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Abstract: Health care for independently living elders is more important than ever. Automatic recog-
nition of their Activities of Daily Living (ADL) is the first step to solving the health care issues
faced by seniors in an efficient way. The paper describes a Deep Neural Network (DNN)-based
recognition system aimed at facilitating smart care, which combines ADL recognition, image/video
processing, movement calculation, and DNN. An algorithm is developed for processing skeletal data,
filtering noise, and pattern recognition for identification of the 10 most common ADL including stand-
ing, bending, squatting, sitting, eating, hand holding, hand raising, sitting plus drinking, standing plus
drinking, and falling. The evaluation results show that this DNN-based system is suitable method for
dealing with ADL recognition with an accuracy rate of over 95%. The findings support the feasibility
of this system that is efficient enough for both practical and academic applications.

Keywords: activities of daily living (ADL); pattern recognition; deep neural network (DNN);
skeletal data processing; image processing

1. Introduction

The proportion of the elderly in the population in most advanced countries now
exceeds 15% [1], and the problems associated with aging including dementia and chronic
illnesses are also increasing year by year. The care of the elderly is important but is es-
pecially difficult for those living alone. The situation is made worse given the current
serious shortage of healthcare personnel. The concept of the Activities of Daily Living
(ADL) first emerged in the 1950s in the field of healthcare as a tool to assess the daily
self-care activities of disabled, and physically or mentally handicapped patients, such as
those with dementia or chronic mental health problems. ADL usually include ordinary ac-
tivities such as eating, shifting position, mobility, bathing, dressing, etc. These are typically
rated on some scale such as the Barthel Index, Katz Index or Karnofsky Index, with the
Barthel Index being most commonly used as a basis for evaluation of home care [2–5].
Motion recognition is a common technology today which has found applications in games,
interactive computer-human interfaces, telepresence technology, and medical care. In the
medical field it is currently used in remote rehabilitation systems, which enable a virtual re-
habilitation teacher to evaluate the effectiveness of at home rehab and alleviate the problem
of lack of medical resources in remote areas [6,7]. Motion recognition methods that focus
on the description of image features have inspired researchers to improve the efficiency of
the technology. ADL recognition for years has been discussed for years and some work has
been carried out to improve sensor ability [8]. Recent studies have mostly concentrated
on the development of methodologies, including machine learning, probabilistic finite,
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entropy-based, and knowledge-driven approaches [9–11]. The processing of data for ADL
is also important in order to improving recognition accuracy [12–14]. It is desirable to deal
to use a comprehensive methodology that provides solutions for the recognition of human
behaviors, image processing, and movement calculation to achieve the goal of smart care.

This paper describes a Deep Neural Network (DNN)-based recognition system that
combines ADL recognition, image/video processing, movement calculation, and DNN for
the purpose of achieving smart care. It utilizes skeletal data obtained from color images
from webcams or surveillance records, using the DNN for ADL recognition. The system
takes advantage of low-cost and easy-to-install color cameras for monitoring indoor envi-
ronments and incorporates a feature extraction method for motion recognition.

2. Related Applications for Neural Networks

Typically, neural networks (NN) perform well when dealing with simple problems,
such as back-propagation (BP), where choosing the appropriate features is important [15–17].
However, this methodology may not be sufficient to deal with complex architectures and
high-dimensional data. Complex architectures can be avoided by application of the con-
cept of deep learning utilizing unsupervised learning methods to extract features from the
data and then moving on to the process of supervised learning for labelling data [18,19].
In 2012, the Google Brain team applied deep learning to process YouTube videos [13]. They
also developed the Tensor Processing Unit (TPU) [20–23], a customized special Integrated
Circuit (IC) application. There are more and more examples of system architectures for the
application of deep learning including DNN, Deep Belief Networks (DBN) and Convolu-
tional Neuron Networks (CNN) [24,25]. CNN focuses on feature extraction and its classifier
where the data are processed in its convolutional layer and connected in the pooling layer
for full classification. The Convolutional Architecture for Fast Feature Embedding (Caffe)
is another typical deep learning framework [26]. It has the advantages of being easy to use,
fast training, and modularity [26,27]. In recent years, the use of Caffe version 2 has spread
to being used in mobile devices with Android and IOS systems [28–30]. The above-studies
demonstrate that DNN-oriented approaches and applications have become more efficient.

3. Data Collection and Processing

Easy acquisition and availability to the general population is the key to simulating
real ADL. The ADL camera, available to most users must have the following basic pre-
requisites: resolution of 640 by 480, length of recorded video from 10 to 20 s and Frames
Per Second (FPS) = 30. These conditions are essential for practical purposes. Therefore,
the following criteria are set for the evaluations: (1) the video capture to the subject angle
and distance can vary by 30 degrees from left to right, front to back; (2) the subjects can
range in height 160–180 cm with a mean height around 173 cm. This range includes 80%
of the population in Taiwan. (3) The top 10 most common ADL are selected including
standing, bending, squatting, sitting, eating, raising one hand, raising two hands, sitting
plus drinking, standing plus drinking, and falling [31–33]. Each subject performs one
common ADL for 10 to 20 s for 4 times, giving 40 videos in total for training. Snap shots of
each common ADL are illustrated in Figure 1. Based on the policy requested by Ministry
of Science and Technology (MOST), Taiwan, every individual participating the research
has signed the agreement and been permitted.
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Figure 1. Ten most common ADL. 
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For indoor ADL determination one usually needs to consider consistent changes
in the position of the human body as well as human skeletal information even for the
same individual. It is necessary to normalize the skeletal information for pre-processing
to generate features to facilitate neural network identification. The process of database
normalization is divided into two parts, data translation and data scaling. Data translation
is the translation of the neck as the new origin O′t, where each joint point jx(t) is subtracted
from the coordinates of the neck jNeck(t) to perform translation, substituting the relevant
nodes into the new joint point j′x(t). It can be expressed as follows:

j′x(t) = jx(t)− jNeck(t), (1)

where j′x(t) is the new coordinate of the joint point x at time t; jx(t) is the coordinate of
the joint point at time t; jNeck(t) is the coordinate point of the neck at time t. During data
scaling the skeleton is captured on a 2D image. The original length of the limbs is not



Appl. Sci. 2021, 11, 10 4 of 12

known but the coordinates of the skeleton on the 2D image are pointed out. Consider
the distance from the center of the hip joint to the neck at time t as the unit length. The
algorithm is formulated as in Equation (2) where it can be seen that the proportion of h(t) in
the whole body when bending over is smaller than that in the whole body when standing:

h(t) =‖
(

jLHip(t) + jRHip(t)
)

2
− jNeck ‖ . (2)

Now, s(t) is solved for in Equation (3) using the two limb lengths as the basis for normaliza-
tion:

s(t) =‖ jLShoulder(t) + jRShoulder(t)
2

− jNeck(t) ‖ . (3)

The maximum value for s(t) and h(t) is expressed as the unit length U(t) in Equation
(4). By dividing the skeletal coordinate points, the new zooming joint coordinate point
Sx(t) can be obtained in Equation (5):

U(t) = max(h(t), s(t)); (4)

Sx(t) = (
j′x(t)
U(t)

). (5)

The computation of the joint angle and changes in length from wrist to joint for
extracting the features including the angle of the limb joint, angle between the end of the
limb and the horizontal, and change in length from wrist to joint are described below.

3.1. Limb Joint Angle

The upper limbs are comprised of a combination of the left elbow, left shoulder, neck,
right shoulder and right elbow. Similarly, the lower limbs have joint angles for the left
knee, left hip joint, right hip joint, and right knee. A joint angle can be calculated using
three selected points p1 − p3, where p2 is the center point for calculation of the vectors

⇀
v

and
⇀
u , as shown in Equations (6) and (7):

⇀
v = p1 − p2; (6)

⇀
u = p3 − p2. (7)

The angle is calculated with arctan2 and the horizontal axis is from −π to π so the
value of arctan2 must be converted from −π to 0 to π to 2π as in Equation (8):

va(
⇀
s ) =

{
arctan2(

⇀
s ), i f 0 ≥ arctan2(

⇀
s ) > π

π + arctan2(
⇀
s ), i f 0 > arctan2(

⇀
s ) ≥ −π

, (8)

where
⇀
s is the input vector and arctan2. The inverse tangent function is used to calculate

the angle. Substituting
⇀
v and

⇀
u into Equations (6) and (7) we obtained Equation (8) in

order to yield the angles i and j. The angle a(i, j) relative to
⇀
u can be found by

a(i, j) = (i− j)× 180
π

. (9)

The angles calculated above are shown in Figure 2 where θ1 to θ5 are the upper limb
joint angles, and θ6 to θ10 are the lower limb joint angles.
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3.2. Angle between the Limb End and the Horizontal

The human skeleton is closely related to the nearby space while the individual is
moving. The computation of the angles between the limbs and the horizontal axis is the
same as for the joint angles, by plugging the vectors into Equation (8). There are a total of
four angles shown in Figure 3.
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Figure 3. Four limb angles.

3.3. Length Change for Wrist to Joint

The position/height from the wrists to the joints can be clearly recognized in postures
such as raising the hands, sitting, and squatting. Assuming that the shoulder and knee
joints are taken as the reference points with which to calculate the change in positions
known as the height difference in the y-axis. The calculation process is expressed as:

Uy(t) =‖
(

jy
LHip(t)− jyRHip(t)

)
− jy

Neck(t) ‖, (10)

where jy
x(t) represents the position of the y−axis for the joint point; and Uy(t) is the length

from the hip joint to the neck. The computation to determine the relative distance between
the wrist and check point c is shown in Equation (11) below:

VL(p, c, t) =


p− c, i f abs(p− c) < Uy(t)

Uy(t), i f (p− c) > Uy(t)
−Uy(t), i f (p− c) < Uy(t),

(11)

where p is the y-axis position of the wrist; c is the y-axis position of the check point in a
given space.
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Next, we adopt the sliding window concept to filter out noise. All input images are
classified into [0, 1] and sorted in a sequence. When a pre-terminated window is set at
time = t, e.g., 3 slots, there are two images labeled “0” and one labeled “1”. The movement
in the image is labeled “0” by voting from the count of “0” and “1”. At time = t + 1, voting
again determines the movement in the image which is labeled “1”, as shown in Figure 4.
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4. DNN-Based Systems for ADL Recognition

The most commonly used neural networks to solve practical problems are the single
layer BPNN, multi-layer BPNN, CNN, and DNN. This study develops a recognition
system for ADL using DNN and compares it with the single layer BPNN, multi-layer
BPNN, and CNN methods to evaluate the feasibility of the proposed system. We start with
consideration of the parameters for these neural networks, using the following suggested
parameter settings [34–36]: (1) activation functions = sigmoid; (2) learning rate = 0.8 for BP
neural networks and 0.01 for DNN; (3) optimal method = gradient correction for BP neural
networks and Adam optimization for DNN; (4) five hidden layers with 5–50 neurons in
each layer for DNN, e.g., DNN with a [20, 20, 20, 20, 20] classifier; (5) two fully connected
classifiers for CNN to deal with 2048 dimensions, 384 neurons for the first hidden layers,
192 neurons for the second hidden layers since the kernel size of convolution layer = 5 by 5
with step = 1 by 1 and pooling layer = 3 by 3 with step = 2 by 2.

The feature extraction for recognition of ADL is examined for comparison among
the four methods. Comparison is conducted using 3-fold cross-validation. As can be
seen in Figure 5, all four methods have recognition accuracy rates of greater than 98% at
least. The DNN with a [30, 30, 30, 30, 30] classifier and CNN systems perform even better,
reaching and accuracy rate of over 99%. Next, we carry out multi angle tests using these
four methods. In reality, it is not guaranteed that we can obtain front facing video of every
subject. We shoot side and front footage twice in each practice session, and then randomly
mix these videos together for system recognition. As can be seen in Figure 6, DNN with a
[30, 30, 30, 30, 30] classifier and CNN systems have almost the same test results, with an
accuracy rate of approximately 97.5%, slightly better than for the multi- and single layer
BPNNs. To check whether the ADL recognition process works for most subjects, to meet
the initial three requirements, we randomly select video footage of different subjects with
different combinations of movement for 3-fold cross-validation. Frankly speaking, all the
NN applications perform well for ADL recognition. As shown in Figure 7, all four systems
have high accuracy rates greater than 98% for training. The DNN system with a [30, 30, 30,
30, 30] classifier has the highest accuracy rate, around 95%, for testing, among these four
systems. The results confirm that the DNN-based system for ADL recognition performs
the best among the major NN applications.
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An important step to ensure better efficiency and accuracy for DNN-based recognition
system is to determine the size of the sliding window. The frame in the Figure 4 is an exam-
ple for a 3-click window. A small window can reduce the computation/processing time but
may not be able to yield high accuracy. On the other hand, a relatively large window may
provide a higher accuracy rate but will usually cause system lags in recognition, sometimes
significant enough to render the system impractical. Figure 8 exhibits a [30, 30, 30, 30, 30]
DNN classifier with window sizes of 1, 3, 5, 7, and 9. When the click number increases,
the computational penalty for the size of the window leads to computational lag, because
too much information may contain enough noise to reduce the accuracy of the results. It is
clear that the best accuracy is obtained with a 7-click sliding window. The developed ADL
recognition system is completed using a [30, 30, 30, 30, 30] DNN classifier with a 7-click
sliding window to filter out noise, to facilitate recognition, to increase efficiency, and to
yield higher accuracy.
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5. Evaluation and Results

The proposed system is empirically evaluated by adopting lengthier video footage
with various ADL than that used in the previous section. A 5-min video containing all
10 types of the most common ADL was used. Each type of ADL appeared randomly 3 to
5 times in the footage. Each ADL was manually marked and compared with the evaluation
results In Table 1. The evaluation results include the accuracy rate and mis-classification
rate. The average accuracy rate is 95.1%. The proposed system performs perfectly (100%
accuracy rate) for 5 types of ADL: standing, raising one hand, raising two hands, sitting
plus drinking, and standing plus drinking. The proposed system also works effectively
with an accuracy recognition rate greater than 95% for the ADL of sitting, eating, and
falling. It is the industry health care standard that the proposed system detects falling
with a high accuracy rate at 97%, as falling is especially dangerous for seniors. There
are two types of ADL (bending and squatting) that are relatively easy for the proposed
system to misclassify: bending can be misclassified as squatting or sitting, and squatting
may be misclassified as sitting or bending. Compared with Figure 1, there was one case
where eating was misclassified as bending perhaps due to the similarity of the bending
of the arm(s) or leg(s) to the eating ADL while sitting. The reason for misclassification is
mainly lies the similarity of skeletal positioning in certain postures, as shown in Table 1
and Figure 1. Our proposed methodology combines human behavior recognition, image
processing, movement calculation, and DNN for smart care applications. The originality of
our approach lies in the calculation of the limb joint angle, angle between the limb and the
horizontal axis, changes in length for the wrist joint, and using the sliding click method
to filter out video noise. We have demonstrated the originality of our approach and it
feasibility for both practical and academic applications.

Table 1. Evaluation result for DNN-based system.

Standing Bending Squatting Sitting Eating
Raising

One
Hand

Raising
Two

Hands

Sitting
plus

Drink-
ing

Standing
Plus

Drink-
ing

Falling Accuracy

Standing 100 - - - - - - - - - 100

Bending 4 80 7 6 1 - - - - - 80

Squatting 1 6 82 11 - - - - - - 82

Sitting - - 3 97 - - - - - - 97

Eating - - - - 95 - - 1 4 - 95

Raising
one

hand
- - - - - 100 - - - - 100

Raising
two

hands
- - - - - - 100 - - - 100

Sitting
plus

drink-
ing

- - - - - - - 100 - - 100

Standing
plus

drink-
ing

- - - - - - - - 100 - 100

Falling - 2 - - 1 - - - - 97 97
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6. Conclusions

A feasible detection system for ADL is beneficial for practitioners, especially for
health care and safety applications designed to protect seniors from falling. This research
develops a NN-based system to detect the ten most common types of ADL including
standing, bending, squatting, sitting, eating, raising one hand, raising two hands, sitting
plus drinking, standing plus drinking, and falling. The proposed system starts with ADL
image collection and processing using the sliding window concept, followed by the skeletal
recognition technique for identification of ADL. Four types of most common NN methods
are compared to determine which one is optimal for ADL recognition. The results show
the DNN-based system to have the optimal outcome of a 95% accuracy rate in comparison
to the single layer BPNN, multi-layer BPNN, and CNN systems. The empirical evaluation
using lengthier footage containing all types of ADL randomly mixed together yields a high
average accuracy rate of 95.1%. The proposed system even performs perfectly with a 100%
accuracy rate for five types of ADL: standing, raising one hand, raising two hands rising,
sitting plus drinking, and standing plus drinking.

This study describes a novel mechanism suitable for both practical and academic
applications. Integrating the easily accessible ADL images, data processing, and noise
filtering concepts with DNN method, we produce a camera-ready system for practical
use. It has a high successful identification rate >95% for the recognition of most common
ADL, especially for the detection of falling at 97%. The system does not require high-end
equipment to obtain footage for recognition and can easily process most common ADL.
It is affordable and efficient enough to benefit the users. Some suggestions for follow-up
studies could include in more efficient algorithms that yield higher accuracy rates and
more detailed posture recognition. The evaluation was conducted using a 5-min footage
containing all 10 types of the most common ADL. Although each type of ADL appeared
randomly 3 to 5 times in the footage, a larger data set is needed for further evaluation of
the method such as lengthier videos and numerous videos with more complex or mixed
ADLs. Future studies may also focus on improving the relatively poor recognition rates
for postures such as bending and squatting either by providing higher-resolution video or
developing more advanced algorithms.
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