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Abstract: The growing competitiveness of the market, coupled with the increase in automation driven
with the advent of Industry 4.0, highlights the importance of maintenance within organizations.
At the same time, the amount of data capable of being extracted from industrial systems has increased
exponentially due to the proliferation of sensors, transmission devices and data storage via Internet of
Things. These data, when processed and analyzed, can provide valuable information and knowledge
about the equipment, allowing a move towards predictive maintenance. Maintenance is fundamental
to a company’s competitiveness, since actions taken at this level have a direct impact on aspects
such as cost and quality of products. Hence, equipment failures need to be identified and resolved.
Artificial Intelligence tools, in particular Machine Learning, exhibit enormous potential in the analysis
of large amounts of data, now readily available, thus aiming to improve the availability of systems,
reducing maintenance costs, and increasing operational performance and support in decision making.
In this dissertation, Artificial Intelligence tools, more specifically Machine Learning, are applied to
a set of data made available online and the specifics of this implementation are analyzed as well as
the definition of methodologies, in order to provide information and tools to the maintenance area.

Keywords: predictive maintenance; Industry 4.0; Internet of Things; artificial intelligence; ma-
chine learning

1. Introduction

Maintenance is a relevant factor for the competitiveness of an organization, since the
actions carried out at this level have a direct impact on aspects such as the cost, deadlines and
quality of the products produced or services provided [1,2]. Maintenance is a support to the
operational area of a company and cannot be dissociated from it, given the implication it has
in terms of the efficiency of productive assets. These two areas, operation and maintenance,
must operate in parallel in order to guarantee the availability and the rapid response of
human and material resources to operational problems, thus ensuring the achievement
of objectives with the maximization of available resources. Thus, it becomes important
not only to achieve the proposed objectives, but also to achieve them with the minimum
consumption or use of resources [2].

It is in this context of constant transformation that Industry 4.0 arises [1]. Industry 4.0
implements the tools provided by advances in information and communication technologies
in order to increase the levels of automation and digitalization in industrial and production
processes [1,3]. The objective is to manage the entire value chain process, improving
production efficiency and creating superior products and services. One of the key points of
this technological evolution is the data, which is now more easily read, processed, stored,
analyzed and shared between machines and human beings [4]. Additionally, the Internet of
Things (IoT) is defined as an ecosystem in which the objects and equipment inserted in it
are equipped with sensors and other digital devices, thus being able to gather and exchange
information with each other, in a networked system [1].

In recent years, a drop in cost and an increase in the reliability of sensors, data
transmission and storage devices have promoted the emergence of condition monitoring
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systems for industrial equipment. Simultaneously, the IoT allows real-time transmission
of this information about the conditions of the systems captured by different monitoring
devices. This development offers an excellent opportunity to use condition monitoring
data intelligently within predictive maintenance, combining the ability to collect data with
an effective and integrated analysis of it [5].

In this sense, the potential of Artificial Intelligence tools, more specifically Machine
Learning, allows us to aim for an improvement in the availability of systems, reducing
maintenance costs, increasing operational performance and safety, and the ability to support
decision making in relation to the ideal time and the ideal action for carrying out the
maintenance intervention [4–7].

Machine Learning can be defined as “the field of study that gives the computer
the ability to learn without being explicitly programmed”. It can be said that “Machine
Learning algorithms use computational methods to learn information directly from data
without using predefined equations as a model” [8].

The main objective of this work is to apply Artificial Intelligence tools, more specifically
Machine Learning, to a set of data, coming from different sources, available online [9].
Furthermore, we seek to analyze the specificities of this implementation and the definition
of methodologies, in order to provide information and tools to the maintenance area.

2. Machine Learning Process Workflow and Techniques

One of the main difficulties of applying a Machine Learning process to maintenance
data is the choice of the right workflow, as in literature there are many different approaches
to this problem, depending on the origin of the data and the objectives of the analysis [10–13].
As the different applications are difficult to compare, in this work it was decided to explore
a simple but complete framework and to use a set of data that can be used by other
researchers, as the data set is publicly available.

In the present work, the workflow presented in [14], represented in Figure 1, will be
followed. From our point of view, a Machine Learning project must always start with
the establishment of rigorous and clear definition of the objectives, since such a system
fulfills a very specific task and the definition of vague objectives can mean that the model
developed is not able to predict exactly what it is intended to.

Quite possibly, the most important part of a Machine Learning project is the ability to
understand the data used and how it relates to the task we want to solve. It will not be
effective to randomly choose an algorithm, use the data set we have available and expect
good results [15]. It is necessary to understand what is happening in the data set before
starting to build a model. When building a Machine Learning solution, we must answer or
at least keep in mind the following questions: What questions are we trying to answer?
Does the available data set allow you to answer these questions? What is the best way to
paraphrase my question as a Machine Learning problem? Is the available data set sufficient
to represent the problem we are trying to solve? What features (or attributes) have been
extracted and will they be able to lead to the correct predictions? How to measure the
success of the application of Machine Learning? How will the Machine Learning solution
interact with the rest of the process?

Machine Learning algorithms and methods are only part of a larger process for solving
a specific problem, and it is important to keep that in mind. Sometimes, a lot of time is
spent building complex Machine Learning solutions, only to discover in the end that they
do not solve the problem that we were waiting for [16]. By deepening the technical aspects
of Machine Learning, it is easy to lose sight of the final goals. It is important to keep in
mind all the assumptions created, either explicitly or implicitly, when building Machine
Learning models.
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Figure 1. Machine Learning process workflow [14].

Typical machine learning algorithms, such as the hidden Markov models [17], hidden
semi-Markov models [18], self-organizing neural network [19], SVM [20], multimodal deep
support vector classification [21], deep random forest [22], genetic algorithms [23], blind
source separation [24], fuzzy logic [25], k-nearest neighbor algorithms [26] and Bayesian
algorithms [27], etc., have been applied in fault diagnosis of dynamic equipment. To the
best of our knowledge, there are two main categories of approach for fault diagnosis of
gearboxes: Data-driven and physical model-based methods. Although these methods have
been successfully applied in many applications, it is very difficult to know what is the best
algorithm to apply to a particular data set.

A systematic review of the scientific literature was carried out in [28], from which it is
possible to draw several conclusions. Predictive maintenance strategies are being applied
to the most diverse equipment, in multiple areas. The equipment where these methods are
applied include, but are not limited to, turbines, engines, compressors, pumps. About 89%
of the published papers use a set of real data, with 11% using synthetic data. Regarding the
use of Machine Learning algorithms in scientific publications, the most used is Random
Forest (RF)—33%, followed by methods based on Neural Networks (NN), such as Artificial
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NN, Convolution NN, Long Short-Term Memory Metwork (LSTM) and Deep Learning—
27%, Support Vector Machine (SVM)—25% and k-means—13%. There was also a greater
tendency to use vibration signals.

3. Application Example
3.1. Data Applied

Throughout this paragraph, the process of implementing Machine Learning algo-
rithms to a set of maintenance data will be detailed and explained.

First, the data set is presented and the choice is justified. Then, the objectives of this
Machine Learning application are rigorously and clearly established. Subsequently, the
data set is processed through feature engineering, creating new features in order to seek
better performance from the models. The data set used is key to solving Machine Learning
problems. A sensible choice of what data to use and how to handle it is crucial to improving
the performance of the algorithms. According to Domingos [29], feature engineering is the
key to Machine Learning projects and that, often, the measured signals are not suitable for
the learning process, and it is necessary to build features from those that are.

Then, the data set is divided into training, validation and testing subsets and the first
application of Machine Learning models was carried out, where a variety of algorithms
were trained and evaluated. The training process of the algorithms is carried out in the
training subset and the validation subset provides an impartial assessment of the fit of the
models to the training data, while simultaneously fine-tuning the model and its hyper-
parameters in order to seek better performance. Finally, the test set is used to obtain an
estimate of the model’s performance, simulating its behavior for future data.

The implementation described in this chapter will be carried out using the Python pro-
gramming language, using the packages Matplotlib, Numpy, Pandas and Scikit-Learn [30,31].

3.2. Data Sources

Despite the growth of this area, due to business competitiveness, sharing sensitive
information of this nature is rare, which means that the number of publicly available
datasets (relevant to this application) is very scarce.

Within an industrial environment, there is a very complete data set, made available by
Microsoft, published in [9], of relevance to the present project.

This dataset contains data from five different sources:

• real-time telemetry;
• error log;
• maintenance history;
• fault history; and
• information about machines

The data were acquired over a year (2015) for one hundred machines, except for the
maintenance history, which also contains records for the year 2014.

For a total of one hundred machines, from four different models, the data set contains
876,100 hourly telemetry records, that is, 8761 records per machine. The failure records
contain 3919 entries and the maintenance history 3286. The failure history has 761 records,
that is, on average, about 8 failure records per machine, throughout 2015. Each machine has
4 components of interest for analysis and also 4 sensors, which measure tension, pressure,
vibration and rotation. A controller monitors the system and is able to alert you to the
occurrence of 5 types of errors.

Thus, real-time telemetry data consists of measurements from different sensors
(4 per machine), with the associated date and time. The measurements of voltage (“volt”),
rotation (“rotate”), pressure (“pressure”) and vibration (“vibration”) are acquired in real
time and the average of these measurements over an hour is recorded in Table 1.
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Table 1. Typical example of real-time telemetry recording.

Datetime machineID Volt Rotate Pressure Vibration

0 2015-01-01 06:00:00 1 176.217853 418.504078 113.077935 45.087686
1 2015-01-01 07:00:00 1 162.879223 402.747490 95.460525 402.747490
2 2015-01-01 08:00:00 1 170.989902 527.349825 75.237905 34.178847
3 2015-01-01 09:00:00 1 162.462833 346.149335 109.248561 41.122144
4 2015-01-01 10:00:00 1 157.610021 435.376873 111.886648 25.990511

To better understand the behavior of each sensor, a simple statistical analysis is
performed in Table 2, where the mean, the standard deviation, and the minimum and
maximum values are calculated for the parameters voltage (“volt”), rotation (“rotate”),
pressure (“pressure”) and vibration (“vibration”) during 2015. As an example, Figure 2
shows the graphical evolutions of the Tension signals (Figure 2a), Rotation (Figure 2b),
Pressure (Figure 2c) and Vibration (Figure 2d), over the first fifteen days of January 2015,
for machine 1 (machineID = 1).

Table 2. Statistical analysis of telemetry data in real time.

Volt Rotate Pressure Vibration

count 876100 876100 876100 876100
mean 170.777736 446.605119 100.858668 40.385007

std 15.509114 52.673886 11.048679 5.370361
min 97.333604 138.432075 51.237106 14.877054
25% 160.304927 412.305714 93.498181 36.777299
50% 170.607338 447.558150 100.425559 40.237247
75% 181.004493 482.176600 107.555231 43.784938
max 255.124717 695.0209841 185.951998 76.791072

The second source of information is the error log. These are errors that did not
immediately lead to a failure, as the machine remained operational. There are 5 types of
errors: error1, error2, error3, error4, error5. The date and time are rounded to the nearest
time. Each record consists of a date/time, machine and type of error—Table 3. The total
number of error records over the year 2015 is 3919. In Figure 3 it is possible to observe the
number of errors per type over the year 2015.

The maintenance records contain data of component replacements resulting from
a scheduled or unscheduled maintenance intervention, periodic inspections, or perfor-
mance degradation. In case of maintenance intervention due to the failure of a component,
a fault record is also generated, see next paragraph. For each machine, this data set contains
information about 4 types of components: comp1, comp2, comp3, comp4. The date and
time are rounded to the nearest time. Each record consists of a date/time, machine and the
type of component replaced—Table 4. The total number of maintenance records throughout
2015 is 3286. As previously mentioned, the maintenance records also contain entries for
2014. Figure 4 shows the number of components replaced, by type. It is possible to observe
that in this case the number of substitutions is similar for the 4 types of components.

The fault records contain the component replacement records, resulting from the
maintenance intervention, due to the occurrence of a fault. The data is for the 4 types of
components: comp1, comp2, comp3, comp4. The date and time are rounded to the nearest
time. Each record consists of a date/time, machine and the type of replaced component—
Table 5. The total number of failure records during 2015 is 761. In Figure 5, it is possible
to observe the number of replacements, by type of component, during 2015, due to the
occurrence of a failure.
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Figure 2. Evolution of Telemetry data over the first fifteen days of January 2015, for the machine 1.
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Table 3. Typical error logging example.

Datetime machineID errorID

0 2015-01-03 07:00:00 1 error1
1 2015-01-03 20:00:00 1 error3
2 2015-01-04 06:00:00 1 error5
3 2015-01-10 15:00:00 1 error4
4 2015-01-22 10:00:00 1 error4

Figure 3. Representation of the number of errors by type.

Table 4. Typical example of maintenance records.

Datetime machineID comp

0 2014-06-01 06:00:00 1 comp2
1 2014-07-16 06:00:00 1 comp4
2 2014-07-31 06:00:00 1 comp3
3 2014-12-13 06:00:00 1 comp1
4 2015-01-05 06:00:00 1 comp 4

Figure 4. Representation of the number of components replaced, by type.
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Table 5. Typical example of failure records.

Datetime machineID Failure

0 2015-01-05 06:00:00 1 comp 4
1 2015-03-06 06:00:00 1 comp 1
2 2015-04-20 06:00:00 1 comp2
3 2015-06-19 06:00:00 1 comp4
4 2015-09-02 06:00:00 1 comp 4

Figure 5. Representation of the number of components replaced, by type, due to the occurrence of
a failure.

Finally, this data set contains information about the model and number of years of
service for each of the 100 machines—Table 6. Figure 6 shows a histogram showing the
distribution of the number of machines and service time, by model.

Table 6. Typical example of information for each machine.

machineID Model Age

0 1 model3 18
1 2 model4 7
2 3 model3 8
3 4 model3 7
4 5 model3 2
5 6 model3 7
6 7 model3 20
7 8 model3 16

3.3. Definition of Objectives

As already mentioned, a Machine Learning project must start with the rigorous and
clear establishment of objectives. In this case, the main objective of the models used will
be to predict the probability of a failure occurring within the defined time window. More
specifically, the probability of a machine failure occurring in the next 24 h (duration of the
time window chosen for this application) related to one of the components (components 1,
2, 3 or 4).
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Figure 6. Histogram representing the number of machines and service time, by model.

Then, given that a particular and clear objective has already been set, more specific
questions can be asked about Machine Learning itself: (1) Should supervised, unsupervised,
or reinforcement learning models be chosen or, possibly, combinations of learning modes?
(2) Whether supervised learning, classification, or regression? (3) Are models intended to
train immediately as new data is obtained (batch learning or online learning)?

After analyzing the problem, and bearing in mind the proposed objective, we opted
for supervised learning and, in particular, classification. Furthermore, taking into account
the existence of 4 different components under analysis, the problem will be multi-class clas-
sification (“Multiclass Classification”). It was also considered that it will not be necessary,
given the scope of the problem and the nature of the data, for models to train immediately
as new data is obtained. Therefore, we are facing a problem of batch learning.

3.4. Feature Engineering

A feature is a predictive attribute for the model. The purpose of feature engineering
is to seek to increase the predictive power of Machine Learning algorithms, creating new
features from the available data. As a rule, feature engineering is carried out in the first
place and then the selection of features occurs, eliminating irrelevant, redundant or highly
correlated features. Starting from the different sources of information presented in the
previous paragraphs, a single dataset will be created, which will be used for the application
of predictive models.

The historical data that models have access to are individual moments in the past.
In particular, for telemetry data, disturbances resulting from measurements, such as noise,
are possible, thus making the predictive task more difficult. In this way, the data can be
aggregated in time windows, thus allowing to “smooth” the values, minimizing the effects
of noise on the features used by the models.

Bearing in mind how far in the future the model should be able to predict, according
to the requirements of the project, it is important to define how far it should “look” to make
these predictions. This interval of time passed to where the model should “look back” is
called lag. Several features can be extracted from these time intervals—lag features. The
data set used to generate lag features usually has a date/time associated with it.

For each record, a time window of dimension N is created and the lag features are
calculated for the period N before the date/time of that record. Figure 7 shows an example
of this application for a ti measurement with N = 3. The value of N is typically in minutes
or hours, depending on the nature of the data.
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Figure 7. Lag Features [9].

Thus, two temporal windows were created. The first, of 3 h, in order to allow us to
portray the behavior of telemetry data in the short term (Table 7) and the second, of 24 h,
in order to represent the long-term evolution (Table 8). In each of these time intervals, two
new parameters were calculated every 3 h for each of the features: the moving average and
the standard deviation. Note that, in the case of N = 24 h (Table 8), naturally the two new
parameters are not available for the initial moments (first 24 h).

Table 7. Example of Lag Features for telemetry data in real time, with N = 3.

machineID Datetime Voltmean_3h Rotatemean_3h Pressuremean_3h Vibrationmean_3h

0 1 2015-01-01 09:00:00 170.028993 449.533798 94.592122 40.893502
1 1 2015-01-01 12:00:00 164.192565 403.949857 105.687417 34.255891
2 1 2015-01-01 15:00:00 168.134445 435.781707 107.793709 41.239405
3 1 2015-01-01 18:00:00 165.514453 430.472823 101.703289 40.373739
4 1 2015-01-01 21:00:00 168.809347 437.111120 90.911060 41.738542

Table 8. Example of Lag Features for telemetry data in real time, with N = 24.

machineID Datetime Voltmean_24h Rotatemean_24h Pressuremean_24h Vibrationmean_24h

7 1 2015-01-02 06:00:00 169.733809 445.179865 96.797113 40.385160
8 1 2015-01-02 09:00:00 170.614862 446.364859 96.849785 39.736826
9 1 2015-01-02 12:00:00 169.893965 447.009407 97.715600 39.498374
10 1 2015-01-02 15:00:00 171.243444 444.233563 96.666060 40.229370
11 1 2015-01-02 18:00:00 170.792486 448.440437 95.766838 40.055214

As with telemetry data, the error log also has a date/time associated with it. However,
these data are categorical and not numerical. In this case, the number of errors of each type
is added, every 3 h, for the time window N = 24 (Table 9). Each line in the table represents
the sum of the number of errors of each type in the 24 h prior to the indicated datetime.

Table 9. Example of Lag Features for error logging.

machineID Datetime Error1count Error2count Error3count Error4count Error5count

15 1 2015-01-03 06:00:00 0.0 0.0 0.0 0.0 0.0
16 1 2015-01-03 09:00:00 0.0 0.0 0.0 0.0 0.0
17 1 2015-01-03 12:00:00 1.0 0.0 0.0 0.0 0.0
18 1 2015-01-03 15:00:00 1.0 0.0 0.0 0.0 0.0
19 1 2015-01-03 18:00:00 1.0 0.0 0.0 0.0 0.0
20 1 2015-01-03 21:00:00 1.0 0.0 0.0 0.0 0.0
21 1 2015-01-04 00:00:00 1.0 0.0 1.0 0.0 0.0
22 1 2015-01-04 03:00:00 1.0 0.0 1.0 0.0 0.0
23 1 2015-01-04 06:00:00 1.0 0.0 1.0 0.0 0.0
24 1 2015-01-04 09:00:00 1.0 0.0 1.0 0.0 1.0



Appl. Sci. 2021, 11, 18 11 of 18

The maintenance log, which contains information related to the replacement of com-
ponents, allows the generation of new potentially important features, such as, for example,
how long ago a component was last replaced—Table 10. It is expected that this feature
relates well to the possible failures of the components, since, the longer the time of use of
a component, the greater the expected degradation.

Table 10. Time since the last replacement, by type of component.

Datetime machineID comp1 comp2 comp3 comp4

0 2015-01-01 06:00:00 1 19.000000 214.000000 154.000000 169.000000
1 2015-01-01 07:00:00 1 19.041667 214.041667 154.041667 169.041667
2 2015-01-01 08:00:00 1 19.083333 214.083333 154.083333 169.083333
3 2015-01-01 09:00:00 1 19.125000 214.125000 154.125000 169.125000
4 2015-01-01 10:00:00 1 19.166667 214.166667 154.166667 169.166667

It is relevant to note that the creation of features based on maintenance data is not as
linear as in the previous cases. However, this type of case-specific feature engineering is
very common in predictive maintenance, where domain knowledge and experience play
a crucial role in understanding and creating relevant features.

Finally, information about the machines can be used without further modifications,
that is, information related to the model and number of years in service of each machine—
Table 6.

3.5. Feature Selection

An analysis of the linear correlation between the variables was performed (Figure 8).
The correlation coefficient varies between −1 and 1. This coefficient makes it possible to see
whether one variable justifies the linear variation of another. When it is close to 1, it means
that there is a strong positive correlation, that is, if a given feature A increases, then feature
B also increases and if A decreases, B it also decreases.

In this case, it appears that the correlation between the features is mostly low or nonex-
istent (correlation coefficient close to zero). Even so, in the case of the features pressure-
mean_3h and pressuremean_24h, the value of the correlation coefficient is approximately
0.5 and a more detailed analysis will be relevant.

Thus, Figure 9 shows the failures, by type of components, according to the evolution
of the features pressuremean_3h and pressuremean_24h. It is possible to observe that, for
components 1 and 3, there are clusters of points.

Figure 8. Features correlation.
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Figure 9. Detailed analysis of the correlation between features pressuremean_3h and pressure-
mean_24h.

However, the same is not true for components 2 and 4. It is likewise possible to
observe that most failures for component 3 occur for higher pressuremean_3h and pres-
suremean_24h values, when compared with the other components. Thus, it was decided to
keep both features, since there is a clear relationship between these and the occurrence of
failures in at least some of the components

3.6. Classification of Data and Construction of Labels

As previously mentioned, the problem of predictive maintenance under analysis is
a case of Supervised Learning. In order to train a model to predict failures, it is necessary
for not only examples of failure but also a time series of observations that led to that
failure. Furthermore, the model needs examples of “normal” operating periods in order
to be able to see the difference between the two. The classification between these two
states is binary (stable or without failure/unstable or with failure). With this information
available (stable/unstable), the model is only useful if it is able to promptly alert you to the
imminence of a failure.

In order to fulfill this early warning criterion, it is necessary to modify the definition of
the failure event label, which occurs at a specific time, to a time interval where the failure
event may occur. The time until the failure occurs, which delimits the boundary between
the two categories, must be chosen according to operational criteria. Is the knowledge that a
failure will occur within 12 h sufficient to prevent it? And what about 24 h? And two weeks?
The model’s ability to predict a failure will also depend on the duration of this time window.

This process is illustrated in Figure 10. In order to achieve the reset from unstable to
pre-unstable, observations within the time window (represented by “X” in Figure 9) before
the occurrence of a failure have been labeled as pre-instable, while records outside this time
interval X have been labeled as stable.

Figure 10. Data classification and label construction—adapted from [9].
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The main objective of the Machine Learning models used will be to predict the
probability of a failure occurring within this time window. In this case, more specifically,
the probability of a machine failure occurring in the next 24 h (duration of the time window
chosen for this application) related to one of the components (components 1,2,3 or 4). Thus,
a new categorical feature “failure” was created, where all records in the 24 h prior to
the occurrence of a failure in component 1 have the value failure = comp1 and so on for
components 2,3 and 4. Records that do not check these conditions have the value of failure
= none. This leads to the problem turning from a binary problem (stable/pre-unstable) to
a multi-class classification problem (stable/n pre-unstable component). It should also be
noted that, henceforth, due to this redefinition of failure event, when it is mentioned that
a certain algorithm predicts a failure, in fact, what is being mentioned is that the algorithm
predicts the occurrence of a failure within this time window.

Table 11 shows examples of failure in component 2. Note that the first 8 records occur
in the 24 h prior to the occurrence of the first failure of component 2. The next 8 records in
the 24 h prior to another failure of component 2.

3.7. Data Splitting

When working with associated day and time data, as is the case here, the division
between the training, validation and test sets must be carried out carefully, in order to ensure
that the evaluations obtained correspond to the actual performance that should be expected
of the models, since there is an inherent temporal correlation between observations (high
similarity between temporally close data). This validation technique is called Holdout.

In problems of predictive maintenance, in most situations, the best option is to perform
a division based on time, that is, choose a point in time, train the model with all records
prior to that point, using the later records to validate the model. This methodology also
allows to simulate how the model will actually behave in practice.

Table 11. Example of failure representation in component 2.

machineID Datetime Model Age Failure

857 1 2015-04-19 09:00:00 model3 18 comp2

858 1 2015-04-19 12:00:00 model3 18 comp2

859 1 2015-04-19 15:00:00 model3 18 comp2

860 1 2015-04-19 18:00:00 model3 18 comp2

861 1 2015-04-19 21:00:00 model3 18 comp2

862 1 2015-04-20 00:00:00 model3 18 comp2

863 1 2015-04-20 03:00:00 model3 18 comp2

864 1 2015-04-20 06:00:00 model3 18 comp2

2297 1 2015-10-16 09:00:00 model3 18 comp2

2298 1 2015-10-16 12:00:00 model3 18 comp2

2299 1 2015-10-16 15:00:00 model3 18 comp2

2300 1 2015-10-16 18:00:00 model3 18 comp2

2301 1 2015-10-16 21:00:00 model3 18 comp2

2302 1 2015-10-17 00:00:00 model3 18 comp2

2303 1 2015-10-17 03:00:00 model3 18 comp2

2304 1 2015-10-17 06:00:00 model3 18 comp2
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Thus, in the present application, the registrations until 08/31/2015 1:00:00 were
assigned to the test set, the registrations between 01/09/2015 1:00:00 and 31/10/2015
1:00:00 to the validation set and registration from 01-11-2015 1:00:00 to the test set. In order
to guarantee that the data in different sets do not share time windows, the records at the
borders, that is, the records of the 24 h preceding the date of division, have been removed.
Thus, Table 12 shows the amount of data that was attributed to each of the sets and the
percentage that corresponds to failures.

Table 12. Amount of data attributed to each of the sets and the percentage corresponding to failures.

Quantity /% Failure/%

Training 66.52 2.02

Validation 16.57 1.89

Test 16.91 1.92

3.8. Class Imbalance in Maintenance Problem Applications

Something to take into account in predictive maintenance is the fact that the occurrence
of failures is rare during the life cycle of a given machine, when compared to normal operation.
This leads to an imbalance between classes (Table 13), which usually leads to an illusory
performance on the part of the algorithms, which tend to classify the most common example
more often at the expense of the less common, since the total number of incorrect classifications
are thus less. Therefore, the Recall and Precision values can be low, although the Accuracy
value is high. A clear example of this phenomenon is, in the validation set (where most of the
evaluation metrics will be calculated), where 98.11% (Table 12) of the data correspond to the
Stable category (failure = none), that is, a model (without any use) that provides functioning
stable values at all times would have an Accuracy of 98.11%. It is therefore essential to look at
other evaluation metrics.

Table 13. Example of the imbalance between the different classes for the ‘failure’ feature in the total
data set.

Failure %

none 285,684 98.06

comp2 1985 0.68

comp1 1464 0.50

comp4 1240 0.43

comp3 968 0.33

For a considerable number of critical equipment applications, the model’s inability to
predict a failure can be exorbitantly expensive. In predictive maintenance, as a general rule,
the most important is the number of real failures that the model is capable of predicting,
that is, the model’s Recall3. This parameter becomes even more important as the conse-
quences of false negatives, that is, true failures that the model was unable to predict, exceed
the consequences of false positives, that is, a false prediction of a failure. This phenomenon
is known as “incorrect classification cost” and can be estimated by companies according
to the cost of repair, parts and labor. Generally, it is preferable that the model errs as a pre-
caution, since it will be more economical to carry out a maintenance check than a partial
or total interruption of the operation. However, the wrong prediction of a failure, that is,
a false positive, can also lead to a loss of time and resources. In this case, the model must
be adjusted to a high Precision. However, as mentioned earlier, the Recall and Precision
metrics are not independent: Increasing one implies decreasing the other.
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3.9. Application of Models in the Validation Set

In this first application, the validation set is used in order to understand how a wide
variety of models behave, as well as to look for the tuning of the hyper-parameters of
certain models. Such an approach is due to the fact that it is not possible, at the outset,
to determine which algorithm is most suitable for a given problem. When training and
evaluating a wide variety of models at an early stage, it is possible to see which ones have
the greatest potential, however, for this step to be successful, it is necessary that the metrics
for evaluating the models have been chosen in accordance with the established objectives.

The models tested were K-Nearest Neighbors, Decision Tree, Random Forest, Naïve
Bayes and Artificial Neural Networks. The best results were obtained by Random Forest
and Artificial Neural Networks models [32].

3.10. Test Set Behavior

The validation set has been used, so far, to fine-tune the models and respective hyper-
parameters, in order to seek better performance. It is now important to check how the
models behave in the test set. Although, in a real case, it is advisable to evaluate only the
model that is intended to be implemented [8], this section presents the results obtained for
the evaluation of the two best models (in the validation set), in this case, Random Forest
and Artificial Neural Networks, with min-max scaling normalization.

Tables 14 and 15 show the values obtained for Precision, Recall and F1 Score, for the
Random Forest and Artificial Neural Network model, respectively, in the validation and
test sets.

Table 14. Performance for the Random Forest model in the validation and test sets, with ’n_estimators = 70.

None comp1 comp2 comp3 comp4

Precision 0.9997 0.9244 0.9916 1.0000 0.9812

Conj. Develop. Recall 0.9999 0.9578 0.9861 0.9514 0.9543

F1 Score 0.9998 0.9408 0.9889 0.9751 0.9676

Precision 0.9988 0.9718 0.9711 0.9855 0.9830

Conj. Test Recall 0.9998 0.8150 0.9882 0.9189 0.9611

F1 Score 0.9993 0.8865 0.9796 0.9510 0.9719

Table 15. Performance for the Artificial Neural Network model in the validation and test sets, with
100 hidden layers (hidden layers = 100) and min-max scaling normalization.

None comp1 comp2 comp3 comp4

Precision 0.9997 0.9451 0.9917 1.0000 0.9520

Conj. Develop.Recall 0.9998 0.9337 0.9972 0.9167 0.9954

F1 Score 0.9997 0.9394 0.9945 0.9565 0.9732

Precision 0.9990 0.9030 0.9941 0.9858 0.9725

Conj. Test Recall 0.9995 0.8425 0.9853 0.9392 0.9833

F1 Score 0.9993 0.8717 0.9897 0.9619 0.9779

As expected, there is a generalized decrease in performance of the evaluation metrics
in the test set. Still, the results remain satisfactory. As previously mentioned, in predictive
maintenance, as a general rule, the most important is the number of real failures that the
model is capable of predicting, that is, the value of the model’s Recall parameter [28]. This
parameter becomes even more important as the consequences of false negatives, that is, true
failures that the model was unable to predict, exceed the consequences of false positives,
that is, a false prediction of a failure [33,34].
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For both models, there is a drop in the value of Recall (and, consequently, of F1Score)
to values below 90% for component 1 in the test set. In the present application, the four
components were considered to be of equal importance.

In a real application, where it may be possible to know more information about
each one of them (such as cost, importance in the process, location in the equipment,
ease of replacement), the analysis may involve trying to optimize certain metrics that are
considered to be of greater relevance.

4. Conclusions

In this paper, Machine Learning models were applied to a dataset available online. The
data set used was published by Microsoft, in [9], in a Notebook for Predictive Maintenance
and Machine Learning. The use of this data set was justified. In the implementation carried
out in the present project, until the final phase of feature engineering, the steps presented in
that Notebook were followed. However, from that moment on, as it is considered that the
approach presented in [9] is too simplistic (no validation technique is used and only a single
model is applied), it was decided to deepen the analysis with the implementation of the
Holdout validation, which divides the data set into three subsets (Training, Validation and
Test), as well as various Machine Learning models, thus showing how to fine-tune the
models and respective hyper-parameters using the validation set.

The fact that it is a multi-class classification problem added complexity to the analysis
and, perhaps, starting with a binary classification problem may be advisable for a better
understanding of the basic concepts of Machine Learning, fundamental to the success of
any application.

It is possible to address the imbalance between classes, very common in maintenance
applications, since the occurrence of failures is rare during the life cycle of a given machine,
when compared to its normal operation.

At the outset, and knowing that a sensible choice of which data to use and how to
handle it is crucial for the performance of Machine Learning algorithms, good results
would be expected based on the result obtained. However, more important than any result
was the demonstration of a methodology, starting from data of different types and sources
(very common in maintenance applications), that allowed us to show how it is possible
to visualize and treat them in order to apply Artificial Intelligence tools in the analysis of
maintenance data, in this case, Machine Learning.

Although the results obtained compare well with those presented so far in the litera-
ture, the biggest disadvantage in using the presented methodology lies in the definition of
the features. If the selection of features is not the most correct, the results obtained can lead
to wrong predictions. For future work, the application of feature learning concepts will be
considered instead of feature engineering, which appears to be promising to improve the
results obtained [35,36].
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