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Abstract: The characteristic pillars of a city are its economy, its mobility, its environment, its inhabi-
tants, its way of life, and its organization. Since 1980, the concept of smart city generally consists
of optimizing costs, organization, and the well-being of inhabitants. The idea is to develop means
and solutions capable of meeting the needs of the population, while preserving resources and the
environment. Owing to their little size, their flexibility, and their low cost, Unmanned Aerial Vehicles
(UAV) are today used in a huge number of daily life applications. UAV use cases can be classified into
three categories: data covering (like surveillance and event covering), data relaying (like delivery and
emergency services), and data dissemination (like cartography and precise agriculture). In addition,
the interest to Cooperative Intelligent Transportation Systems (C-ITS) has risen in these recent years,
especially in the context of smart cities. In such systems, both drivers and traffic managers share
the information and cooperate to coordinate their actions to ensure safety, traffic efficiency, and
environment preservation. In this work, we aimed at introducing a UAV in a use case that is likely to
happen in C-ITS. A conflict is considered involving a car and a pedestrian. A UAV observes from the
top of the scene and will play the role of the situation controller, the information collector, and the
assignment of the instructions to the car driver in case of a harmful situation to avoid car-pedestrian
collision. To this end, we highlight interactions between the UAV and the car vehicle (U2V communi-
cation), as well as between the UAV and infrastructure (U2I communication). Hence, the benefit of
using UAV is emphasized to reduce accident gravity rate, braking distance, energy consumption,
and occasional visibility reduction.

Keywords: C-ITS; crosswalk; braking distance; driving safety; drone to vehicle communication
(U2V); drone to infrastructure communication (U2I); energy consumption

1. Introduction

Unmanned Aerial Vehicles (UAV) are used today in a large number of daily life
applications [1]. In fact, since the beginning of the 2010s, UAV are being introduced to
improve the road traffic efficiency [2]. In addition, the interest to Cooperative Intelligent
Transportation Systems (C-ITS) has risen in recent years, especially in the context of
smart cities [3]. Several works and research projects identified multiple scenarios for the
application of UAVs in these environments [4]. In C-ITS, where autonomous vehicles
interact, road safety is a complex research problem, especially when Vulnerable Road Users
(VRU) are involved. Currently, the use of UAVs in urban areas is not yet authorized in most
countries in the world (see Reference [5] for more details about local UAV regulations). In
the white paper by Reference [6], the authors have shown how and why various regulations
and requirements influence the use of radio in drones. They focused on data link reliability
for professional drone use by providing the technical background and links to where
such regulatory ruling can be found, focusing in the U.S. and some countries in Europe.
Despite this restrictive legal context, various recent works have shown the benefits of
UAV technologies to improve efficiency and safety in urban areas. In most of these
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applications, UAVs have a certain level of intelligence, which allows them to be used
as high-performance sensors, information collectors, or even as communication relays,
particularly when land cover is not sufficient [7,8]. The advances of C-ITS technologies and
the interesting properties of UAVs provide a favorable context to introduce a UAV in a use
case where we consider a conflict involving a car and a pedestrian. In this work, UAV is
expected to control the situation, collect information, and send instructions to the car driver
in a case of harmful situation in order to avoid collision between the car and the pedestrian.
For this, we take into account two cases: in the first, case the car arrives to the crosswalk
through a straight line; in the second case, the car approaches the crosswalk through a
curved trajectory. The UAV is likely to detect the presence of the pedestrian before the latter
becomes in the Visual Line Of Sight (VLOS) of the terrestrial vehicle. Hence, the UAV can
send the information earlier to the driver, and this is likely to provide an earlier reaction
of the car driver. If we assume that the driver is cooperative, he will adapt his behavior
based on the messages received from the UAV. In these conditions, the UAV signaling
contributes to reduce both accident rate, braking distance, and energy consumption. In
addition, the UAV improves occasional visibility reduction. To this end, the rest of the
paper is organized as follows. In Section 2, we detail related works and state-of-the-art. In
Section 3, we present the studied scenario, as well as our proposed algorithm, the made
hypotheses, and the chosen simulation parameters. Then, in Section 4, we present the
simulations results and associated analysis to finally discuss these results in relation to the
national statistics in accidentology in France in Section 5. Section 6 is, lastly, dedicated to
summarize the main conclusions and further work.

2. Related Work

For more than twenty years, many research works have investigated the potential
of drones in traffic monitoring scenarios. Collected data from drones flying in urban
environment are used for a wide range of applications [9], such as evaluating the real traffic
flow conditions in urban areas [10]. In a first survey [11], the authors highlighted how
aerial monitoring has the potential to yield detailed information to help traffic planners.
In a second survey [12], the authors listed UAV-based systems for traffic monitoring and
research trends in the area. References [11,12] mentioned extensive efforts to carry UAV-
based systems for traffic monitoring in universities (California, Ohio, Florida, etc.) and
research centers. Reshma et al. [13] developed a security situational aware intelligent
traffic management using a UAV that gives decision commands for routing or shortest
traffic paths. Then, in Reference [2], a universal guiding framework for ensuring a safe and
efficient execution of UAV-based traffic studies has been proposed. More recently, some
patents have been submitted to design particular UAV structures able to meet efficient
traffic monitoring purposes. As an example, Reference [14] deals with a system of two
drones: a surveillance drone based on the recognition of difficult situations on fast road
lanes, and a signaling drone which makes decisions to display the most relevant signaling
messages on a LED-based variable messages panel.

In addition, the interest to Cooperative Intelligent Transportation Systems (C-ITS) has
risen in recent years, especially in the context of smart cities. Authors surveyed major tech-
niques and solutions for both signalized and non-signalized cooperative intersections [3].
Garcia-Castellano et al. developed and constructed an adaptive street light system that
improves safety at intersections with a focus on rural intersections, which have an elevated
number of road accidents [15]. In C-ITS systems, thanks to Vehicle to everything (V2X) and
everything to Vehicle (X2V) communications, both drivers and traffic managers share the
information and cooperate to coordinate their actions to ensure safety, traffic efficiency,
and environment preservation. Authors surveyed the concept of V2X, as well as the stan-
dardization techniques presently in use for communication by describing V2X applications,
requirements, threats, and solutions. They have focused on the required initiatives for
understanding the importance of V2X security in vehicular communication [16]. In addi-
tion, the integration of block chain, as a strong security mechanism, in next-generation
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V2X communications was examined, which comes up with new opportunities to empower
advanced V2X networks, capabilities, applications, and services [17]. UAV can be used in a
lot of ITS applications, thanks to the development of UAV-based systems. For example,
Martinez Herdia et al. presented an emergency radio beacon specifically designed to
find and recover small UAVs. They carried experiments to show its high precision and
endurance [18]. According to Reference [4], UAV can be used in a lot of ITS applications,
and there are huge potential and numerous challenges for UAV-enabled ITS for next gener-
ation smart cities. One among these challenges is UAV communications in smart cities. In
Reference [19], the author developed algorithms and mathematical frameworks to design,
optimize, deploy and operate UAV-based communication systems. In fact, UAVs can act as
intermediate relays to collect information and transmit it to ground vehicles, due to their
flexible mobility, especially if the communication ground infrastructure is not available [20].
The work in Reference [21] highlighted the minimum number of UAVs needed to guarantee
a target connectivity threshold among vehicles, for a given geographical area and vehicle
density, especially in the case of road side unit (RSU) failure and lack of Vehicle-to-Vehicle
(V2V) communication. Reference [22] proposed UAV-assisted vehicular ad-hoc network
(VANET) routing protocols to improve data routing and connectivity among ground vehi-
cles through the use of drones. Several researchers have been more particularly interested
in the interaction between drones and cars and suggested the development of hybrid
ad-hoc networks. In Reference [23], authors proposed an infrastructure-less Vehicle-Drone
hybrid ad-hoc network (VDNet), where UAVs are expected to boost V2V data message
transmission. Authors in Reference [24] investigated the use of an heterogeneous network
of drones and vehicles in an urban context, where communications between drones and
vehicles may be crucial for transmitting important information, such as real time traf-
fic. Hadiwardoyo et al. tackled different aspects of the communication between cars and
drones. In Reference [25], they proposed an experimental characterization of UAV to Car
communications and emphasized that its range could reach 3 km in a rural area, when
the 5 GHz frequency band is used. In Reference [26], they proposed a realistic model
for simulating this type of communication link, enabling alert broadcasts in emergency
situations. In Reference [27], they have recently developed a technique to optimize the
UAV positioning in a 3D space, for dynamic Drone to Car communication. One can find
more information about open problems and remaining challenges in the field of UAV
communications in Reference [28].

Another C-ITS feature is that vehicles are expected to be autonomous (no human
intervention is needed). Hence, road safety is an important aspect that should be considered
and highlights number of issues that are still open problems, especially when Vulnerable
Road Users (VRU), such as pedestrians, cyclists, or two-wheel-vehicles, are involved. As far
as road safety is concerned, authors in Reference [29] surveyed communications between
vehicles and VRUs and suggested that an open research challenge in the area is that a
vehicle and a VRU that are potentially on the verge of collision may need to communicate
with each other using real-time algorithms in the presence of V2X communications. In
addition, drones can be a viable technology for monitoring pedestrian traffic characteristics
in outdoor pedestrian zones [30]. UAVs are also used as aerial sensors to collect videos
aiming at analyzing surrogate safety of pedestrian-vehicle conflicts at intersections [8]. In
Reference [31], authors tackled pedestrian safety diagnosis at signalized crosswalks using
traffic conflict technique, and emphasized that the most serious pedestrian-vehicle conflicts
occur when vehicles travel at high speed. Tracking and simulating pedestrian movements
is part of the solution to protect their safety at intersections [7]. In Reference [32], the reader
can also find models for pedestrian path prediction at 2 s time horizon, and this helps
to analyze interactions between pedestrians and straight-going vehicle at non-signalized
crosswalks. Extensive research studied pedestrian behaviors, while other works focused
on the car driver behavior, like the recent patent [33] where the inventor proposed a traffic
control system, controller, and method for directing vehicle behavior at a defined spatial
location, based on a UAV hovering above a roadway.
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Analyzing the vehicle driver behavior is of interest not only to avoid collisions with
other road users but also to reduce gas emissions and their impact on the environment. This
trend is related to climate change issues, especially in crowded cities. Extensive research
works tackled the aspect of energy consumption minimization. In fact, based on the
Pulse Width Modulation (PWM) dimming principle, authors in Reference [34] presented a
partial feed-back closed loop control scheme for LEDs, which has the capability to stabilize
illuminance satisfactorily and which calculates economically the quantity of electric light to
compensate the illuminance. Authors in Reference [35] showed that the driver behavior has
a direct impact on the environment and the vehicle emission. This impact depends on the
trip purpose and is the highest for work-related trips. Researchers in Reference [36,37] have
provided tips for drivers on how to efficiently minimize fuel consumption and emission
levels, including hard braking, sudden acceleration or deceleration, and idling (these
items are the main principles of ecodriving). Authors in Reference [38] demonstrated that
energy feedback has an influence on ecodriving, and they developed an interactive energy
feedback interface and tested it on multiple types of vehicles. An approach to optimize
throughput and maximize comfort, while minimizing travel delay and fuel consumption
assuming vehicle to infrastructure communication, is proposed in Reference [39]. Some
other works focused on behavior at the vicinity of intersections. Authors in Reference [40]
developed algorithms and modeled and tested ecodriving at the approach of a roadway
intersection. Bento et al. (2019) [41] presented an intersection traffic management system
for automated vehicles arriving to the intersection without colliding with each other, while,
at the same time, reducing the intersection delay, as well as the environmental impacts
(fuel consumption and greenhouse gas emissions of CO2). Regarding the fuel consumption
model, Loulizi, Rakha, and Bichiou (2017) [42] showed that it depends on the grade and on
the instantaneous power, as a function of the driver acceleration and resistance forces on
the vehicle. Authors in Reference [43] recently proved that the optimization of the road
infrastructure is also a part of the solution to reduce road vehicles consumption, and they
developed a road speed sectioning technique for this purpose.

In this work, we were interested in the intersection between the different research
areas mentioned above (drones for traffic monitoring, drones communications in smart
cities, road safety, and minimization of the energy consumption). More specifically, we
aimed at studying to which extent the presence of a drone that communicates with vehicles
and infrastructure may improve both road safety and energy efficiency, in a specific use
case that is likely to occur often in a smart city context and involves a VRU. For this,
we considered a crosswalk involving a car and a pedestrian. We placed a UAV at the
top of the scene which is expected to control the situation, collect information, and send
instructions to the car driver and/or the infrastructure in case of harmful situation to
avoid car-pedestrian collision. Hence, we emphasize the benefit from using an UAV to
reduce both accidents rate and braking distance, as well as to improve energy efficiency
in the global system and occasional visibility reduction. It will be taken into account two
situations: when the car is arriving through straight line and when the car approaches the
crosswalk through a curved trajectory.

3. Materials and Methods
3.1. Problem Statement

We consider a crosswalk involving a car and a pedestrian. The car approaches the
crosswalk (at a distance dc, with a speed vc and an acceleration ac). The pedestrian intends
to cross the road at the same moment. This scenario is represented in Figure 1.
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Figure 1. Classical crosswalk: one pedestrian and one car coming through a straight line.

To avoid the collision, the car must stop and let the pedestrian safely cross the inter-
section (final speed vc, f = 0). When the pedestrian becomes in the field of view of the car
driver, the latter brakes to stop before the crosswalk. The traveled distance during this
process is the stopping distance dc,s, defined by Equation (1), where dc,p−r is the perception-
reaction distance (this corresponds to the traveled distance during the perception-reaction
time tp−r of the driver), and dc,b is the braking distance (this corresponds to the distance
while the speed is decreasing up to the vehicle stops). In addition, we use Equation (2) to
compute dc,p−r.

dc,s = dc,p−r + dc,b, (1)

dc,p−r = tp−r · vc. (2)

To compute the braking distance, we consider the model of kinetic energy dissipation.
The theoretical braking distance can be computed by determining the work required to
dissipate the vehicle’s kinetic energy. The model is detailed in Reference [44]. The braking
distance dc,b satisfies Equation (3), where m is the mass of the car, and L represents the
longitudinal frictional forces (see Equation (4)).

∫ dc,b

0
Ldl =

1
2
· m · v2

c , (3)

L = fl · N = fl · m · g, (4)

with N being the normal tire-pavement reaction, fl the coefficient of friction between the
road surface and the tires, and g the gravity of Earth. If we consider an average coefficient
of friction over the braking distance (not depending on the speed), by applying Newton’s
second law and equation of motion, the braking distance is determined by equation

dc,b =
v2

c
2 · fl · g

. (5)

By combining Equations (2) and (5), it yields:

dc,s = tp−r · vc +
v2

c
2 · fl · g

. (6)

To avoid collisions, dc,s must be lower than dc, at the instant the car driver sees the
pedestrian. This condition is likely to be satisfied if vc is below a threshold v0 (usually
the authorized speed limit). However, if vc is too high, the stopping distance would be
too large, and there would be a collision between the car and the pedestrian at the limit
condition of braking. In fact, a too high value of vc can be due to several factors, essentially
related to both drivers and pedestrians behaviors:

• visibility limits when driving by night or by curved road,

• lack of attention from the driver,

• lack of attention from the pedestrian, and

• infrastructure characteristics.
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Moreover, during braking, to evaluate exactly the evolution of the speed vc,braking as a
function of the distance (dc,braking), we consider that fl depends on the speed (vc), and, in
this case, we consider an average deceleration (ac,braking), obtained empirically [45].

vc,braking =
√

v2
c − 2 · ac,braking · dc,braking (7)

In this work, we focused on adding a drone on the top of the scene, just over the
crosswalk, named “controlled by drone”. The drone observes the vehicle and sends alerts
to its driver and/or to the infrastructure in case of harmful situation. The authors in
Reference [29] mentioned that there are alerts for both pedestrians and vehicle drivers for
signalized street crossing scenario. The alert for pedestrians is based on Mobile Accessible
Pedestrian Signal System. Message exchanges are suggested as starting before the driver
sees the pedestrian. In this case, the drone helps the driver to progressively adjust the
vehicle speed before braking, thus reducing its fuel consumption. We take into account
two situations (see Figure 2). In the first situation, the vehicle approaches the crosswalk
through a straight line. In the second situation, the vehicle has a curved trajectory. This has
an impact on the friction coefficient fl and, consequently, on the braking distance dc,b, as
can be noticed below. For pedestrians’ safety purposes, we added a safety barrier several
meters before the beginning of the crosswalk (at distance dstop). The barrier automatically
rises in the case that the driver does not react to all the alerts coming from the UAV. The
presence of safety barriers is helpful on roads where traffic flow is dense, such as shopping
streets and business districts. More generally, and to include all use cases and all types of
roads, audible alerts are sent to both drivers and pedestrians, as an alternative solution.
The survey in Reference [29] discussed a similar solution in the case of vehicle-to-pedestrian
communication.

Figure 2. Our considered scenario: crosswalk controlled by drone. (left) The car comes through
a straight line. (right) The car comes through a curved trajectory.

3.2. Metrics of Interest
3.2.1. Speed Profile

This profile is determined by the values of vc(t) with respect to time. Generally, for a
normal driver’s behavior, vc(t) ≤ v0, being v0 the authorized speed limit. One can see, in
Figure 3, some examples of speed profile plots.
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3.2.2. Acceleration Profile

This profile is determined by the values of ac(t) with respect to time. As mentioned in
Reference [46], it is hard to precisely determine the set of physical parameters that guarantee
passengers’ comfort. However, after a large number of experiments and observations, it
has been proposed that the comfort is lost if ac ≥ a0, being a0 the maximum tolerable
longitudinal acceleration (a0 = g/10). For a normal driver’s behavior, ac(t) ≤ a0. In
practice, we consider that the comfort is lost if the percentage of time where ac(t) ≥ a0
is higher than a threshold p0%. One can see, in Figure 3, some examples of acceleration
profile plots.
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Figure 3. Selected driver examples: type 1 (dash-dot), type 2 (solid), type 3 (dot), type 4 (dash). Speeds (a) and accelerations (b).

3.2.3. Perception-Reaction Distance

The perception-reaction distance depends on the perception-reaction time. Typical
values of tp−r in different situations and for different drivers profiles can be found in
Reference [47]. It reaches from less than 1 s to more than 2.5 s to specifically accommodate
very elderly, debilitated, intoxicated, or distracted drivers.

3.2.4. Braking Distance

The braking distance depends on the vehicle speed and the friction coefficient fl .
There are many methods in the literature to determine fl , like mentioned in Reference [48].
In this work, we use the fl coefficients given in Table 1 for different values of the speed vc,
for straight dry, straight wet, curved dry, and curved wet trajectories.

Table 1. Some values of fl vs vc used in this work.

vc (km/h) 40 60 80 100 120 140

fl (straight dry line) 0.46 0.46 0.42 0.38 0.34 0.31
fl (straight wet line) 0.23 0.23 0.21 0.19 0.17 0.155
fl (curved dry line) 0.37 0.37 0.34 0.30 0.27 0.25
fl (curved wet line) 0.19 0.19 0.17 0.15 0.14 0.13

We used a polynomial approximation to determine the relationship between fl and vc
in four cases (straight dry line, straight wet line, curved dry line, and curved wet line). We
obtained Equations (8)–(11), respectively.

fl,straight dry line = 3 · 10−7(3.6vc)
3 − 8 · 10−5(3.6vc)

2 + 0.006(3.6vc) + 0.3381, (8)
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fl,straight wet line = 1.5 · 10−7(3.6vc)
3 − 4 · 10−5(3.6vc)

2 + 0.003(3.6vc) + 0.169, (9)

fl,curved dry line = 3 · 10−7(3.6vc)
3 − 9 · 10−5(3.6vc)

2 + 0.006(3.6vc) + 0.2419, (10)

fl,curved wet line = 2 · 10−7(3.6vc)
3 − 4 · 10−5(3.6vc)

2 + 0.0028(3.6vc) + 0.1367. (11)

3.2.5. Fuel Consumption

We are also interested in the instantaneous fuel consumption FC(t) by the vehicle at
the vicinity of the crosswalk. To compute this parameter, we are inspired from the model
detailed in Reference [42], where FC(t) depends on the instantaneous power Pc(t) and
road-related parameters (α0, α1 and α2):

FC(t) = α0 + α1 · Pc(t) + α2 · P2
c (t), (12)

Pc(t) = m · vc(t) · ac(t) · 1.04. (13)

To assess the impact of studies on optimizing energy consumption, monitoring is
required over substantial distances (at least hundreds of meters); this is why we will apply
our approach to the longer phase of our study, which is phase 1 (see Section 4).

3.3. Assumptions

To emphasize the drone contribution to road safety in the scenario described below,
several assumptions are taken into account.

It is considered that only one car is about to arrive to the crosswalk. Hence, in this
work, we do not take into account any traffic model. In addition, for problem simplification
purposes, we consider that, at each time instant t, there is a pedestrian intending to cross.
This means that the probability of pedestrian presence at the crosswalk is equal to 1.

In addition, the infrastructure is assumed to be equipped with enough number of
relaying sensors, such that the drone receives instantly reliable information about the scene.
Moreover, the drone is equipped with sensors that correctly exchange information with
both the car and the infrastructure. Hence, in this paper, we do not focus on the way how
the information flows transit, and we do not take into account the transmission delays
from and to the drone. Moreover, all the metrics of interest can be expressed as functions
of the distance dc (instead of time t).

3.4. Algorithm

We now detail our proposed algorithm which consists in three phases. The first phase
aims at determining if the vehicle driver is normal or abnormal. During the second phase,
the drone suggests as a decision to the vehicle to progressively decrease its own speed
if necessary. Finally, the third phase concerns the final braking step. The algorithm is
summarized in Figure 4.

3.4.1. Phase 1: Driver Behavior Checking

This phase aims at identifying if the car driver has normal or abnormal behavior. For
this, the drone observes the car from initial distance dc,i to a threshold distance dc,t, between
the car and the crosswalk. The collected information are the speed profile vc(dc) and the
acceleration profile ac(dc).

At distance dc,t, the drone checks the driver behavior. Two situations are possible.
If either vc(dc,t) > v0 or ac(dc,t) > a0 or that more than p0 values in the acceleration
profile are greater than a0, then the drone considers that the driver behavior is abnormal.
This means that either the car is approaching the crosswalk too fast or that it has sudden
acceleration/deceleration or that it presents residual acceleration (respectively). In this
case, the drone sends an alert to the driver, as well as to the infrastructure, unless the drone
considers that the car driver behaves normally. In addition, the drone sends information to
the vehicle about energy consumption and informs it on whether or not its consumption is
well optimized.
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Figure 4. Proposed algorithm consisting in three phases: phase 1 (determining the driver behavior), phase 2 (progressively
adjusting the vehicle speed), and phase 3 (braking).

3.4.2. Phase 2: Progressive Speed Adjustment

During this phase, the drone focuses on the car progression up to the braking distance.
The idea is to compare speed and acceleration profiles with reference profiles vc,re f and
ac,re f , and this operation is repeated at the expiration of each perception and reaction
distance dc,p−r up to the braking distance.

The reference profiles are designed for energy minimization purposes and are similar
to those presented in Reference [43] (road speed sectioning). The reference speed varies
linearly with respect to the distance (constant speed grade δv, see Equation (14)), and the
acceleration is then a negative constant (it is a deceleration before the driver starts to brake;
see Equation (15)).

vc,re f 2(dc) =
δv

dc,t − db,re f
· dc + (v0 + δv − dc,t · δv

dc,t − db,re f
), (14)

ac,re f 2(dc) =
−δv

dc,t − db,re f
, (15)

db,re f = dstop +
v2

0
2 · fl · g

. (16)

If vc(dc,t − k · dc,p−r) ≥ vc,re f 2(dc,t − k · dc,p−r) or ac(dc,t − k · dc,p−r) ≥ ac,re f 2(dc,t − k ·
dc,p−r) (considering the kth iteration), this means that either the vehicle is still traveling at
too high speed or that it is not decelerating enough. In this case, the drone sends an alert
to the driver to reduce the speed, unless the drone considers that the trip is safe and thus
it remains silent. The drone forecasts and anticipates the braking distance. However, the
most important part of the process holds in the last meters before the crosswalk. If the
vehicle has very well predicted its speed within the allotted time, phase 3 does not take
place if the pedestrian had time to leave the vehicle driver’s visual line of sight.
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3.4.3. Phase 3: Braking

This phase starts at dc,b = db,re f + dstop (the vehicle stops, at worst, at the same position
as the barrier). Reference braking profiles are given by Equations (17) and (18). The speed
profile is determined by kinetic energy dissipation model, and the acceleration profile is
related to the time derivative of the former. At dc,b, the drone compares the vehicle speed
with the reference speed value (i.e., v0). If vc(dc,b) ≤ v0 (cooperative driver), the braking
will be safe, and the vehicle will stop before the barrier, unless there will be a collision
between the car and the barrier but the pedestrian remains safe. In all cases, to compute
speed and acceleration in this phase, v0 should be replaced by vc(dc,b) in (17) and (18).

vc,re f 3(dc) =
√

v2
0 − 2 · fl · g · (db,re f − dc), (17)

ac,re f 3(dc) =
− fl · g√

v2
0 − 2 · fl · g · (db,re f − dc)

. (18)

3.5. Simulation Setup
3.5.1. Simulation Parameters

In the following, we consider that the earth gravity is equal to g = 9.87 m·s−2 and that
the friction coefficients satisfy Equation (8) or (9) or (10) or (11). The other parameter sets are
detailed in Table 2 (for road-related parameters) and Table 3 (for vehicle-related parameters).
We recall that, in all our equations, the parameters are defined in the International System
of Units. In Table 2, the speed limit and the speed grade are given in another unit (km·h−1),
more representative of what is used in practice. Finally, for phase 1, we assumed that the
data (speeds and accelerations) are collected each dstep = 20 m.

Table 2. Simulation parameters (road-related) used in this work.

Parameter Value Unit

v0 50 km·h−1

a0 0.1 g m·s−2

p0 80 %
dc,i 500 m
dc,t 120 m

dstop 5 m
δv 5 km·h−1

α0 0.00042581 not applicable
α1 0.000025331 not applicable
α2 0.000001 not applicable

Table 3. Simulation parameters (vehicle-related) used in this work.

Parameter Value Unit

m 1224 kg
tc,p−r 1.8 s

3.5.2. Driver Profiles

To perform all the simulations and cover all the possible cases in phase 1, four exam-
ples of drivers profiles are considered. We recall that data are in practice collected through
U2V communication channels.

3.5.3. Reference Speed and Acceleration Profiles

Based on these parameters, the braking process starts at db,re f ,dry straight = 25.55 m
if the trajectory is a dry straight-line, at db,re f ,wet straight = 46.10 m if the trajectory is a
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wet straight-line, at db,re f ,dry curved = 32.57 m if the trajectory is a dry curved-line, and at
db,re f ,wet curved = 53.45 m if the trajectory is a wet curved-line. In Figure 5, we depict the
speed and acceleration reference profiles for all cases.
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Figure 5. Speed and acceleration reference profiles: in the case of dry straight line (solid), wet straight line (dash-dot), dry
curved line (dash), and wet curved line (dot).

4. Results
4.1. Drivers Behavior Identification

We now present the simulation results, starting by the phase 1. The algorithm outputs
are summarized in Table 4. One can see that the results are coherent with data from Figure 3.

Table 4. Results of phase 1 for the four driver types.

Driver Profile Algorithm Outputs

Type 1 Normal driving
Type 2 Unwise driving, speed higher than the limit
Type 3 Uncomfortable driving, residual acceleration
Type 4 Non-vigilant driving, sudden acceleration

At distance dc,t = 120 m, the driver “type 1” arrives with a speed of 50 km·h−1 (speed
limit) and a null acceleration. Moreover, all the acceleration absolute values are at most
equal to 0.6 m·s−2. This means that type 1 corresponds to a normal driver. For the driver
“type 2”, despite the fact that all acceleration values are similar to those of driver type 1,
the speed at dc,t = 120 m reaches 70 km·h−1. The driver is abnormal because of exceeding
the speed limit. For the driver “type 3”, despite the fact that the speed satisfies the limit at
dc,t = 120 m, the acceleration absolute values are, however, mostly higher than 1 m·s−2

(16 values among 20). Hence, this driver is abnormal because of residual acceleration. For
the driver “type 4”, despite the fact that the speed satisfies the limit at dc,t = 120 m and that
acceleration absolute values are all lower than 0.9 m·s−2, the last value is equal to 1 m·s−2.
Hence, this driver is abnormal because of sudden acceleration at dc,t = 120 m.

4.2. Speed and Acceleration Variations

We are now interested in both speed and acceleration profiles from dc,t = 120 m to
0 m. During phase 2, for driver type 1, 3, and 4, the perception and reaction distance is
equal to 25 m (and they have the same speed at dc,t). For driver type 2, the perception and
reaction distance is equal to 35 m. In addition, hence, from now on, we show results only
for driver type 1 and 2.
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During each iteration of phase 2, if the driver does not react to the drone alert, the
speed is kept constant (compared to the previous iteration), and the acceleration is equal to
0. If the driver reacts to the drone alert (cooperative driver) or if there is no drone alert,
at each iteration, the speed decreases by 10 km·h−1, and the acceleration is a negative
constant (−0.1 m·s−2).

4.2.1. Case of Dry Straight Line

In this case, phase 3 starts at 25.55 m (ultimate test) for all the considered driver types.
This means that there are 3 intermediate behavior checks (at 95 m, at 70 m, and at 45 m) for
driver type 1 and 2 intermediate behavior checks (at 85 m and at 50 m) for driver type 2.
We summarize the results for both drivers in Figures 6 and 7.
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Figure 6. Speeds and accelerations of driver type 1, case of dry straight line.
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Figure 7. Speeds and accelerations of driver type 2, case of dry straight line.

As expected, we notice that, for both driver types, the earlier that the car driver reacts
to the drone alert(s), the shorter is the braking distance. In particular, if the deceleration
starts after the first drone alert (i.e., at 95 m for driver type 1 and at 85 m for driver type
2), driver type 1 and 2 are likely to stop 13 m and 9 m before the barrier (both speeds and
accelerations drop to 0), respectively, which means that there will be no collision risk. If
the driver reacts after the second alert (i.e., at 70 m for driver type 1 and at 50 m for driver
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type 2), driver type 1 can still stop several meters before the barrier, whereas driver type 2
becomes at the braking limit. In fact, for the latter, the braking process must start at 25.55 m,
whereas the perception and reaction distance is 35 m, which means that, if driver type 2
does not react to the second drone alert (at 50 m), it will be too late to change the behavior
before the ultimate test, and there will be a collision. This phenomenon is emphasized in
“ultimate test” curves (see Figure 7a), where one can see a vertical segment at 5 m. We now
focus on the acceleration variations. We can see that, for both driver types, the shorter the
braking distance is, the shorter is the braking process, i.e., the earlier the acceleration goes
to 0 m·s−2. At the braking limit, driver type 2 starts to brake at 25.55 m, but the deceleration
is insufficient to avoid the collision with the safety barrier.

4.2.2. Case of Wet Straight Line

In this case, phase 3 starts at 46.10 m (ultimate test) for all the considered drivers types.
This means that there are 2 intermediate behavior checks (at 95 m and at 70 m) for driver
type 1 and 2 intermediate behavior checks (at 85 m and at 50 m) for driver type 2. We
summarize the results in Figures 8 and 9.
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Figure 8. Speeds and accelerations of driver type 1, case of wet straight line.
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Figure 9. Speeds and accelerations of driver type 2, case of wet straight line.
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In terms of drone signaling impact on the braking distance, we obtain similar results
as the previous case. The difference herein is that the braking process starts much earlier,
which means that the driver has to be more careful to avoid collisions due to the less
favorable friction coefficient fl .

We can see that, for both driver types, if there is no reaction, at least after the drone
second intermediate alert, the vehicle will be at the braking limit, and there will be a
collision between driver type 2 and the safety barrier.

4.2.3. Case of Dry Curved Line

In this case, phase 3 starts at 32.57 m (ultimate test) for all the considered drivers types.
This means that there are 3 intermediate behavior checks (at 95 m, at 70 m, and at 45 m) for
driver type 1 and 2 intermediate behavior checks (at 85 m and at 50 m) for driver type 2.
We summarize the results in Figures 10 and 11.
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Figure 10. Speeds and accelerations of driver type 1, case of dry curved line.
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Figure 11. Speeds and accelerations of driver type 2, case of dry curved line.

Herein, we can also see that drone signaling helps both drivers to stop safely and avoid
any collision with the safety barrier. Moreover, in the case of curved line, the pedestrian
is likely to be out of the direct visibility of the driver. By applying Equation (6), if the
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pedestrian comes into the visibility field of the car, driver type 1 needs 57.57 m to stop,
while driver type 2 needs 67.57 m to stop.

4.2.4. Case of Wet Curved Line

In this case, phase 3 starts at 53.45 m (ultimate test) for all the considered drivers types.
This means that there are 2 intermediate behavior checks (at 95 m and at 70 m) for driver
type 1 and 1 intermediate behavior check (at 85 m) for driver type 2. We summarize the
results in Figures 12 and 13.

We get similar results compared to the previous cases. More particularly, if the driver
2 does not react after the drone intermediate alert, the vehicle will be at the braking limit,
and there will be a collision with the safety barrier.
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Figure 12. Speeds and accelerations of driver type 1, case of wet curved line.
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Figure 13. Speeds and accelerations of driver type 2, case of wet curved line.

4.3. Assessment of Power and Fuel Consumption

We are now interested in the influence of driving behavior on fuel consumption
along the (500 m) covered distance. We consider the global consumption in liters and the
instantaneous consumption in liters per second for the 4 types of drivers already introduced
(type 1 to 4).



Appl. Sci. 2021, 11, 157 16 of 20

Figure 14 shows the global consumption in liters for the 4 types of driving along
the distance of 500 m. It is easy to notice the peak consumption generated by driving
characterized by residual accelerations. Normal driving at near-constant speed within the
fuel efficiency range of the vehicle saves up to 94% of energy. Abrupt acceleration also
results in fuel consumption increases of up to double that amount. We can easily conclude
that driving behavior directly influences fuel consumption and thus has an immediate
impact on the vehicle’s harmful emissions. The use of UAVs allows us to predict this
behavior and to assist drivers in reducing the fuel consumption of their vehicle.

Figure 14. Fuel consumption for 4 driver types for a distance of 500 m.

We now represent the energy consumption per second to compare the energy con-
sumption during the three phases (phase 1: observation, phase 2: speed progressive
adjusting, and phase 3: braking). We recall that phase 1 reaches from 500 m to 120 m, and
phases 2 and 3 together are from 120 m to 5 m. We illustrate the results of phase 1 in
Figure 15, for all driver types.
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Figure 15. Instantaneous fuel consumption during phase 1 for all driver types.
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From Figure 15, we can see that driver type 3 has the highest instantaneous fuel
consumption. As a consequence, the acceleration is the main parameter behind fuel
consumption (and not the speed). Indeed, even though driver type 2 has the greatest speed,
its fuel consumption is close to driver type 1 because their acceleration profiles are similar.

We are now interested in phases 2 and 3 (the stopping process). We illustrate the
corresponding results for driver type 1 (as an example) in Figure 16. In this figure, we
emphasize the fuel consumption for dry straight line, wet straight line, and curved line.
In fact, the main impact of the road type is observed during the stopping process. In
addition, we consider cooperative driver (dash lines) and non-cooperative driver (solid
lines). The former corresponds to a driver that reacts to the first drone alert, whereas the
latter corresponds to a driver that does not take into account the drone signaling.

First, we can see that, during phases 2 and 3, the deceleration is close to zero, compared
to phase 1. Consequently, the fuel consumption is lower, and most of the energy is
consumed in phase 1, as expected. In addition, during phase 2, the consumed energy in the
case of cooperative driver is lower than the case of non-cooperative driver (and this holds
for all the investigated road types). Hence, drone signaling helps the driver to reduce the
car impact on the environment.
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Figure 16. Instantaneous fuel consumption during phases 2 and 3, for driver type 1.

5. Discussion

The French Inter-ministerial Road Safety Delegation indicated in 2019 that the number
of accidents increased by 50% over the time slot from 5 p.m. to 7 p.m. and by 18% between
7 a.m. and 9 a.m. As a reminder, pedestrians have priority. Cars must give way to
pedestrians crossing or about to cross. Common sense also dictates that we slow down
when approaching a pedestrian crossing and that we do not drive with fogged windows.
Unfortunately, some drivers do not respect these rules, and it is—again, unfortunately—
sometimes up to the victims to protect themselves. Despite the lighting, urban areas are
not the safest for pedestrians. The more lights there are, the more drivers will accelerate
so as not to wait for red. The stress generated on the road by the proliferation of scooters,
buses, bicycles, and scooters can also deteriorate the quality of their driving. In 2018,
475 pedestrians were killed on the roads. The proposed solution to use the drone as an
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intermediary between the driver itself and the infrastructure brings a safe solution to
this observation, either by alerting the driver to modify ts behavior or by making the
infrastructure to activating a barrier. Because the accidents’ gravity (number of dead
persons by road accident) concerning the pedestrians is not only due to pedestrian crossing
situation (90% of collisions with pedestrians occur on the roadway, equally on or off
pedestrian crossing), if only we could save half of 475 pedestrians per year, it could
contribute to the decrease of more than 7% of global road mortality on French roads, as an
example. Even if the issue of our solution is to save a pedestrian, either without any other
costs than the recourse to this solution itself or added to a material vehicle/infrastructure
cost due to barrier collision, a drone assist system with only one drone seems to be a first
step in the solution to another wider one that could combine the use of pedestrian alerts to
our first solution.

6. Conclusions

In this paper, we tackled the problem of using drone signaling in a crosswalk scenario
that is likely to happen in smart cities, as well as that involves a car and a vulnerable
road user (a pedestrian). For this, we considered different types of car driver profiles and
various trajectory configurations at the vicinity of the crosswalk. We emphasized that
the UAV may help to improve both road safety and energy consumption. Indeed, after
observing the driver behavior, the drone collects information about speed and acceleration
and sends alerts to the driver in the case of potential harmful situation. This is repeated
each perception and reaction distance to take into account possible driver reactions to this
alert. We show that the earlier the driver reacts to the drone alert(s), the safer is the braking
process. Moreover, we stated that the acceleration is the main parameter behind energy
consumption. Hence, drone signaling is likely to help the driver to progressively reduce
their speed by avoiding sudden braking. We recall that we assumed that Drone to Car
communication delays are very low and that the drone has continuously access to both
speed and acceleration values. Further work will be dedicated to studying the influence of
these parameters on the drone signaling performance (namely depending on propagation
conditions, communication channel modeling, and drone attitude), as well as taking into
account a more complex scenario, considering models for both car arrivals (traffic models)
and pedestrian presence at the crosswalk.
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The following abbreviations are used in this manuscript:

U2V UAV to Vehicle communication
U2I UAV to Infrastructure communication
C-ITS Cooperative Intelligent Transportation System
UAV Unmanned Aerial Vehicle
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V2X Vehicle to Everything communication
X2V Everything to Vehicle communication
VRU Vulnerable Road Users
VLOS Visual Line Of Sight
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