
applied  
sciences

Article

Evaluation of ECG Features for the Classification of Post-Stroke
Survivors with a Diagnostic Approach

Kalaivani Rathakrishnan 1,2,3, Seung-Nam Min 4 and Se Jin Park 1,2,3,*

����������
�������

Citation: Rathakrishnan, K.; Min,

S.-N.; Park, S.J. Evaluation of ECG

Features for the Classification of

Post-Stroke Survivors with a

Diagnostic Approach. Appl. Sci. 2021,

11, 192. https://dx.doi.org/10.3390/

app11010192

Received: 21 November 2020

Accepted: 22 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Medical Physics, University of Science and Technology, Daejeon 34113, Korea;
kalaivani@ust.ac.kr

2 Research Team for Health & Safety Convergence, Korea Research Institute of Standards and Science,
Daejeon 34113, Korea

3 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea
4 Department of Drone and Industrial Safety Engineering, Shinsung University, Dangjin 31801, Korea;

msnijn12@shinsung.ac.kr
* Correspondence: sjpark@kriss.re.kr

Abstract: Stroke is considered as a major cause of death and neurological disorders commonly associ-
ated with elderly people. Electrocardiogram (ECG) signals are used as a powerful tool in diagnosing
stroke, and the analysis of ECG signals has become the focus of stroke research. ECG changes and
autonomic dysfunction are reportedly seen in patients with stroke. This study aimed to analyze the
ECG features and develop a classification model with highly ranked ECG features as input variables
based on machine-learning techniques for diagnosing stroke disease. The study included 52 stroke
patients (mean age 72.7 years, 63% male) and 80 control subjects (mean age 75.5 years, 39% male) for
a total of 132 elderly subjects. Resting ECG signals in the lying down position are measured using
the BIOPAC MP150 system. The ECG signals are denoised using the discrete wavelet transform
(DWT) method, and the features such as heart rate variability (HRV), indices of time and spectral
domains and statistical and impulsive metrics, in addition to fiducial features, are extracted and
analyzed. Our results showed that the values of the HRV variables were lower in the stroke group,
revealing autonomic dysfunction in stroke patients. A statistically significant difference was observed
in low-frequency (LF)/high-frequency (HF), time interval measured after the S wave to the beginning
of the T wave (ST) and time interval measured from the beginning of the Q wave to the end of the T
wave (QT) (p < 0.05) between the groups. Our study also highlighted some of the risk factors of stroke,
such as age, male sex and dyslipidemia (p < 0.05), that are statistically significant. The k-nearest
neighbors (KNN) model showed the highest classification results (accuracy 96.6%, precision 94.3%,
recall 99.1% and F1-score 96.6%) than the random forest, support vector machine (SVM), Naïve Bayes
and logistic regression models. Thus, our study reported some of the notable ECG changes in the
study participants and also indicated that ECG could aid in diagnosing stroke disease.

Keywords: stroke; risk factors; ECG; heart rate variability; classification; machine learning models

1. Introduction

One of the major diseases associated with the elderly is a stroke and is considered as
the second leading cause of death with the third most common cause of disability-adjusted
life years (DALYs) [1,2]. Stroke is a medical emergency condition, and prompt treatment
is crucial also; earlier action can reduce brain damage and other complications. The risk
of stroke increases significantly for elderly adults [3,4]. According to the World Health
Organization (WHO), by 2050, the world’s population of those aged 60 years and beyond
is projected to reach two billion, up from 900 million in 2015. In Korea, stroke is a major
health burden that will substantially increase in the near future, and Korea is becoming
the most rapidly aging society in the world [5]. A study based on the stroke incidence rate
of some countries reported that 75–89% of strokes occur in individuals aged >65 years;
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of those, 50% occur in people aged ≥70 years and 25% in those who are aged >85 years [6].
As of 2013, the global mortality and disability rate caused by stroke were nearly 6.5 million
and 113 million, respectively, whereas the mortality rate is higher in Asia than in Europe
and the Americas [7]. Another study reported that the stroke mortality rate of Korea
sharply increased, particularly after the age of 70 years [2]. Approximately, every year,
105,000 people experience a new or recurrent stroke, and more than 26,000 people die due
to stroke, which indicates that, every five min, a stroke attacks someone, and in every
20 min, a stroke kills someone in Korea. This results in a substantial economic burden to
Korea, with the total nationwide cost for stroke care nearly 3.3 billion US dollars in 2005 [1].
The duration of hospital stay and medical expenditure is higher in stroke patients than
patients with other chronic diseases [8]. Therefore, an early diagnosis of stroke can enable
us to save the lives of people, and the research on stroke patients is also very important for
the effective utilization of medical resources.

Conventionally, stroke has been diagnosed by various methods, such as computed
tomography (CT), magnetic resonance imaging (MRI), a blood test and electrocardiogram
(ECG) signals. ECG has always been considered as a popular measurement scheme that
is comparatively low-cost in screening and diagnosing various diseases [9]. It has a
variety of applications in health monitoring and auxiliary diagnosis and plays a valuable
complementary technique for stroke diagnostics [10]. ECG has been mainly used for stroke
detection, which helps to determine the cause of stroke. Since the investigation of ECG
signals is noninvasive by placing the electrodes on the skin, this helps in the accurate
detection of abnormalities. Therefore, a baseline ECG can be useful for detecting cardiac
abnormalities in acute stroke patients [11].

In medicine, machine learning has great hope in predicting the disease and assisting
doctors in diagnosis, using data collected by wearable sensors and smartphones. The use-
case of the machine-learning model is both a diagnosis or prognosis in which the diagnostic
models can be used for new subjects, and the model developed for prognosis can predict
a given subject’s future clinical state [12]. The machine-learning and deep-learning tech-
niques such as logistic regression, random forest and deep neural networks are used for
predicting the presence of stroke disease with various related attributes [13,14]. The stroke
risk classification techniques are developed by using logistic regression, Naïve Bayesian,
Bayesian network, decision tree, neural network, random forest, bagged decision tree, vot-
ing and boosting models [15]. Additionally, the machine-learning algorithms are capable
of identifying the features that are highly related to stroke occurrence efficiently from the
huge set of features [16].

Several studies focused on patient classification based on the overall behavior of the
ECG to diagnose specific diseases [17]. The extraction of features from the ECG signal is a
key step for ECG recognition, as it allows to greatly enhance and extract the characteristics
of the signal, and those features can be fed into the conventional machine-learning models
to perform the classification [18]. The integration of classification techniques in the clinical
setup majorly requires the detection of ECG abnormalities in real time to be used in the
hospital environment at the bedside or on wearable devices [17]. In general, ECG abnor-
malities are frequently seen in patients with a stroke. A study revealed that any ECG
abnormality is a highly ranked factor, and it may be possible that all ECG abnormalities
are more indicative of stroke than just atrial fibrillation [16]. Therefore, the analysis of ECG
features and the detection of abnormalities from the ECG signal are significant tasks for the
diagnosis of stroke disease. With the consideration of the importance of ECG changes in
stroke [19], our study aimed to analyze the ECG features for the classification of elderly
post-stroke patients and control subjects with a stroke diagnostic approach. Firstly, we ex-
tracted the features from the denoised ECG signals of the study participants. Secondly,
we performed the analyses on the features such as heart rate variability (HRV) indices of
time and spectral domains, fiducial features and statistical and impulsive metrics variables
that have not been commonly used. Thirdly, we employed the filter-based feature selection
approach for selecting the input feature subset for the classifiers. Finally, we intended to



Appl. Sci. 2021, 11, 192 3 of 16

develop a classification model for diagnosing stroke disease based on machine-learning
techniques such as k-nearest neighbor (KNN), support vector machine (SVM), Naïve Bayes,
random forest and logistic regression. Furthermore, our study aimed to investigate the
autonomic dysfunction and the potential risk factors in relation to stroke.

2. Materials and Methods
2.1. Study Participants and Data Collection

A total of 132 participants, including 52 stroke patients with the mean age of 72.7
(SD 6.6) and 80 control subjects with the mean age of 75.5 (SD 3.4), were recruited for this
study. The stroke subjects who participated in this study were the outpatient volunteers
diagnosed with stroke within one year at the time of data collection capable of independent
walking and using assistance tools. The control subjects are those without physical or
cognitive impairments caused by cerebrovascular disease such as stroke. The subjects with
an acute or chronic infections such as liver failure, renal failure and cancer were excluded
in this study. The ECG signals were measured using the BIOPAC MP150 (BIOPAC Systems
Inc., Goleta, CA, USA) with the standard three lead measurements, conducted in Chung-
nam National Hospital, Daejeon, South Korea from 2017 to 2018. Resting ECG signals were
obtained for a period of 5 min in the lying down position. The blood samples from the
study participants were taken after overnight fasting before ECG recordings. All the clinical
parameters were determined in the laboratory of Chungnam National Hospital. The de-
mographics and clinical data such as age, gender, body mass index (BMI), systolic blood
pressure (SBP), diastolic blood pressure (DBP), hemoglobin, low-density lipoprotein (LDL),
high-density lipoprotein (HDL), total cholesterol and cardiovascular risk factors such as
hypertension and dyslipidemia were included in this study. Hypertension was assessed
with the repeated measures of systolic blood pressure ≥140 mmHg or diastolic blood
pressure ≥90 mmHg, and diabetes was assessed with the blood glucose level ≥126 mg/dL.
A family history of stroke was evaluated if one or both of the parents of the subjects had
a stroke. Smoking was determined as having smoked at least once per day or more for
one year and reported current smoking. Alcohol consumption was classified as current
drinkers who drink on a daily or weekly basis at least once per week at present. Smoking
and alcohol levels were assessed using a questionnaire, and the National Institute of Health
Stroke Scale (NIHSS) was used to evaluate the stroke severity of the patients. The individ-
ual scores of each feature are summed to calculate the total NIHSS score. The maximum
severity score is 42, and the minimum is 0. In a total of 52 stroke patients, there were
8 patients with minor stroke (NIHSS: 1–4), 12 patients with moderate stroke (NIHSS: 5–15),
13 patients with moderate-to-severe stroke (NIHSS: 16–20) and 19 patients with severe
stroke (NIHSS: 21–42).

2.2. Data Analysis

Statistical analysis was executed in IBM SPSS 23.0 Software (SPSS Inc., Chicago,
IL, USA), and the categorical variables were represented as frequency and percentage,
whereas the continuous variables were presented as mean and standard deviation. The com-
parison between the quantitative measurements was performed using the independent
t-test. The chi-square test was implemented to evaluate the differences between categorical
variables. The one-way analysis of variance (ANOVA), followed by Tukey’s test, was used
to compare the groups on possible differences in HRV indices, impulsive metrics and
ECG intervals. A p-value < 0.05 was considered as statistically significant. The Pearson
correlation analysis was performed to find the multicollinearity. We computed a box-
plot to represent the distribution of the values for the features, with significant differences.
The simulations such as signal denoising and classifications using machine-learning models
were performed in MATLAB R2020a (The Mathworks Inc., Natick, MA, USA).
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2.3. ECG Signal Denoising Based on Discrete Wavelet Transform Method

ECG signals are often accompanied by noise and interference. Therefore, the denoising
of ECG signals is necessary before performing the feature extraction. Wavelet analysis
helps to remove the noises and improves the signal strength [20]. The discrete wavelet
transform (DWT) is a widely used method to decompose the signal simultaneously into
time and frequency domain information. In general, to denoise the signal using DWT,
we need to decompose the signal into L levels and select the suitable mother wavelet
function [21]. The types of mother wavelets are Daubechies, Haar, Symlets, Biorthogonal,
Coiflets, etc. However, selecting a relevant wavelet is the most important task, as there is
no universal method to choose a particular wavelet. The wavelets are derived from a single
prototype wavelet y(t) called the mother wavelet by scaling and shifting the parameters,
as expressed in [21] Equation (1).

ψab(t) =
1√
a

ψ

(
t− b

a

)
(1)

where a represents the scaling factor, and b represents the shifting factors.
Daubechies wavelet is one of the most perspective discrete wavelets transforms,

with the basic properties of orthogonality, normalization and compactness of support [22].
The process of signal denoising based on discrete wavelet transform consists of decom-
position of the signal, thresholding and reconstruction of the signal [23]. In the hard
thresholding method, the wavelet coefficients with absolute values below or at the thresh-
old level are replaced by zero, and the others are kept unchanged. In the soft threshold,
when the absolute value of the wavelet coefficient is less than the given threshold value,
set it as zero. If the coefficient is larger than the given threshold value, let the wavelet
coefficient subtract the threshold value [24].

Soft thresholding provides smoother results than the hard thresholding method [25].
We used the Daubechies as the mother wavelet of order eight and decomposed the signals
into four levels using a soft thresholding technique. The Daubechies wavelet of order 8
(db8) of the original and denoised ECG signal is shown in Figure 1.

Figure 1. Original and denoised electrocardiogram (ECG) signal using Daubechies wavelet transform.

2.4. Feature Extraction

In this step, a total of 21 features, including the HRV time and spectral domain
variables, intervals between the fiducial points and higher-order statistical and impulsive
metric variables are extracted.
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2.4.1. Statistical Time-Domain Features

• Kurtosis—Calculates whether the data is heavy-tailed or light-tailed relative to a
normal distribution.

• Skewness—Computes the asymmetry of the data. When the data points are skewed
to the left, it is called a negative skew, and data points skewed to the right are called a
positive skew.

• Peak value—Gives the maximum absolute value of the signal.
• Impulse factor—Compares the height of a peak to the mean level of the signal.
• Crest factor—Defined as the peak value divided by the root mean square value.

2.4.2. Time Domain Variables of Heart Rate Variability (HRV)

The heart rate variability indices of the time domain are calculated and are ex-
pressed [26] in Equations (2)–(4).

RMSSD—Computed as the root mean square of the sum of the squares of differences
between adjacent RR intervals (RR-I) in milliseconds.

RMSSD =

√
1
N ∑ (RR(i + 1)− RR(i))2 (2)

SDSD—The standard deviation of adjacent RR-I differences measured in the units of
milliseconds.

SDSD =

√
1
N

n

∑
i=1

(RR(di f ) − RR(di f ))
2 (3)

pNN50—The percentage of intervals greater than 50 ms different from the proceeding
interval.

pNN50 (%) =
[(RR(i + 1)− RR(i)) > 50ms]

total(RR(di f ))
(4)

2.4.3. Frequency Domain Variables of HRV

The frequency domain variables are used to discriminate the sympathetic and parasym-
pathetic activity of RR-I. The spectral power in the low-frequency (LF) band (0.04–015 Hz) is
related to the sympathetic-parasympathetic activity. On the other hand, the high-frequency
(HF) band (0.15–0.4 Hz) is associated with the parasympathetic activity [27]. The range of
spectral power in the very low-frequency (VLF) band is 0.003–0.04 Hz. In this work, the VLF,
LF, HF and ratio of LF and HF (LF/HF) band power spectral densities are evaluated as the
frequency domain features.

2.4.4. Fiducial Features

The ECG abnormalities can be detected using the features of the ECG signal, and it
comprises the P-wave, time interval of the QRS complex (QRS) and T-wave, which includes
the corresponding onset, offset and peak points and are represented as fiducial points,
as shown in Figure 2 [28]. The features of an ECG signal are nothing but the segments
and intervals between the fiducial points [29]. In this experiment, the fiducial points are
detected based on the the Pan-Tompkins QRS detector and the corresponding intervals,
such as RR-I (ms), heart rate (bpm), QRS complex (ms), time interval measured from the
beginning of the P wave to the peak of the R wave (PRQ) in ms, amplitude of the R wave
(R-H) in mV, amplitude of the P wave (P-H) in mV, time interval measured after the S wave
to the beginning of the T wave (ST) in ms, time interval measured from the beginning of
the Q wave to the end of the T wave (QT) in ms and corrected QT interval (QTc) in ms from
the ECG signals extracted using BIOPAC Acqknowledge 5.0 software (BIOPAC systems
Inc., Goleta, CA, USA).
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Figure 2. Fiducial points and features of the ECG signal. PR: time interval measured from the
beginning of the P wave to the start of the QRS complex, QRS: time interval of the QRS complex,
ST: time interval measured after the S wave to the beginning of the T wave and QT: time interval
measured from beginning of the Q wave to the end of the T wave.

2.5. Feature Selection and Ranking

Feature selection approaches reduce the dimensionality of data by choosing a subset
of predictor variables. It also enables the machine-learning algorithms to train faster and
improves the accuracy of the model with the selection of the right subset. The feature selec-
tion techniques are further classified into the filter, wrapper and embedded methods [30].
The main challenge is the redundancy of the features, and the existing dimensionality
reduction technique such as principal component analysis (PCA) is not suitable to build
the applicable and human understandable models [31]. The filter-based feature selection
approaches are investigated and found to be effective in selecting the features that are
associated with stroke [32]. In this research, we applied one of the filter-based feature
selection approaches, such as ANOVA, to select the optimal feature subset. The computa-
tional speed of the filter methods are much faster than the wrapper methods. ANOVA is
a statistical test useful in comparing two or more mean values. For each feature, if the
p-value is near to 0, there exists significant differences in the characteristic values for the
different categories [33]. Feature importance ranking from the results of the ANOVA F-test
are shown in Figure 3. Features that did not achieve sufficient significance (p ≥ 0.05) are
omitted. Therefore, we selected three features such as LF/HF, ST and QT that showed
statistical significance (p < 0.05) and are the highly ranked features. The correlation analysis
was then performed to find the relation between these three features. The correlation
coefficient r = −0.16 between LF/HF and QT indicates a weak negative correlation and re-
veals the inverse relationship between LF/HF and QT. Similarly, the correlation coefficient
r = −0.19 between LF/HF and ST represents a weak negative correlation. Further, the ST
and QT intervals indicate a moderate positive correlation of r = 0.44. As there are no strong
correlations between these features, we selected LF/HF, ST and QT as the input features
subset for the classification models.
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Figure 3. Ranking of overall features based on the ANOVA F-test. LF: low-frequency, HF: high-
frequency, QTc: corrected QT interval, RMSSD: root mean square of the sum of the squares of
differences between adjacent RR intervals, SDSD: standard deviation of adjacent RR intervals dif-
ferences, HR: heart rate, RR-I: RR intervals, pNN50: percentage of intervals greater than 50 ms
different from the proceeding interval, PRQ: time interval measured from the beginning of the P
wave to the peak of the R wave, P-H: amplitude of P wave, R-H: amplitude of R wave and VLF:
very-low-frequency.

2.6. Machine-Learning Classification Approach

We applied the SVM, KNN, Naïve Bayes, random forest and logistic regression models
in our classification approach. The SVM classifies data by finding the best hyperplane that
separates all data points of one class from the other class, and it is widely used in pattern
recognition, image processing and classification [18]. KNN stores all cases and classifies
the new cases based on similarity measures [34]. The Naïve Bayes classifier is based
on the Bayes theorem, and it is characterized by high accuracy and scalability, even for
a very large volume of data [35]. The logistic regression is mainly used to predict the
outcome of a categorical dependent variable from a set of predictor variables [36], and the
random forest technique is also widely used in stroke prediction [13]. We performed the
model validation process for evaluating a trained model on the test dataset. In particular,
an overfitting problem occurs by fixing a training set and a test set when generating a
predictive model [37]. Therefore, in this study, the classification performance is measured
by constructing a training set and a test set with 10-fold cross-validation method.

3. Results
3.1. Baseline Clinical Characteristics

The demographics, hemodynamic and clinical data of the study population are pre-
sented in Table 1. Among the overall study population, the stroke group had a mean age of
72.7± 6.6 years, with 33 (63%) men, while the control group mean age was 75.5± 3.4 years,
with 31 (39%) men. The stroke subjects were moderately younger than the control subjects
(p < 0.05). In subjects with stroke, the components were distributed as follows: Subjects who
have drinking practice were 12 (23%), and a smoking habit was noticed in 16 (31%) and
hypertension in 18 (35%), whereas diabetes was present in 8 (51%), whilst the subjects
diagnosed with heart diseases were 3 (6%) in the stroke group. There was no significant
difference observed in the BMI values between the groups. However, a significant dif-
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ference between the stroke and control groups was noticed with respect to age, male sex
and dyslipidemia, with a p-value < 0.05. Furthermore, the family history of stroke was
identified as five (10%) for the stroke group and five (6%) for the controls. The baseline
NIHSS for the stroke subjects was shown in the median (interquartile range, IQR) as 25 (6).
The clinical assessment showed that there was no significant difference in systolic, as well
as in diastolic, blood pressure between the groups. The hemoglobin levels were found
to be similar between the groups. Further, the HDL level was higher in the stroke group,
whereas the LDL and total cholesterol levels were found to be lower in the stroke subjects
than the controls.

Table 1. Demographics and clinical data of the stroke and control groups.

Variables Stroke Group (n = 52) Control Group (n = 80)

Age (years) * 72.7 ± 6.6 75.5 ± 3.4
Gender (male), n (%) * 33 (63) 31 (39)

Smoking, n (%) 16 (31) 17 (21)
Drinking, n (%) 12 (23) 14 (18)

Family history of stroke, n (%) 5 (10) 5 (6)
Hypertension, n (%) 18 (35) 17 (21)

Dyslipidemia, n (%) * 3 (6) 14 (18)
Diabetes, n (%) 8 (51) 14 (18)

Heart disease, n (%) 3 (6) 5 (6)
BMI (kg/m2) 24.3 ± 2.7 23.9 ± 2.5
SBP (mmHg) 129.3 ± 15.5 136.91 ± 16.36
DBP (mmHg) 78.3 ± 9.2 79.3 ± 11.5

Hemoglobin (g/dL) 13.5 ± 1.8 13.5 ± 1.1
TC (mg/dL) 179.5 ± 37.2 183.1 ± 39.9

LDL (mg/dL) 97.1 ± 34.3 104.7 ± 35.9
HDL (mg/dL) 54.8 ± 16.4 49.7 ± 12.2

Baseline NIHSS score 25 (6) -

Baseline data are presented as mean ± standard deviation or number (percentage), * p-Value < 0.05
was considered as significant. BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic
blood pressure, LDL: low-density lipoproteins, HDL: high-density lipoproteins, TC: total cholesterol
and NIHSS: National Institute of Health Stroke Scale.

3.2. HRV Analysis of Stroke and Control Group

There was no significant difference in the RMSSD values between the strokes and
controls. However, the analysis of calculating the variability of the adjacent RR-I values
revealed that the RMSSD index was reliably lower in the stroke group, whereas the SDSD
did not differ significantly. A similar trend was observed in the pNN50 index, which gives
the proportion of NN50 divided by the total number of RR-I summarized in Table 2.
From the frequency domain analysis, the RR-I variability in the VLF bandwidth shows
no significant difference between the groups. In the HF and LF bandwidths, a downward
trend was observed in the stroke group. A significant difference was evident in the
LF/HF ratio, also called the sympathovagal balance (F = 8.21, p = 0.014). The post hoc
comparisons using Tukey’s honestly significant difference (HSD) test indicated that the
mean score for the stroke group (1.18 ± 0.21) was significantly different than the control
group (0.60 ± 0.079), and the boxplot shown in Figure 4 represents the distribution of the
LF/HF values. This analysis of the time and frequency domain variables indicated that
subjects with a stroke showed a decrease in the heart rate variability.
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Table 2. Time and frequency domain indices of the heart rate variability (HRV).

HRV Variables Stroke Group (n = 52) Control Group (n = 80) p-Value

Time Domain Variables

RMSSD (ms) 39.96 ± 9.35 61.54 ± 10.60 0.129
SDSD (ms) 39.91 ± 9.35 61.50 ± 10.60 0.129
pNN50 (%) 7.59 ± 2.47 10.98 ± 2.10 0.298

Frequency Domain Variables

HF (ms2) 464.32 ± 167.47 522.61 ± 171.88 0.808
LF (ms2) 259.74 ± 84.56 267.99 ± 108.84 0.952

VLF (ms2) 26.05 ± 8.29 29.04 ± 11.84 0.836
LF/HF 1.18 ± 0.21 0.60 ± 0.079 0.014

Data are expressed in mean ± standard deviation. p < 0.05 is considered as significant. RMSSD:
root mean square of the sum of the squares of differences between adjacent RR intervals, SDSD:
standard deviation of adjacent RR intervals differences, pNN50: percentage of intervals greater
than 50 ms different from the proceeding interval, HF: high-frequency, LF: low-frequency and VLF:
very-low-frequency.

Figure 4. Boxplot representation of the low-frequency/high-frequency (LF/HF) ratio from the heart
rate variability (HRV) spectral domain analysis (p < 0.05 between the groups).

3.3. Analysis of Higher Order Statistics and Impulsive Metrics Variables

The statistical metrics such as kurtosis and skew were slightly higher in the stroke
group, with no significant differences (p > 0.05). The peak value was slightly lower in the
subjects with strokes, 1.05 ± 0.37 vs. 1.10 ± 0.47 in the controls. The impulsive metrics
analysis revealed that the impulse factor was higher, whereas the crest factor was lower
in the stroke group given in Table 3. Figure 5 illustrates the mean and standard deviation
values of the variables between the groups.

Table 3. Higher order statistical and impulsive metrics of the stroke and control groups.

Variables Stroke Group (n =
52)

Control Group (n =
80) p-Value

Kurtosis 16.0 ± 4.93 15.43 ± 5.30 0.533
Skewness 1.85 ± 1.40 1.75 ± 1.31 0.682

Peak value 1.05 ± 0.37 1.10 ± 0.47 0.525
Impulse factor 12.54 ± 3.30 12.46 ± 3.47 0.898

Crest factor 6.58 ± 1.23 6.65 ± 1.33 0.762
Variables are represented in mean ± standard deviation. p < 0.05 is considered as significant.
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Figure 5. Bar graph illustration of the mean and standard deviation values of the statistical and
impulsive metric variables of the stroke and control groups.

3.4. Analysis of Intervals Extracted between the Fiducial Points of ECG

The extracted intervals of the stroke and control groups between the fiducial points
of the ECG are represented in Table 4. The RR-I value represents the time between the
QRS complexes that was noted to be lower in the stroke subjects than the control group
(890 ± 140 ms vs. 920 ± 130 ms) and exhibits no significant difference (p > 0.05). Conse-
quently, the heart rates were 68.87 ± 11.7 bpm for the stroke subjects, while the control
group were 66.51 ± 9.89 bpm. The PRQ, which is the time interval measured from the
beginning of the P wave to the peak of the R wave, appeared slightly lower among the
subjects with strokes than the control subjects (179 ± 26 ms vs. 182 ± 28 ms, p > 0.05).
The time interval of the QRS complex between the two groups showed no significant
results, but an increasing trend was noticed among the stroke subjects.

Table 4. Fiducial features of the electrocardiogram (ECG).

Features Stroke Group (n = 52) Control Group (n = 80) p-Value

RR-I (ms) 890 ± 140 920 ± 130 0.315
HR (bpm) 68.87 ± 11.7 66.51 ± 9.89 0.242
PRQ (ms) 179 ± 26 182 ± 28 0.542
QRS (ms) 113 ± 22 107 ± 14 0.095
P-H (mV) 72 ± 20 74 ± 30 0.769
R-H (mV) 720 ± 76 690 ± 79 0.770
QTc (ms) 543 ± 45 557 ± 37 0.074
QT (ms) 512 ± 56 533 ± 46 0.029
ST (ms) 427 ± 59 452 ± 49 0.014

p < 0.05 is considered as significant between the stroke and control groups, and the intervals are
expressed in mean ± standard deviations. RR-I: RR intervals, HR: heart rate, PRQ: time interval
measured from the beginning of the P wave to peak of the R wave, QRS: time interval of the QRS
complex, P-H: amplitude of P wave, R-H: amplitude of R wave, QTc: corrected QT interval, QT:
time interval measured from beginning of the Q wave to the end of the T wave and ST: time interval
measured after the S wave to the beginning of the T wave.

The results revealed that the amplitude of the P wave (P-H) appeared slightly lower
among the stroke group, whereas the R wave amplitude (R-H) was more pronounced in the
stroke group. Furthermore, the QT interval measured from the start of the Q wave to the
end of the T wave was statistically significant (F = 5.30, p = 0.029), followed by the Tukey’s
test, which represented the mean score for the stroke group (512± 56) and was significantly
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different than the control group (533 ± 46). Although, the corrected QT interval (QTc)
showed a downward trend similar to the QT interval, with no statistically significant
results. Additionally, the time interval measured after the S wave to the beginning of the
T wave, called the ST interval, showed significance (F = 6.70, p = 0.014), and the Tukey’s
test indicated that the mean score of the stroke subjects (427 ± 59) was more statistically
significant than the control subjects (452 ± 49). To summarize from the results, the QT
and ST are the two intervals that showed a significant difference between the two groups
illustrated as boxplot graphs in Figure 6.

Figure 6. Boxplot illustration of the distribution of QT (p = 0.029) and ST intervals (p = 0.014) between
the stroke and the control subjects.

3.5. Classification Model

In this experiment, we used the logistic regression, random forest, Naïve Bayes,
SVM and KNN algorithms to perform the classification, and the features fed into the
classifiers were the LF/HF, ST and QT. We performed the hyperparameter optimization
before training the classifier models, as it plays a vital role in the classification accuracy of
machine-learning models. The models are evaluated using performance metrics such as
accuracy, precision and recall. Accuracy is measured in terms of the number of correctly
classified data points out of all the data points. The receiver operating characteristic (ROC)
curve is the most effective tool for measuring the accuracy [38]. However, in most of
the classification problems, imbalanced class distribution exists, and the F1-score is used
to evaluate the model. We used the following parameters: true positive, true negative,
false positive and false negative to calculate the performance metrics. True positive rep-
resents the correctly classified stroke rate, whereas true negative represents the correctly
classified nonstroke rate. The false negative and false positive provide the incorrectly
classified nonstroke and stroke rates, respectively. The accuracy, precision, recall and
F1-scores were calculated as follows [8]:

Precision = True positive/(True positive + False positive) (5)

Recall = True positive/(True positive + False negative) (6)

F1-score = 2 × ((precision × recall)/(precision + recall)) (7)

Accuracy = (True positive + True negative)/(True positive + True negative + False positive + False negative) (8)

Table 5 summarizes the computational results obtained from the classifier models
and listing of the four performance parameters. Considering all the models, the highest
classification accuracy 96.6%, precision 94.3% and recall 99.1% were acquired by the KNN
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model, with the F1-score as 96.6%. Thus, the KNN algorithm provided the best performance
results, followed by random forest with 94.4% accuracy, 91.7% precision, 97.7% recall and a
94.6% F1-score. Further, the SVM showed the performance results of 85.4% accuracy, 81.5%
precision, 91.7% recall and a 86.3% F1-score. The Naïve Bayes algorithm attained 72.7%
accuracy, 64.2% precision, 87.8% recall and a 74.1% F1-score, whereas the least performance
results were given by the logistic regression model as 66.9% accuracy, 57.1% precision,
91.7% recall and a 70.3% F1-score. The results showed that the KNN classifier model
outperformed the other models.

Table 5. Results of the classification performance of the models.

Learning Method Accuracy Precision Recall F1-Score

KNN 96.6% 94.3% 99.1% 96.6%
Random forest 94.4% 91.7% 97.7% 94.6%

SVM 85.4% 81.5% 91.7% 86.3%
Naïve Bayes 72.7% 64.2% 87.8% 74.1%

Logistic regression 66.9% 57.1% 91.7% 70.3%
KNN: k-nearest neighbor and SVM: support vector machine.

4. Discussion

In the present study, we highlighted the major risk factors of stroke obtained from the
statistical analysis of the baseline demographics and clinical characteristics of the study
population. We demonstrated the use of a machine-learning algorithms and developed
a classification model with highly ranked ECG features obtained from various datasets,
such as the HRV parameters of the time and spectral domains, statistical and impulsive
metric variables and ECG intervals.

Christian Tanislav et al. reported the higher mean age and overrepresentation of male
sex in the baseline characteristics of stroke patients [39]. In a study conducted by Ginenus
Fekadu et al., the number of males found to be higher consisted of 62.9% among the overall
stroke patients [40]. Similarly, our findings noticed that the number of male stroke subjects
accounted were higher and comprised 63% more than female stroke subjects. Some of
the major risk factors for stroke are reported as age, hypertension, diabetes, dyslipidemia,
cardiovascular diseases and smoking and alcohol consumption [41]. Our study disclosed
the most significant risk factors for stroke as age, gender and dyslipidemia (p < 0.05),
and thereby, people with one or more of these risk factors are considered to be at high risk
of stroke.

Besides the demographics and clinical data, we explored the HRV indices of time and
frequency domains to find the autonomic dysfunction of the stroke subjects. Acute stroke
generally affects the autonomic nervous system, and the reduction in HRV is a regular
sign of illness in stroke patients [42]. Several studies also reported that a lower heart rate
variability was associated with a higher risk of incident stroke [43–46]. Correspondingly,
our results noticed a lowered value of RMSSD, SDSD and pNN50 of the time domain
parameters and lowered LF, HF and VLF of the frequency domain parameters for the
stroke subjects, indicating the relation of lower heart rate variability with stroke. Fur-
thermore, we observed that the stroke patients had elevated values of the LF/HF ratio,
similar to the findings of Tokgozoglu et al. and Colivicchi et al., which revealed that the
patients with acute strokes had increased LF/HF values when compared to the normal
people [47,48]. However, no significant differences were observed in the higher order
statistical and impulsive metric variables between the groups. The prevalence of ECG
changes have a significant relationship with aging [49]; additionally, the ECG abnormalities
are regularly seen in stroke patients [50,51]. Many studies reported that the most common
ECG abnormalities associated with acute stroke are arrhythmia, prolonged QTc and T wave
and U wave abnormalities [19,52–55]. Accordingly, we noticed the prolonged QTc in the
stroke group, including both male and female subjects, with the overall mean value of the
QTc greater than 450 milliseconds. A similar trend also seen in the control group might
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because of the aging effects [56]. In addition to that, we identified a slightly prolonged
QRS duration, with the mean value of the QRS greater than 110 ms in the stroke group.
However, a significant difference was detected only in the QT and ST intervals between
the study populations. Thus, our study performed an extensive analysis on the extracted
features and also noted significant changes.

Machine-learning techniques belong to the domain of artificial intelligence, and they
provide a promising tool in pursuing personalized outcome predictions and globalized
diagnostic models, which are increasingly used in medical research [12,13,57–59]. The major
findings from our work were that LF/HF, ST and QT are the three highest-ranking ECG
attributes considered to be the optimal input features subset for classifying an individual as
a stroke or control, whereas the rest of the features that did not show significance (p ≥ 0.05)
were excluded. Therefore, our study appropriately selected the features for the classifiers.
The KNN model outperformed, with a higher classification accuracy than the other models,
and the results indicated that our approach can achieve the best performance accuracy
using limited attributes that have not been commonly used in the classification models.

This study has some limitations that offer future research opportunities. Our model
included only the features of the ECG and excluded the risk factors obtained from the base-
line data. This may cause an impact on the overall accuracy of the model. The model needs
to be validated using subject-wise cross-validation, as the record-wise cross-validation
may overestimate the performance of the model. Additionally, the performance of the
proposed model needs to be compared with the existing models. Another limitation is
the lack of evidence about the higher-order statistical and impulsive metric variables in
relation to stroke. Although our study found significant differences in the ECG intervals,
it would be worth conducting a subanalysis to find the prevalence of ECG abnormalities
among the stroke population. The present study did not take into consideration the details
of the medications for stroke patients. However, the ECG changes may be confounded
by stroke medications such as beta-blockers or antiarrhythmic drugs that require further
investigation. This is a small-scale study whose findings need to be validated further by
including larger population studies.

5. Conclusions

In summary, we analyzed the ECG features of elderly stroke and control subjects
to describe the significant changes between the two groups, as ECG signals can be a
tool for medical practitioners to detect various abnormalities related to stroke. Further,
we investigated autonomic dysfunction in post-stroke patients with the exploration of HRV
variables. Additionally, we highlighted the risk factors of stroke obtained from the baseline
characteristics of the study participants. The classification model was developed using ECG
features based on machine-learning techniques. For diagnosing stroke disease, the KNN
model attained the best results in classifying an individual as a stroke patient or control
subject using only three features. Thus, the analysis results of the ECG signals indicate
that the highly ranked ECG features acquired from our findings might be the suitable key
features in identifying stroke, and the proposed model may assist in diagnosing stroke
disease based on ECG signals for clinical utility.
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