.
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