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Abstract: Resource allocation is vital for improving system performance in big data processing.
The resource demand for various applications can be heterogeneous in cloud computing. Therefore,
a resource gap occurs while some resource capacities are exhausted and other resource capacities
on the same server are still available. This phenomenon is more apparent when the computing
resources are more heterogeneous. Previous resource-allocation algorithms paid limited attention to
this situation. When such an algorithm is applied to a server with heterogeneous resources, resource
allocation may result in considerable resource wastage for the available but unused resources.
To reduce resource wastage, a resource-allocation algorithm, called the minimizing resource gap
(MRG) algorithm, for heterogeneous resources is proposed in this study. In MRG, the gap between
resource usages for each server in cloud computing and the resource demands among various
applications are considered. When an application is launched, MRG calculates resource usage and
allocates resources to the server with the minimized usage gap to reduce the amount of available
but unused resources. To demonstrate MRG performance, the MRG algorithm was implemented
in Apache Spark. CPU- and memory-intensive applications were applied as benchmarks with
different resource demands. Experimental results proved the superiority of the proposed MRG
approach for improving the system utilization to reduce the overall completion time by up to 24.7%
for heterogeneous servers in cloud computing.

Keywords: cloud computing; big data; spark; resource allocation

1. Introduction

According to the Gartner report [1], the analysts forecast there are 5.8 billion Internet of
Things (IoT) endpoints in 2020, which is increasing by 21% since 2019. The larger number of
IoT devices generates a huge amount of data to the cloud. An efficient big data processing
platform for the data streaming application is getting more attentions. Apache Hadoop [2]
and Apache Spark [3] are two popular solutions to deal with the big data processing.
Hadoop is an open-source implementation for MapReduce framework [4] while Spark
is an in-memory processing framework for performance efficiency. The literature [5,6]
studied the performance of Hadoop and Spark to demonstrate that the speedup of Spark is
better than that of using Hadoop.

On the other hand, with the advancement of virtualization technology, most hardware
resources such as CPU, memory, disk, and network I/O can be virtualized and shared
in a modern cloud infrastructure. These virtualized resources function as a resource-
provisioning pool and are dynamically provisioned according to the application demands.
From the viewpoint of users, the allocation and management of virtualized resources is
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provided by cloud services. However, the physical resources in the cloud infrastructure
have to be administrated by the system. Therefore, the allocation of virtualized resources
among physical servers is a crucial research topic in cloud computing. This paper focuses
on tackling the essential problem of resource allocation and attempts to reduce the amount
of available but unused resources in the cloud infrastructure.

Yousafzai et al. [7] address the overlapping concept among resource provisioning,
resource allocation, and resource scheduling. In general, resource provisioning is the
allocation process of resources in service-providers to customers. Resource allocation is
the process of distributing resources efficiently to competing jobs. Resource scheduling
is to obtain the time-schedule of resources to schedule computational events on shared
resources in available time. The same description also could be found in the previous
work [8].

A resource-allocation mechanism [9,10] plays a crucial role in determining an efficient
strategy for allocating resources to satisfy application demands. However, the resource
demand for various applications can be heterogeneous in cloud computing. For exam-
ple, computing-intensive applications require more CPU resources for the computation
task, whereas memory-intensive applications require more memory resources for the data
cache. The effectiveness of a resource-allocation mechanism affects system performance.
Over-provisioning and under-provisioning are two common problems for resource alloca-
tion in cloud computing [11]. Over-provisioning with excessive resources for application
demands leads to lower resource utilization and higher capital expenditure. However,
under-provisioning with fewer resources results in a lower resource capacity and a higher
response time, which result in loss of users and revenue. Accordingly, a trade-off exists
between the provision of resource capacities and the consumption of application demands.
An efficient resource-allocation mechanism can optimize the allocation of resource capaci-
ties to satisfy application demands and improve overall resource utilization.

Many resource-allocation algorithms [12–19] have been proposed to investigate the
resource-allocation problem on cloud computing. Some well-known resource management
systems, such as Yarn [20] and Mesos [21], have been developed. Previous studies have
focused on the computing environment with homogeneous resources. However, the de-
velopment of a practical cloud computing environment with heterogeneous computing
resources has received limited attention [22]. Resource heterogeneity is a common occur-
rence in a practical cloud system because various computing servers have different resource
capacities. Some servers have more CPU resources and some of them may have more capac-
ities of memory. In addition, resource heterogeneity in a hybrid cloud is significant because
hardware equipment and resource capacity are heterogeneous between private and public
clouds. Edge computing [23–26] is an ongoing paradigm shift in which resource types
are more heterogeneous among geographical edge locations. The experimental results of
our study indicate that the heterogeneity of resource capacities should be considered in
the design of heterogeneous resource allocation as it reduces the amount of available but
unused resources.

Compared to the literature, our contribution is to facilitate appropriate utilization
of heterogeneous resources in cloud computing. A novel resource-allocation mechanism,
named minimizing resource gap (MRG) algorithm, was proposed for solving the resource
wastage problem for the available but unused resources. A resource gap is a phenomenon
in which some resource capacities are exhausted, whereas other resources on the same
server are still available. In this case, the computing server may not be able to satisfy the
resource capacity demands from an application, which leads to a low resource utilization
and resource wastage for the available but unused resources. In addition, the resource gap
is more apparent when the computing resources are more heterogeneous. Therefore, the
MRG algorithm was proposed in this study for reducing the resource gap by considering
distinct resource demands in each application. For example, some applications require
more CPU resources for computing-intensive tasks, whereas others require more memory
capacity for memory-intensive processing. When a new application is submitted to the
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computing system, MRG calculates the resource gap among servers and discovers the
server with a minimal resource gap for allocating the application to the server. Thus,
by reducing the resource gap in servers, the MRG algorithm can improve the resource
utilization of computing servers for heterogeneous resource allocation.

MRG was implemented in Apache Spark for performance evaluation. Spark [27] is an
open-source distributed computing framework written using Scala and has been a popular
cloud computing platform adopted by many companies for big data [28]. Apache Spark
allocates multiple servers in a cluster to solve the resource gap problem with large amounts
of data volumes and computations for parallel and distributed processing. The default
resource-allocation algorithm in Apache Spark can result in resource wastage because of a
large resource gap in case of servers with heterogeneous resource capacities. To evaluate
the performance of the proposed MRG approach, the performance of the default algorithm
in Apache Spark is compared with our approach.

Two experiments were conducted in this study. In the first experiment, the improve-
ment in resource allocation with the use of MRG in case of homogenous resource demands
of applications was evaluated. The experimental results revealed that when the homogene-
ity of resource demand of applications was close to the homogeneity of server resources,
the completion time of jobs by the MRG algorithm was considerably lower than that by
the default algorithm in Spark. In the second experiment, the improvement by MRG was
confirmed. The results revealed that when the homogeneity of server resources was lower
than that of the application demand, MRG improved resource utilization and reduced the
job completion time. Therefore, experimental results demonstrated that the proposed MRG
approach outperforms default resource allocation in Apache Spark when resources are
heterogeneous.

The rest of this study is organized as follows. The most relevant studies are dis-
cussed in Section 2. The system framework and algorithm are proposed in Section 3.
Performance evaluations and experimental results are presented in Section 4. Finally,
conclusion remarks and future studies are presented in Section 5.

2. Related Works

An efficient resource-allocation strategy to satisfy application demands is a vital topic
in cloud computing. Shakarami et al. [29] proposed a systematic and detailed survey
on stochastic-based offloading mechanisms. Arun and Prabu [30] presented a survey of
resource-allocation approaches in mobile cloud computing. Yousafzai et al. [7] introduced
a thematic taxonomy of the resource-allocation approaches and provided their strengths
and weaknesses. Manvi and Shyam [8] introduced a survey of the resource management
problem and focused on some of the important resource management techniques, which
include resource allocation, resource provisioning, resource mapping, resource scheduling,
and resource adaptation.

Morshedlou and Meybodi [31] proposed a proactive resource-allocation mechanism to
reduce the SLA violations. This work also provided the detail control flow of the resource-
allocation mechanism. In general, processing a job in clouds can be divided into different
phases: Job Submission, Job Placement, Job Execution, Job Migration (if necessary), and
Job Complete. Once a job is submitted to the cloud infrastructure, the cloud resource
provider has to discover available resources and assign the job to the available resources.
This process is known as the initial phase for the job placement. The key mission of this
phase is to control the overall resource allocation for each physical server to complete the
amount of submitted jobs in an efficient way. Furthermore, when a job is under execution,
the job may be transferred from its current assigned resource to a new one. This phase is
known as the migration and is usually applied after the job placement phase. In our work,
we aim at the initial phase for the job placement and resource-allocation problem rather
than the migration phase.

The effect of resource allocation on system performance in terms of static and dynamic
control has been examined in studies [12]. Static allocation approaches include the round



Appl. Sci. 2021, 11, 149 4 of 17

robin, optimization, and overbooking, whereas dynamic allocation approaches include
reactive and proactive controls. In the round robin approach, virtual machines (VMs) are
allocated to one server after another. Therefore, implementation of this mechanism is easy.
Each server can have balanced loads when the application demands and resource capacities
are homogeneous.

The effectiveness of round robin and the shortest job first (SJF) [13] algorithms for
resource allocation in cloud computing has been discussed. In the SJF algorithm, the ex-
ecution time is assumed to be predefined for each application, which is not practical in
cloud computing. Therefore, a modified round robin approach was proposed to improve
the resource-allocation efficiency. The resource-allocation problem was addressed using
the static server allocation problem (SSAPv) [14]. The overbooking approach can be used
to improve the resource utilization. In previous work [15], the authors proposed a novel
approach using truncated singular value decomposition to solve the SSAPv problem.
These static approaches perform favorably when the number of required VMs and the
resource demands are well-defined before allocating the resources.

Some previous works also focused on the task-scheduling problem. Gawali et al. [32]
proposed a heuristic approach to improve the turnaround time and response time of tasks
in workflow fashion by adopting the modified analytic hierarchy process, bandwidth-
aware divisible scheduling, and longest expected processing time preemption approaches.
Zhang et al. [33] introduced a two-level asynchronous scheduling model for cloud fed-
eration. The proposed model prioritizes the tasks sent by the federation scheduler with
two multi-resource fair scheduling algorithms for cloud and federation. In addition,
Shukla et al. [34] proposed a mechanism for migrating running streaming dataflow across
VMs. Tan et al. [35] proposed a Cooperative Coevolution Genetic Programming (CCGP)
hyper-heuristic approach. The proposed approach allocates resources on a two-level ar-
chitecture that addresses the allocation of containers to VMs and the allocation of VMs to
physical machines. Compared to these works, this paper focuses on tackling the essential
problem of resource allocation and attempts to reduce the amount of available but unused
resources for physical machines.

In another work [16], a reactive control for dynamic resource allocation was proposed.
When the loading of a server is higher than a predefined threshold, the reactive control
migrates the VM from the server with higher loads to another server with lower loads.
Furthermore, if the server load is too low, the reactive approach consolidates the VMs and
shuts down the server with low loads. Another approach is to proactively predict the
load of servers and allocate resources accordingly rather than waiting for the overloading
condition to occur. In previous work [17], the double exponential smoothing method was
proposed to predict server loads based on histogram data. Sultan et al. [36] developed an
intelligent usage prediction model according to historical resource usage. Authors apply the
proposed prediction model to allocate resources dynamically. Tang et al. [37] introduced a
dynamical load-balanced scheduling (DLBS) approach to improve the network throughput
while balancing workload of data transmissions dynamically. Souravlas [38] addressed
the problem of the balanced data flow among data centers. Tantalaki et al. [39] introduced
a pipeline-based linear scheduling approach for big data streams. Lattuada et al. [40]
presented a resource-allocation approach for big data analytics. The proposed approach
adopts a set of run-time optimization-based resource management policies to address the
minimum resource requirements with the deadline and to balance the load to avoid the
tardiness without enough resources. These works focused on load prediction and data
transmissions that are out of the scope in this paper.

Apache Mesos [21] was developed by University of Berkeley Labs and subsequently
donated to the Apache Software Foundation. Mesos is a resource managing platform
that can be used to not only manage all resources in the distributed system but also allo-
cate resources such as CPU, memory, and storage to applications. In Mesos, a two-level
resource-allocation architecture is presented, which uses the dominant resource fairness
(DRF) [18] algorithm. The DRF algorithm is a max–min fairness approach for the first phase
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of resource scheduling. In DRF, the dominant resources of frameworks are determined,
and subsequently, priorities are assigned to frameworks based on the amount of dominant
resources. When resources are allocated to frameworks, the scheduler in each framework
schedules these resources for executing jobs. However, the heterogeneity of resources
disrupts the fairness in DRF. In previous study [19], the dominant resource fairness for het-
erogeneous (DRFH) was proposed to improve DRF for heterogeneous resource allocation.
In DRFH, the share ratio of dominant resources in the server with heterogeneous resources
is determined. In the scheduling phase, the number of jobs with dominant resources is
calculated. In the allocating phase, DRFH allocates a similar proportion of the dominant
resource share ratio among application demands and available resources on each server to
reduce the amount of unused resources. Hamzeh et al. [41] proposed a Multi-level Fair
Dominant Resource Scheduling (MLF-DRS) algorithm to guarantee the fairness of resource
demands based on dominant shares. However, previous approaches were too complicated
and are not proposed for the data streaming application in Spark which mainly focuses on
the in-memory processing.

Spark utilizes resilient distributed datasets (RDD) [42] to develop a decentralized
computational framework. RDD is a data structure for improving Hadoop I/O operations
in the MapReduce phase. In RDD, a coarse-grained approach is adopted to record data
logs. Two operations occur in RDD, namely transmission and action. Only the action
operations could write data into storage for reducing the I/O access time. Two job schedul-
ing algorithms are applied in Spark, namely the FAIR and first-in-first-out algorithms.
For the resource-allocation phase, the load-balanced algorithms are used to balance the
CPU utilization among cloud servers. When an application is launched, Spark allocates the
application to the server with maximum number of available CPU resources. However,
the load-balanced algorithm in Spark may result in resource wastage for the available but
unused resources when resources are more heterogeneous in clouds.

Allocation of various application demands to heterogeneous resources has received
limited attention. The heterogeneity of server capacities affects the resource utilization.
For example, when the CPU resources of one Spark server are exhausted, the memory
capacity of the same server are still available. In this case, the server cannot afford any
application because of insufficient CPU capacity. Consequently, resource wastage leads
to low utilization and high execution time in the system. The more heterogeneous the
computing resources are, the more amount of available but unused resources influences the
system. Therefore, a novel resource-allocation approach was proposed for enhancing the
Spark system with the consideration of heterogeneous resources. The proposed algorithm
can avoid the amount of available unused resources for each server to enhance the resource
utilization and reduce the overall completion time for Spark applications.

3. Minimizing Resource Gap

In this section, details about the proposed MRG approach are described. The concept
of resource gap is introduced first and then the MRG algorithm is presented.

3.1. Resource Gap

Assume two servers S1 and S2, with two kinds of resources, Rx and Ry. The quantity
of Rx and Ry in S1 is (4,2), and the quantity of Rx and Ry in S2 is (2,4). Suppose two
applications, AP1 and AP2, with different resource demands, the resource demand of AP1
is (2,1) and resource demand of AP2 is (1,2). Given an algorithm to allocate resources of S1
to AP2, the remaining resource of S1 is (3,0). Thus, in this allocation, three available but
unused resources of the Rx are wasted. When the algorithm allocates resources of S2 to
AP1, the three available but unused resources of Ry are wasted because of the remaining
resource of S2 is (0,3). After the previous resource allocation, the system cannot afford more
resource requests of other applications even though the overall system remains available
Rx and Ry resources as (3,3). Accordingly, the higher heterogeneous the resource demand
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is, the more resource gap will be. As a result, the more available but unused resources are
wasted in the system.

To solve the resource wastage problem for the available but unused resources, the MRG
algorithm was proposed to calculate the degree of resource wastage and improve resource
utilization. The difference between the quantities of exhausted resources and remaining
resources is termed as the resource gap. When a resource is exhausted and the quantity
of remaining resources is the smallest, resource wastage for the available but unused
resources is reduced. Figure 1 depicts an example to illustrate the resource gap. Assume
three resources R1, R2, and R3 in the system. The initial quantities of R2 and R3 were
considerably higher than that of R1. That is, before resource allocation, the original resource
gap was two between R1 and R2 and four between R1 and R3. After resource allocation,
the resource gap among remaining resources was one between R1 and R2 and two between
R1 and R3. Accordingly, the resource gap between heterogeneous resources could be
minimized after an efficient resource-allocation policy. Thus, all three resources are well
utilized to prevent resource wastage.
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3.2. MRG Algorithm

To minimize the resource gap among the heterogeneity of resources, the MRG mecha-
nism was proposed in this study. Initially, the possible resource wastage is calculated in
the MRG algorithm when an application is launched. Then, the server with the smallest
resource gap is determined to allocate resources to this application. Therefore, each server
has a low resource wastage for the available but unused resources and the system uti-
lization is enhanced. In this study, the set S of servers was {S1, S2, . . . , Ss} , and the
set R of resources was {R1, R2, . . . , Rr} . Available resources of the server K (K ∈ S) are
AKR =

{
AKR1 , AKR2 , . . . , AKRr

}
. The application demand for resources is presented as the

vector D =
{

DR1 , DR2 , . . . , DRr

}
.

The MRG algorithm is invoked when the application demand is submitted for allocat-
ing available resources. First, the following is calculated in MGR:

A′ =
{

AKRi − DRi

}
, ∀i ∈ R (1)

This parameter is determined for calculating the remaining amount of resources if
the algorithm allocates the candidate server K to the application. Then, the smallest A′

with AKRm is determined, which indicates that the resource Rm in server K is going to
be depleted. All resource gaps in server K are then calculated in the MRG algorithm for
determining the accumulated resource gap, denoted by ARGK, as follows:

Rr

∑
i=R1, i 6=Rm

(A′KRi
− A′KRm

), ∀K ∈ S (2)
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Finally, the target server TS with the smallest ARG is determined and this server is
allocated to the application. The pseudo codes for the proposed MRG algorithm are shown
in Figure 2.
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The following examples S1, S2, AP1, AP2 were applied to demonstrate the effective-
ness of the proposed algorithm. When only two resources are available, Equation (2) is
simplified to the following expression:

Min
∣∣(AiR1 − DR1

)
−

(
AiR2 − DR2

)∣∣, i ∈ (S1, S2) (3)

Tables 1 and 2 list the examples to illustrate allocation steps when allocating resources
for AP1 and AP2. When the resource is allocated to AP1, the ARG of S1 is | (4 − 2) −
(2 − 1) | = 1 and the ARG of S2 is | (2 − 2) − (4 − 1) | = 3. Because S1 has a smaller
ARG, the MRG algorithm allocates AP1 to be on S1. When allocating resources for AP2,
the ARG of S1 is | (4 − 1) − (2 − 2) | = 3, whereas the ARG of S2 is | (2 − 1) − (4 − 2) |
= 1. Because S2 has a smaller ARG, AP2 is allocated to S2. These examples show that the
proposed algorithm can allocate resources effectively to prevent a high resource gap.

Table 1. Allocation steps for AP1 using the MRG algorithm.

Allocation
Steps

Server S1 Server S2 Allocated
AS1R ARGS1 AS2R ARGS2

AP1 DR = (2,1) (4,2) |(4 − 2) − (2 − 1)| = 1 (2,4) |(2 − 2) − (4 − 1)| = 3 Server S1
Gary means the decision in the case.

Table 2. Allocation steps for AP2 using MRG algorithm

Allocation
Steps

Server S1 Server S2 Allocated
AS1R ARGS1 AS2R ARGS2

AP2 DR = (1,2) (4,2) |(4 − 1) − (2 − 2)| = 3 (2,4) |(2 − 1) − (4 − 2)| = 1 Server S2
Gary means the decision in the case.

To further demonstrate that MRG can reduce resource wastage for the available but
unused resources, the proposed algorithm was compared with the default load-balanced
algorithm in Apache Spark. In the default algorithm, the servers are allocated with the
maximal free CPU cores to the application. Assume that S1 has resources R1, R2, and R3
with values of (4, 6, 8) and S2 has resources of R1, R2, and R3 with values of (8, 6, 4), respec-
tively. The resource demands of AP1 is (1, 2, 3) and that of AP2 is (4, 3, 2). Suppose that
these two applications are allocated one after another. Therefore, two cases are possible
for the resource-allocation policy. The first case starts with the allocation step for AP2 and
the other case starts with the allocation step for AP1. Tables 3 and 4 illustrate allocation
steps for Case 1, applying the default algorithm in Apache Spark and the proposed MRG
algorithm, respectively. Tables 5 and 6 illustrate allocation steps for Case 2.

Table 3. Allocation steps for Case 1 using load-balanced algorithm.
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Because 𝑆ଶ has a smaller 𝐴𝑅𝐺, 𝐴𝑃ଶ is allocated to 𝑆ଶ. These examples show that the pro-
posed algorithm can allocate resources effectively to prevent a high resource gap. 

Table 1. Allocation steps for 𝐴𝑃ଵ using the MRG algorithm. 

Allocation 
Steps 
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and the other case starts with the allocation step for 𝐴𝑃ଵ. Tables 3 and 4 illustrate alloca-
tion steps for Case 1, applying the default algorithm in Apache Spark and the proposed 
MRG algorithm, respectively. Tables 5 and 6 illustrate allocation steps for Case 2. 

Table 3. Allocation steps for Case 1 using load-balanced algorithm. 

Allocation 
Steps 

Server S1 Server S2 
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Gary means the decision in the case.
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The aforementioned cases indicate that the MRG algorithm can not only reduce the 
resource gap in the heterogeneous resource environment but also improve resource utili-
zation. The load-balanced algorithm performs satisfactorily in the environment with ho-
mogeneous resources but results in poor resource utilization in the environment with het-
erogeneous resources. The time complexity of our MRG algorithm depends on the factors 
of S servers and R kinds of resource capacities. For each server S, the proposed algorithm 
calculates the ARG by Equation (2). for determining the accumulated resource gap. Then, 
the proposed algorithm finds out the target server Ts with the smallest ARG and allocate 
the resource of this server to the application. So, the most time consuming of the proposed 
algorithm is to find out the Ts. Therefore, the time complexity of the proposed algorithm 
is O(S × R). 

  

Gary means the decision in the case.
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The aforementioned cases indicate that the MRG algorithm can not only reduce the 
resource gap in the heterogeneous resource environment but also improve resource utili-
zation. The load-balanced algorithm performs satisfactorily in the environment with ho-
mogeneous resources but results in poor resource utilization in the environment with het-
erogeneous resources. The time complexity of our MRG algorithm depends on the factors 
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erogeneous resources. The time complexity of our MRG algorithm depends on the factors 
of S servers and R kinds of resource capacities. For each server S, the proposed algorithm 
calculates the ARG by Equation (2). for determining the accumulated resource gap. Then, 
the proposed algorithm finds out the target server Ts with the smallest ARG and allocate 
the resource of this server to the application. So, the most time consuming of the proposed 
algorithm is to find out the Ts. Therefore, the time complexity of the proposed algorithm 
is O(S × R). 

  

Gary means the decision in the case.

In Case 1, the load-balanced algorithm and the proposed MRG algorithm could
allocate resources to satisfy the application demands for AP1 and AP2. However, in Case 2,
the load-balanced algorithm can only satisfy two application demands for one AP1 and
one AP2. Resource wastage for the available but unused resources is higher for the load-
balanced algorithm in this case. The proposed MRG algorithm can satisfy all the resource
demands for AP1 and AP2. This is because MRG minimizes the resource gap for reducing
the amount of available but unused resources.

The aforementioned cases indicate that the MRG algorithm can not only reduce
the resource gap in the heterogeneous resource environment but also improve resource
utilization. The load-balanced algorithm performs satisfactorily in the environment with
homogeneous resources but results in poor resource utilization in the environment with
heterogeneous resources. The time complexity of our MRG algorithm depends on the
factors of S servers and R kinds of resource capacities. For each server S, the proposed
algorithm calculates the ARG by Equation (2). for determining the accumulated resource
gap. Then, the proposed algorithm finds out the target server Ts with the smallest ARG and
allocate the resource of this server to the application. So, the most time consuming of the
proposed algorithm is to find out the Ts. Therefore, the time complexity of the proposed
algorithm is O(S × R).
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4. Experimental Results

In this section, the performance of the proposed approaches is evaluated. We first
describe the environmental settings and methodology of the experiment, and subsequently,
the experimental results of the proposed approach.

4.1. Experimental Environment

MRG was implemented in Apache Spark, which is an open-source distributed com-
puting framework with the master–slave architecture. Docker [43] was used to execute
Apache Spark on three IBM Blade Center HS22 servers. The native orchestration of Docker
Swarm [44] was used for the management of container clusters across servers. The master
node on one server was launched using Docker Swarm and a container running as the
worker node was launched on other two servers. To provide the heterogeneity of runtime
environment, one container had 16 CPUs with 8 GB RAM, and the other had 8 CPUs and
16 GB RAM.

Two applications were used in the study, Spark Pi and Spark PageRank. These ap-
plications have distinct benchmarks. Spark Pi is a classic MapReduce framework and a
CPU-intensive computing application for big data analysis in Apache Spark. More CPU
resources are required to improve the computing efficiency of Spark Pi. Spark PageRank
is a typical page ranking algorithm in which a relative score of the importance of website
pages is evaluated. To cache a large set of intermediate data in memory, Spark PageRank
is memory intensive and the most critical effect on performance is memory utilization.
To measure system performance, the overall completion time was evaluated under various
combinations of application resource demands and server capacities.

4.2. Experimental Results

Experimental results are presented for the proposed MRG approach. In the fol-
lowing experiments, the resource demand for high CPU cores resulted in the execution
of the Spark Pi application and that of a high memory capacity resulted in the Spark
PageRank application.

4.2.1. Different Ratios of Application Resource Demands

To evaluate the performance on different application resource demands, three ratios
for resource demands, ([1:2], [1:4], and [1:6]) were assumed in the first experiment. We used
these different ratios in experiments to evaluate the performance of heterogeneous degree.
The higher the ratio we applied, the more heterogeneous the resource demands will be.
The ratio of [1:2] represented that one application demand requires a resource with 1 CPU
core and 2 GB memory for running Spark PageRank, and another application demand
requires 2 CPU cores and 1 GB memory for running Spark Pi. Furthermore, [1:4] and [1:6]
represented that the ratio of CPU cores and memory capacity is ((1,4) and (4,1)), and ((1,6)
and (6,1)), respectively, for two different applications. Both Spark Pi and Spark PageRank
applications were used in the Spark system and different resource demands from these
two kinds of applications were submitted to the system as processing jobs. The number
of submitted jobs for each application was increased from 4, 8, 16 to 32 for each round of
the ratio.

The experimental results are depicted in Figures 3–5. These results illustrated that,
when the resource demand of an application was closer to the available resources of
the server, resource utilization was higher and performance improvement was obvi-
ous. The proposed MRG algorithm improved the average performance with 6.5%, 8.5%,
and 1.9% for each ratio. Particularly, the performance gain was up to 12.4% in the ratio of
[1:2]. The performance gain did not increase with the number of submitted jobs because all
application demands exceeded the total system resources. In addition, when the resource
demands of an application do not match the available resource of a server, MRG does not
waste any unused resource, unlike the load-balanced algorithm.
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Overall, the results of this experiment proved that system performance improved with
MRG compared with the load-balanced algorithm. The more jobs submitted to the system
will increase the waiting time for available resources for processing the application jobs.
In addition, a resource gap occurred while some resource capacities were exhausted and
other resource capacities on the same server were still available. Furthermore, higher re-
source utilization was observed in the MRG algorithm so as to reduce the completion time.
As a result, improving the resource utilization by the MRG algorithm can reduce the overall
completion time.

4.2.2. Mixed Ratios of Application Resource Demands

The performance of the MRG algorithm was evaluated when the resource demands of
applications were more complex. A mixture of cases with the resource demands in [1:2],
[1:4], and [1:6] was evaluated. Each set of the experiment consisted of six applications with
the resource demand vector of CPU and memory by (1,2), (2,1), (1,4), (4,1), (1,6), and (6,1).
In this experiment, the number of sets was increased from one to eight for each round of
evaluation.

Experimental results are depicted in Figure 6. As shown in Figure 6, the experimen-
tal result showed that the performance of MRG increased with an increase in resource
demands. When the number of sets was two, both the load-balanced algorithm and the
MRG algorithm could satisfy the low resource demand of applications. However, when the
number of applications increased, the proposed MRG algorithm exhibited a lower comple-
tion time than the load-balanced algorithm. The results showed that the MRG approach
outperform the load-balanced algorithm by up to 24.7% in terms of the completion time.
This is because the degree of resource gap was higher for the load-balanced algorithm.
By contrast, the MRG algorithm could prevent the resource gap and improve the resource
utilization to reduce the overall completion time.
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Figure 6. Performance comparisons of mixed ratios of application demands.

4.2.3. Various Ratios of Server Capacities

MRG performance under various combinations of server capacities with a fixed ratio of
resource demands was evaluated. Two servers were used with various ratios of CPU cores
and memory capacities in the range from (8,2), (8,4), (8,8), (8,16) to (8,32). Two applications,
Spark Pi and Spark PageRank, were used in the system with the ratio of [1:2]. Other ratios
were not conducted in this experiment because of the limitation of server capacities. When
the ratio of resource demands is smaller, there are more jobs submitted to the experimental
system. Therefore, the lower ratio of resource demands can be experimented with more
performance results to evaluate the resource provisioning. One application required 1 CPU
core and 2 GB memory to execute Spark PageRank, and the other application required 2
CPU cores and 1 GB memory for running Spark Pi. Each round of the experiment had nine
applications submitted to the system with varied server capacities.

In general, the higher resource capacities the server has, the more performance gain
the MRG approach will be for the corresponding application. Figure 7 illustrates that the
overall execution time can be reduced when one of the server resource capacities increases
from (8,2) to (8,4). The results showed that the performance improvement was not highly
relevant to the increasing memory capacities, which is because Spark Pi is CPU-intensive.
Increasing memory capacities does not considerably reduce the execution time. On the
contrary, Figure 8 depicted performance improvement when running the memory-intensive
application Spark PageRank with various sizes of memory capacities. Results revealed
that, when one of the server capacities was (8,2), the completion time could be improved as
the other server capacities increased from (8,2) to (8,16). Accordingly, the higher capacities
the memory has, the more performance gain the MRG approach will have.

Finally, in this study, MRG performance was evaluated after submitting nine Spark Pi
and nine Spark PageRank applications to the system. As depicted in Figure 9, the proposed
MRG approach could considerably reduce the overall execution time when the resource
capacities were increasing. This is because the server could allocate resources for both
CPU- and memory-intensive applications with sufficient resource capacities and efficient
MRG allocation method. The performance gain was achieved more than 60% when the
ratios of resource capacities were over (8,8). In particular, the improved performance can
be up to 64.7% in the case of (8,8) and (8,16) for running both CPU- and memory-intensive
applications.
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5. Conclusions and Future Work

On-demand and dynamic resource provisioning plays a crucial role in improving the
resource utilization in cloud computing. The efficiency of the resource-allocation mecha-
nism affects system performance, particularly in the system with heterogeneous resources.
When designing effective resource allocation for heterogeneous resources, the heterogene-
ity of resource capacities should be considered to avoid resource wastage. Resource gap is
a phenomenon in which some resource capacities are exhausted, whereas other resources
on the same server are still available. The more heterogeneous the computing resources are,
the more influence the resource gap has on the system. A computing server may not satisfy
all the demands of resource capacities from an application. Therefore, the system exhibits
low resource utilization and resource wastage for the available but unused resources.

In this study, a novel resource-allocation approach, MRG, was proposed to solve
the resource wastage problem. In MRG, resource demands among different applications,
for example, CPU-intensive and memory-intensive applications, are considered for en-
hancing resource usage. When applications are submitted to the system, MRG calculates
the possible resource wastage and determines the server with the smallest resource gap
to allocate resources to each application. Therefore, each server can avoid the amount of
available but unused resources to enhance system utilization by up to 24.7% in terms of
the overall completion time.

MRG was implemented in Apache Spark to demonstrate MRG performance. Two ap-
plications with different resource demands (Spark Pi and Spark PageRank) were ap-
plied. The performance metric of overall complete time was measured under the var-
ious combination sets of different application resource demands and server capacities.
Experimental results indicated the superiority of the proposed MRG approach over the
load-balanced approach in Apache Spark. Furthermore, MRG can considerably reduce the
overall execution time as more servers can allocate resources for both CPU- and memory-
intensive applications. The performance gain can be achieved by up to 64.7% when
applying the MRG approach.

In the future, we will extend the MRG approach for improving system utilization
with more dimensions of resource heterogeneities. Resource allocation is also one of the
important issues in mobile cloud computing [29,30]. After the offloaded task moving from
the mobile device into the cloud, the cloud provider has to allocate enough resources to
this task. In this case, task migration could be a further finetuned mechanism to enhance
the job processing. Applying machine learning to enhance the MRG algorithm is vital as
well for future studies.
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