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Abstract: This paper presents a method for selecting the sampling time for induction machine
parameter estimation from the machine line start measurements. the metaheuristic optimization
method is used to find the optimal Prony exponential series approxiamtion of the line start
transient current. From the optimal approximation, poles of the linearized induction machine
model are computed and used to determine the optimal sampling time. the results show that
sampling frequencies needed for parameter estimation are much lower than 1–15 kHz commonly
used today. This reduces the necessary amount of collected data and the computing power needed for
the estimation. the optimal sampling time is computed for the simulated and for the measured data.
Referenced parameter estimation technique is tested for the measured transient showing benefits of
using the optimal sampling time.
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1. Introduction

A well known problem in induction motor (IM) control is estimating the correct parameters of
the motor. The fact that determining induction machine parameters is not an easy task yields a new
research objective about the IM parameter estimation that has been thoroughly reviewed in [1,2].

A part of the experiment design for parameter estimation is also selecting the sampling intervals
for the measured quantities. Research in statistics approaches this problem seriously, developing
different methods for selecting sampling intervals that are usually custom made for combinations
of model, equipment, excitation and noise levels to obtain the best possible parameter estimates.
This is evident from the basic textbooks like [3,4] , but hard to use with IM experiments due to the wide
range of motor parameters, different estimation methods and equipment used.

In applications to the IM parameter estimation, the selection of sampling time is almost always
based on equipment capability or some other algorithm execution cycle (such as control algorithm).
Most commonly the parameter estimations use the data acquired with sampling frequencies from 1 kHz
to 15 kHz depending on the application as seen in [5–8]. The authors have found only one paper [9]
that allows for adapting of the sampling period, but its motivation was solving the computational
problem of time averaging. One more paper [10] uses 100 Hz frequency to adapt the parameters of
the IM without the explanation why is it so low.

Naturally, selecting low sampling frequency may lead to problems with Nyquist sampling
boundaries, so many authors choose the highest possible sampling rates. This results in having large
data sets for offline processing that can be time and memory consuming, or introduces noise sensitivity
and need for very fast computing power in case of online estimation.
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The term optimal sampling time found in literature is quite rare. Paper [11] deals with selecting
the optimal sampling time to improve the accuracy of the mean and RMS (root-mean-square) value
computation for multisine signals and the paper [12] goes further and determines the optimal sampling
for Gauss-Markov scalar processes. The latter paper is interesting in sense of this research since
it shows that the optimal time sampling is also related to the window size of the collected data,
a problem that this paper also takes into account. Also, the paper [12] discusses the optimal sampling
time as the smallest sampling time, based on the variance of the estimated parameters, while it also
notes that reducing sampling time beyond a certain point does not give significant improvement
to the estimation results.

A disscusion more suited to this research field is from [13]. There the authors analyse the optimal
sampling time with respect to the optimal control law for linear systems. That paper also mentions
the term quantization in the time domain, which is mainly viewed as a negative influence on controllers.
The work presented in paper by Elia in chapter 32 of [14] utilizes the time and amplitude quantization
to stabilize unstable systems and refers to optimal sampling time from that point of view.

From these references, the term optimal sampling time is hard to define without a specific purpose
that the optimal sampling time refers to. Over 30 years ago, in [15] the authors dealt with the problem
of optimal sampling time in general system parameter estimation itself. In this paper authors have
derived a criteria for sampling time selection for linear deterministic systems. Few years later, in [16]
the authors present the optimal sampling time for stochastic systems, mainly giving the Kalman filter
optimal sampling time as a result.

In this paper the authors follow the criteria for optimal sampling time given by Sinha and Puthenpura
in [15]. This criteria is given for linear systems, whereas IM model is nonlinear. In order to apply
the criteria by Sinha, the linear system poles must be known in advance. Naturally they are not,
nor are the parameters of the linearized system from which they can be computed. Therefore
we propose using the Prony method to estimate the poles from the line start experiment of the IM,
that can be used for Sinha method of optimal sampling time. Application of the Prony method
to the approximation of induction machine nonlinear transient is a challenge that is addressed
in this paper by optimal segmenting and decimation of the collected data. This is done to obtain
intervals of data where the Prony approximation remains accurate. The paper is structured as follows:
the second section introduces the parameter estimation problem this paper refers to and introduces
the mathematical background for fitting the data by Prony exponential series to determine the linear
system poles. The third section describes the application of the mentioned technique to the nonlinear
induction machine transient data. The computed poles are then used to compute the optimal sampling
time in Section 3.4. Section 4 shows the simulation and experimental application results.

2. Parameter Estimation Problem and System Poles

In this section the parameter estimation problem that is applied to the induction machine nonlinear
model is introduced. The optimal sampling time is computed with the aim to improve the solution
of this problem. Subsequently, the procedure to determine linear systems poles is presented as
a fundamental step in determining the induction machine optimal sampling time.

2.1. Parameter Estimation Procedure

For the system described by state space model (Equation (1)):

d
dt

x = f (x, u|Θ)

y = g(x, u|Θ)
(1)
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where f : Rn×m 7→ Rn and g : Rk×m 7→ Rk are state and output functions with state variables x ∈ Rn,
output variables y ∈ Rk , and input variables u ∈ Rm and where Θ = [θ1 θ2 . . . θl ] ∈ S ⊂ Rl

is the parameter vector, the parameter estimation problem is defined as follows.
Given the discrete observed (measured) data y[i] and known inputs u(i) at time instants

i = pTs, p = 1, 2, 3 . . . q, with the step time Ts that corresponds to the sampling frequency Fs = 1
Ts

,
the problem of finding the optimal parameter set Θ̂ that minimizes (or in some cases maximises)
the given criterion function Jc(Θ) is called the parameter estimation problem for nonlinear state
space models.

The criterion function Jc(Θ) is most commonly selected as the sum of squared residuals
(also known as least squares criterion) presented in Equation (2), but there are cases where different
functions such as maximum likelihood criterion, or least absolute differences criterion are used. More
on criteria functions can be found in [17].

Jc(Θ) =
q

∑
p=0

[y[p]− y(pTs)]
2 (2)

In Equation (2) the y[p] are the measured samples of the output variables and the y(pTs)

are the computed output variables obtained by some method of computation from Equation (1).
The problem of parameter estimation is therefore separated into two different steps. The first

step is computing the dynamical system response y(pTs) and the second is solving the optimization
problem shown in Equation (3).

Θ̂ = argmin
Θ∈S

Jc(Θ) (3)

Computing the system response y(pTs) can be done by numerical solving of Equation (1)
with a trial set of parameters Θ = Θtrial , by computing the response analytically or by estimating
the response based on observations (y′[p]) with methods such as Kalman Filters (extended Kalman for
nonlinear systems).

Solving the optimization problem (Equation (3)) is completed using one of the available
and applicable optimization methods that can be gradient based or numerical methods for
approximating global minima.

2.2. Determination of the Linear System Poles

The system described by Equation (1) with f (x, u) = Ax + Bu and g(x, u) = Cx, where A, B
and C are matrices of appropriate dimensions is a linear state space system.

For the specific case with the initial condition x(0) = 0 and for systems with single input that
is a Dirac delta function u = δ, the linear system response can be expressed in terms of the state
transition matrix Φ = eAt in the Equation (4).

x(t) =
∫ t

0
Φ(t− τ)Bδ(τ)dτ = Φ(t)B (4)

The state transition matrix Φ can be computed based on modal decomposition of the state
matrix A such that:

Φ = WeΛtW−1 (5)

where eΛt = diag
[
eλ1t . . . eλnt

]
is the matrix exponential of the A matrix eigenvalues λi, and W

is the matrix of corresponding eigenvectors.
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Since the system output is a linear combination of states and since the state transition matrix
is defined using the matrix exponential and system eigenvalues (for further details see [18]), it can
be concluded that the i-th system output under given conditions is the sum of modal exponentials:

yi =
k

∑
j=1

Gij exp(λit) (6)

where Gij are constants determined from the initial conditions of the output variables and λi
is the system i-th egienvalue.

The Prony method approximates a measured signal with the sum of damped complex
exponentials. It can be used for determining the system eigenvalues directly from the measured
impulse response.

The general discrete n-th order Prony approximation ŷ[p] of the measured signal y[p]
is represented in Equation (7)

ŷ[p] =
n

∑
i=1

Ri exp(jφi + λi pTs) =
n

∑
i=1

Riejφi zp
i (7)

If it is assumed that Gij = Rije
jφij is constant the Equation (6) becomes the classical expression of

the Prony approximation of a measured signal.
An efficient and computationally stable method for determining the poles of the damped complex

exponential approximation is to use the matrix pencil method introduced by Hua and Sarkar [19,20].
This method turns the problem of finding the eigenvalues into problem of solving for the matrix
pencil eigenvalues. The method is explained in mentioned references and only its application
is presented here.

The matrix pencil can be formed using the Hankel matrix H for the i-th system output
measurement set yi = [yi[1] . . . yi[q]].

H =


yi[1] . . . yi[n] yi[n + 1]
yi[2] . . . yi[n + 1] yi[n + 2]

...
...

...
...

yi[q− n] . . . yi[q− 1] yi[q]

 (8)

Written in terms of collumn vectors h the matrix is:

H =
[

h1 . . . hn hn+1

]
(9)

a matrix pencil P is formed as:
P = Hl + zHr (10)

where:
Hl =

[
h1 . . . hn

]
Hr =

[
h2 . . . hn+1

] (11)

With defined matrix pencil P, the equation for discrete eigenvalue computation is formed as:

P = Hl + zHr = 0 (12)

Solving Equation (12) for all z yields the discrete system eigenvalues. In order to compute
the eigenvalues one must solve Equation (12) by means of singular value decomposition since
the matrices Hl and Hr are rank deficient. Therefore the eigenvalues are just an approximation
of the real system eigenvalues.
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With determined discrete poles zk, k = 1 . . . n, the procedure from classical Prony method found
in [21] is used to find damped exponentials Rije

jφij .
In this paper entire complex exponential approximation is used for evaluating the fitness of

the exponential series to the measured data, but only the eigenvalues are used in computing the optimal
sampling time.

3. Optimal Induction Machine Poles and Sampling Time

3.1. Induction Machine Model

The induction machine model is well known today. The model is derived by transforming
the circuit equations from three phase system into two component system using the Park
transformation, details found in [22,23]. To create a single input state space model for the simplest
implementation of the procedure described in the continuation of the paper, the IM model is written
in the voltage oriented (vq = 0) rotating (dq) reference frame with fluxes as state variables:

d
dt

ψs = v− RsGsψs − RsGmψr −ωkTrψs

d
dt

ψr = −RrGrψr − RrGmψs − (ωk − pω)Trψr

d
dt

ω =
Gm

J
3
2

p
(
ψsdψrq − ψsqψrd

)
− 1

J
ML

(13)

The notation in Equation (13) is: v = [vd 0]T—dq components of stator voltage, ψ =
[
ψd ψq

]T—
dq components of fluxes, subscripted ’s’ for stator and ’r’ for rotor quantities, Rs—stator resistance,
Rr—rotor resistance, ωk—the dq reference frame rotating speed, grid synchronous speed in this
case, ω—the actual rotor speed, p—number of pole pairs, J—rotor inertia, ML—the load torque,
Tr—the rotational matrix defined in Equation (14) and parameters G are the elements of inverse of
machine inductance matrix L defined in Equation (15) with Ls = Lls + Lm, Lr = Llr + Lm, where Lm

is the main magnetizing inductance and Lls, Llr are the stator and rotor leakage inductances.

Tr =

[
0 −1
1 0

]
(14)

G =


Gs 0 Gm 0
0 Gs 0 Gm

Gm 0 Gr 0
0 Gm 0 Gr

 =


Ls 0 Lm 0
0 Ls 0 Lm

Lm 0 Lr 0
0 Lm 0 Lr


−1

(15)

3.2. Linearized Induction Machine Model

For any nonlinear state space model operating at the stationary point x0 with the stationary input
u0, the response for small change in input variables ∆u can be approximated using the linearized form
of the model. The linearized form is represented in Equation (16).

d
dt

∆x = A∆x + B∆u

∆y = C∆x + D∆u
(16)

With:

A =
∂

∂x
f
∣∣∣∣x=x0u=u0

C =
∂

∂x
g
∣∣∣∣x=x0u=u0

B =
∂

∂u
f
∣∣∣∣x=x0u=u0

D =
∂

∂u
g
∣∣∣∣x=x0u=u0

(17)
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Particular interest of this paper is in the matrix A of the linearized induction machine model.
If the known simplification ( d

dt ω = 0) found in [23] is used, the right hand side of the rotational
motion equation of the model in Equation (13) becomes zero. Using this assumption, which is valid
if the current transients in the model are much faster than the speed transients, the linearized matrix A
of the induction machine model in Equation (13) is:

A =


−RsGs ωk −RsGm 0 0
−ωk −RsGs 0 −RsGm 0
−RrGm 0 −RrGr ωk − pω0 −ψrq0

0 −RrGm pω0 −ωk −RrGr ψrd0
0 0 0 0 0

 (18)

The poles λ of the linearized system described by Equation (16) are the eigenvalues of the matrix
A. The k-th discrete pole (zk) of the system, used for discrete and recursive computation, is calculated
using the k-th continuous eigenvalue (λk) and discrete sampling time Ts as:

zk = exp (λkTs) (19)

Since the IM model is nonlinear, the only discussion about the poles location can be in context of
linearized models. In order to apply any method for selection of optimal sampling time based on poles
location, one must know poles a-priori. If poles are known from the system model, the parameter
estimation is not necessary. Therefore the problem of finding optimal sampling time for parameter
estimation as described by [15] can be rephrased as a problem of determining the system poles without
the knowledge of the system and the optimal sampling time.

The procedure for finding the system poles by Prony approximation is described, but it is not
straightforward applicable to the measurements of the IM transient. Some considerations need to be
made: the IM model is nonlinear, the measured transient is not expected to be an impulse response.

In this paper these issues are overcome by applying the procedure to the measurements of
the direct line start of an IM. This is effectively a step response of a nonlinear system with x(0) = 0.
The response around the initial condition can be represented by the linearized model, but as time goes
on, the linearized response and real nonlinear response becomes very different. For observing the small
interval around the initial condition point, the step function can be thought of as a finite impulse.

The question that arises is how long is the initial interval, and how many points, sampled at what
rate are needed to achieve the accurate pole estimation via Equation (7). This paper proposes the use
of an optimization technique, described in the following subsection, to determine these factors.

3.3. Optimal Poles of Induction Machine

The application of the method for obtaining system poles from the IM line start is formed as an
optimization problem. The general optimization problem is formulated as finding the vector variable
x that minimizes the scalar objective function f (x), subject to equality and inequality constraints
presented using vector functions g(x) and h(x) that define the set S of all admisible values for x.
The general optimization problem is presented in Equation (20).

f (x)→ min.

x̂ = argmin
x∈S

f (x)

subject to constraints

g(x) = 0

h(x) ≤ 0

(20)
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The optimization problem for obtaining the IM poles by fitting Prony complex exponential series
to the measured line start transient is derived in the following paragraphs.

The observed value for computing the Prony complex exponential approximation is the d-axis
current, y = id, in the voltage oriented reference frame. Since the machine model given by Equation (13)
is fifth order, the total number of elements in the sum and the order of the estimated model by
Equation (7) is n = 5. Therefore, the 5 eigenvalues of the linearized model can be approximated.

Given the limited order of the estimated damped exponentials, it is not expected that the entire
transient can accurately estimated by Equation (7). Therefore, the transient is divided into shorter
intervals, and the aim is that each interval is short enough for the accurate estimation with the fifth order
model. This criteria gives the interval duration where the nonlinear transient can be approximated
with the fifth order damped complex exponential sum. The total number of observations in the interval
is noted qint, with the reminder that the total number of observations in the measured set is q.
The total number of intervals the data are separated into is described by Equation (21) (rounded
to the nearest integer).

Nint =
q

qint
(21)

Secondly, the transient is sampled at the sampling rate Ts,min, the fastest sampling rate possible.
When fitting the data with model from Equation (7) it is assumed that less data is needed. Therefore
a decimation factor d ∈ N is introduced such that the decimated sampling time is Ts, f it = dTs,min.
Now selecting every d-th element of the original measured set (down-sampling) can provide the data
reduction. The original measured set y[p] is decimated to yd[p] = y[dp], and with decimated data,
the new interval size is qd = qint/d.

With interval size qint and decimation factor d introduced, the optimization problem can be formed.
The optimization objective function is presented in Equation (22)

Jest =
Nint

∑
w=1

MSEw (22)

where the MSEw is the mean sum of squared residuals for w-th interval:

MSEw =
1
qd

wqd

∑
r=(w−1)qd

(yd[r]− ŷd[r])
2 (23)

and where ŷd[r] is computed by fitting the decimated data yd[r] from the interval (w− 1)qd < r < wqd
with damped complex exponentials from Equation (7) by the procedure described in Section 2.2.

The decision variables of the optimization are Γ = [d qint] and the optimization problem
is to find the optimal Γ̂ that minimizes the objective function, Equation (22), subject to constraints
Γ ∈ S ⊂ N2. The set S is the set of all permissible integer values of the decision variables, bounded by
the lower and the upper bound for each decision variable. The total optimization problem is presented
in Equation (24).

Jest(Γ)→ min

Γ̂ = argmin
Γ∈S⊂N2

Jest(Γ)

subject to constraints

ΓLB ≤ Γ ≤ ΓUB

(24)

where ΓLB = [dLB qint,LB] and ΓUB = [dUB qint,UB] are the lower and upper bounds to the decision
variables search area S ⊂ N2.

For the optimal Γ̂ the damped complex exponentials fit of the very first interval gives the discrete
system eigenvalues zk, k = 1 . . . n.
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In this paper, the optimization problem (Equation (24)) is solved using commercially available
MIDACO Solver (mixed integer distributed ant colony optimization) in co-simulation environment
with Matlab [24]. MIDACO is a global optimum approximation solver from the class of nature inspired
metaheuristic algorithms (such as genetic algorithm, particle swarm optimization, etc.). More on
MIDACO can be found in the research made by the creators of the program [25]. Only necessary
settings for the MIDACO Solver are the constraints to the variable search area. The co-simulation
environment uses Matlab to compute the objective function value and MIDACO to compute the next
generation of the decision variables based on the optimization algorithm.

3.4. Optimal Sampling Time

When motor poles are calculated by fitting the damped complex exponentials to the decimated
and interval divided data, the computation of the optimal sampling time is straightforward following
the criteria introduced by Sinha [15] and applied in synchronous generator parameter estimation
in [26].

The method describes the optimal sampling time as the longest interval Ts,opt for which
the Tustin bilinear transformation used to approximate continuous systems with discrete systems
is not loosing accuracy.

Put in numbers, given the largest magnitude of the continuous system eigenvalues |λmax|, and the
sampling time Ts, the bilinear transformation holds if

|λmax|Ts ≤ 0.5 (25)

Without presenting the details that can be found in [15,26], the optimal sampling time is obtained
from the minimum magnitude discrete pole zmin = |zmin|e−jφz of the system by numerical solving of
the Equation (26) for unknown K, and computing the optimal sampling time as Ts,opt = KTs, f it.[

|zmin|4K + 2|zmin|2K cos(Kφz) + 1
]1/2

|zmin|k2 − 2|zmin|K cos(Kφ) + 1
= 5 (26)

3.5. Summary of the Procedure and Computational Complexity

The whole procedure for computing the optimal induction machine sampling time is now summarized:

(1) Record the line start transient in voltage oriented reference frame, vq = 0, with the fastest possible
sampling time

(2) Determine the optimal induction machine poles by solving optimization problem (Equation (24))
using the current id as the observed variable.

(3) Determine the optimal sampling time factor K by numerical solution of Equation (26), and compute
the optimal sampling time Ts,opt.

Solving of an optimization problem by metaheuristic algorithm (MIDACO Solver in our case)
and iterative numerical solving of the nonlinear Equation (26) is required for the computation of
the optimal sampling time.

The optimization problem also requires solving of Equation (12) by means of singular value
decomposition. This is the computationally most demanding step since it is repeated for each interval
of the data segmented by the optimization procedure and for each iteration of the optimization.
Therefore the requirements crucial to reducing the computation time is limiting the search area of
the optimization procedure to reasonable intervals.

Another aspect that seriously impacts the computation time is the original sampling time
of the data and the duration of the recorded transient. This determines the total number of
the original data samples. Depending on the stage of the optimization and the selected optimization
variables, the original sampling time and transient duration alter the dimensions of the Hankel matrix
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Equation (8). This in turn affects the computational burden of the singular value decomposition
solution of Equation (12). Naturally, lower initial sampling time and longer transient duration increase
the computation demands.

This paper suggests using the fastest possible sampling time for the best accuracy.
However, the sampling times using FPGA based implementations can be reduced to nanosecond
intervals which could lead to demanding computation of this procedure, so lowering the initial
sampling frequency to commonly used 1–15 kHz is considered good initial sampling from
the computation standpoint.

In the examples presented in the following section the boundaries of the optimization are selected
very wide. To test the diversity and applicability of the procedure, the simulation example uses large
power and inertia motor (132 kW) that has longer line start transient duration. This motor is expected
to have the poles in different locations in the z-plane than 4 kW motor used in the experimental example.
However, the main reason to simulate 132 kW machine is to obtain the worst case scenario for
the computational burden of the algorithm. The computational burden of the procedure is pointed out
in the simulation and experiment subsections respectively.

In the simulation, the original sampling time is set to microsecond level which, together with
the long transient duration, demonstrates the largest expected computation time of the algorithm.
In the measured data application, lower initial sampling (10 kHz) is selected, but the procedure still
uses wide boundaries for the optimization variables. This demonstrates the actual computational time
for practical use, that could be further reduced using narrower boundaries for the optimization based
on experience.

4. Simulation and Experiment

4.1. Application to the Simulated Data

The method is first tested on the simulated data. As mentioned, the method is implemented
in Matlab 2018b [24] programming language in co-simulation environment with MIDACO [25].
The motor line start is simulated with Simulink using the model described by Equation (13). Discrete
solver is Runge-Kutta and the step size is 1 µs.

The simulated motor is 132 kW pump motor with parameters Rs = 8.9 mΩ, Rr = 16.7 mΩ,
Lls = 0.2 mH, Llr = 0.2 mH, Lm = 14.1mH, J = 5 kg m2.

The optimization variables are constrained with lower and upper boundaries determined
by experience of the user and some physical consideration. They are set larger then necessary
to demonstrate longest expected computation time. Selecting the boundaries of parameter space for
solving Equation (24) is simple, the decimation factor is minimum of one. The maximum decimation
is bounded by the maximum significant frequency of the current spectrum. It is chosen as 300 Hz
giving the Nyquist frequency Fny = 600 Hz. This corresponds to the upper bound for the decimation
factor as d = round(Ts,minFny)−1. The upper bound to the interval size is selected so that the entire
original data set can be considered as a single interval. The lower bound is selected so that the data set
can be divided into 1000 smaller intervals of 200 data points, effectively giving the smallest interval
time of 0.2 ms.

Optimal fit of the damped complex exponentials to simulated data is presented in Figure 1a,
and the computed linearized model poles obtained from the damped complex exponentials and the real
linearized poles in the first interval obtained from Equation (18) and Equation (19) is presented
in Figure 1b. These figures show that the data segmentation and decimation by optimization procedure
provides the first interval that is accurately estimated by the Prony exponential series. The estimated
poles are accurate enough to be used for computing the optimal sampling time. Therefore no prior
knowledge of the motor parameters is required.
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Figure 1. (a) Damped complex exponential fit to simulated data (id) in the 1st interval, with Γ = Γ̂;
(b) Poles computed from optimal fitted model (×) and real motor poles (o).

The results of the optimization are: decimation factor d̂ = 997 and interval size q̂int = 179,650.
This reduces the the data originally sampled at Ts,min = 1 µs to the interval size of 181 samples
sampled at Ts, f it = 0.997 ms. Solving the Equation (26) with minimim magnitude pole obtained
from the optimization yields the optimal sampling time Ts,opt = 1.774 ms and the discrete poles
with optimal sampling time are zopt = eλTs,minK = eλTs,opt = zK. The optimal poles, and the damped
complex exponential poles are shown in Figure 2. The figure shows how using the optimal sampling
time spreads the poles of the sytem in the z-plane. As is known, reduction of the sampling time
asymptotically contracts the poles of a discrete system towards the point (1,0) on the unit circle.
This in turn reduces the system robustness to computational errors. Therefore, using the optimal
sampling time to spread the poles from the unit circle increases computational stability while preserving
the ability to approximate continuous system with discrete versions.

For the presented example, the procedure computation on Intel i7 processor with 16 GB RAM
memory it takes about seven minutes to calculate the optimal sampling time. This is the longest
computation time expected from this procedure, obtained by very wide bounds for the optimization
variables, very fast initial sampling time of 1 µs and long line start transient due to large simulated
motor inertia. Using common initial sampling frequency of (1–15 kHz) dramatically reduces
the computation time, as is presented with the experimental data in the following subsection.
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Figure 2. Optimal poles obtained with optimal sampling time and original estimated poles from
simulated data.

4.2. Application to the Experimental Data

The optimal sampling time procedure is tested on measurement data, and parameter identification
procedure is conducted to compare the effectiveness of the procedure with optimal sampling time
and original sampling time.

The motor used for the test is the Končar 5AZ112M-4B3, nominal power is 4 kW, and nominal
speed 1420 rpm. The motor is delta connected with 380 V/50 Hz line voltage applied directly.
The measurements are completed using the IOTECH WaveBook 512 data acquisition system,
with Iotech WBK61 voltage sensors and Tektronix A622 current clamps. The initial sampling time
is set to the fastest possible sampling with the mentioned hardware configuration, to Ts,min = 0.1 ms.
The measured quantities are shown in Figure 3. It can be seen that the measured data is contaminated
with noise which is expected to reduce the quality of the results.

The procedure for obtaining optimal sampling time is tested on measured current id (voltage
oriented reference frame vq = 0). The results of fitting the damped complex exponential series
to the data is displayed in Figure 4a. Clearly the fit is less accurate than in the noiseless data
and the optimal decimation of the measured data is large. The optimal decimation is d̂ = 59 that
decimates the optimal interval size of q̂int = 2985 to the qd = 51. Large decimation also results
in the long sampling time for the damped complex exponentials fit to the data (namely Ts, f it = 5.9 ms).
The system estimated discrete poles are shown in the Figure 4b. The figure shows that the heavy
decimation of the measured data effects the pole locations so they are scattered even to the left half
plane of the z-plane. It is not expected that the discrete IM model can correspond to the continuous for
this sampling time. With the estimated motor poles, the procedure for obtaining the optimal sampling
time is conducted. The result for optimal sampling is Ts,opt = 1.4981 ms, and the optimal motor poles
are also shown in Figure 4b. The optimal sampling time in this case contracts the poles towards the (1,0)
point in the z-plane, thus retaining the possibility of discrete approximation of the IM model while
keeping them spread far enough to remain computationally robust.

It can be seen that the optimal sampling time for the experimental IM is much higher than
the original sampling time used for recording the transient, but it is lower than the decimated sampling
time that is used for fitting the data with Prony exponential series. This shows that even if the initial
sampling is too slow, one can calculate if the faster sampling is needed as long as the Prony exponential
series approximates the data.

In the case of experimental data, where the initial number of samples used for computing is lower
and more realistic in regards to applications with IM, the total time to compute the optimal sampling
time is averaged at 32.5 s based on 20 repeated runs. This is significant reduction compared to seven
minutes in the simulation case that demonstrates realistic expectations of the algorithm demands.
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Figure 4. (a) Damped complex exponential fit to measured data (id) in the 1st interval, with Γ = Γ̂;
(b) Optimal poles obtained with optimal sampling time and original poles from Prony approximation.



Appl. Sci. 2020, 10, 3222 13 of 17

4.3. Testing Optimal Sampling Time on Parameter Estimation

Using the optimal sampling time claims to improve the parameter identification procedures for
the motor. To test this claim, a parameter identification procedure is tested for the measured data.
The procedure used in this paper is explained in [27]. In brief, the parameter identification procedure
uses constrained global optimization to compute the solution of Equation (3), with measured quantities:

voltage oriented reference frame currents and rotational speed (y[p] =
[
id[p] iq[p] ω[p]

]T
).

The model step response is computed by solving the model (Equation (13)) by Runge-Kutta method.
This procedure is repeated for the original data set segmented into 25 intervals, thus returning
25 parameter vectors that represent the time varying parameters during IM line start. The parameter

vector for each interval is Θ =
[

Gs Gm RrGr RrGr xT
0

]T
, where the x0 is the initial condition of

state variables (the fluxes, and the rotational speed) for each interval. Input to the system is the peak
nominal voltage aligned with the d-axis, and all quantities and parameters used for identification
are in per unit system where base voltage is peak voltage, base power is nominal apparent power
and base speed is synchronous speed.

The results for parameter identification with original sampling time of Ts,min = 0.1 ms and with
optimal sampling time Ts,opt = 1.4981 ms are shown in Figures 5a,b and 6a,b. Figure 5a,b show
the residuals of measured and calculated current and speed and their values calculated from
the estimated model with original and optimal sampling time used in estimation. It is clear that
the current residual does not show any improvement regarding its quantities or the fact that the aim
is to reduce residuals to zero-mean with minimal variance.

On the speed residual the change is noticeable. With the original sampling time the residual
of the speed shows bias around 50 rpm in the initial moments of startup (when the actual speed
is around 0), and than jumps to −90 rpm after which it is starts to increase but constantly stays
biased in the negative values. The optimal sampling time speed residual shows the residual with
low quantities during the initial phase thus making smaller error compared to the original. After that
it jumps to around 75 rpm (same as with the original sampling time) and drops to negative quantities
after 0.1 s. The drop is lower than the original case, and after 0.2 s the residual becomes positive again,
thus pulling the entire residual closer to the zero-mean desired shape.

In the steady state, the same performance can be observed for both original and optimal sampling
time, where the speed residuals consist of the eccentricity oscillations introduced by the tachometer
used for measurement of the speed.
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Figure 5. (a) Current residuals with original and optimal sampling time estimation; (b) Speed residuals
with original and optimal sampling time estimation.

To continue the investigation of optimal sampling time the identified parameters are presented.
Figure 6a,b show the parameter values obtained with the original and optimal sampling time used for
identification. The parameters with the original sampling time show increased steady sate stability,
but the transient behaviour is improved in the optimal sampling time case. The the mutual inductance
Lm, shows the drag towards the boundaries of the parameter search set which suggest problems
with the optimization procedure in three intervals. The same problem occurs only in one interval for
the case of optimal sampling time parameters. The rotor resistance shows similar behaviour in both
optimal and original sampling time estimates with two outlier values in the steady state for the optimal
sampling time.

It is very important to notice: the parameter estimation procedures using the optimal sampling
time results in parameter identification with 800 data points, instead of original 12,000 for this
specific case, thus significantly reducing the computing time of the optimization procedures. So even
if the improvements of the optimal sampling time in the meaning of the residuals and parameter
values can be relatively small, the computing and memory requirements benefits are evident.
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Figure 6. Motor parameters (p.u.) estimated for each interval with (a) original sampling time
and (b) optimal sampling time.

5. Conclusions

Motivated by the gap in the present literature and with little attention directed towards selecting
good sampling times for IM applications, this paper shows a procedure for determining the optimal
sampling time for induction machine parameter estimation. The procedure includes determining
the poles of the induction machine linearized model by fitting the fifth order complex exponential
series (Prony approximation) to the measured line start. The problem of fitting the Prony exponential
series to the nonlinear dynamics is solved as an optimization problem that results in the optimal time
interval in which the linearization remains accurate. From the computed Prony poles the optimal
sampling is determined.

The computation demands for the procedure include solving multiple rank deficient matrix
equations using singular value decomposition in each iteration of the optimization procedure thus
the computation can be very demanding. Since the computation demand is closely related to the input
data and optimization boundaries it can be reduced to acceptable levels with good selection of initial
sampling time and the boundaries to optimization.

The presented procedure for obtaining optimal sampling time is limited to the line start transient
of the induction motor, however different transients in combination with different pole estimation
algorithms are encouraged for future research.
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The results show sampling times of 1.4981 ms for the 4 kW induction motor (computed from
the real measurements) and 1.774 ms for the 132 kW simulated motor are the optimal selection. A test
on existing parameter identification procedure shows that using the optimal sampling time produces
similar results as the original sampling time but with over 10 times less data used.
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