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Abstract: By the increase of the penetration of power-electronic-based (PE-based) units, such as
wind turbines and PV systems, many features of those power systems, such as stability, security,
and protection, have been changed. In this paper, the security of electrical grids with high wind
turbines penetration is discussed. To do so, first, an overview of the power systems’ security
assessment is presented. Based on that, stability and security challenges introduced by increasing
the penetration of wind turbines in power systems are studied, and a new guideline for the security
assessment of the PE-based power systems is proposed. Simulation results for the IEEE 39-bus test
system show that the proposed security guideline is necessary for PE-based power systems, as the
conventional security assessments may not be able to indicate its security status properly.
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1. Introduction

The increased number of power-electronic-based (PE-based) units in electrical power systems
causes significant challenges in terms of stability, protection, and security [1–4]. The most important
reasons for that are the change in power system structure, from the conventional model (centralized,
top-down-based structure) into a much more distributed, bottom-up-based system [5]. In addition,
control systems introduced by PE-based units, such as high voltage direct current (HVDC) transmission
lines and wind turbine technologies, may affect the system’s stability and controllability [6].
Accordingly, conventional methods of power system stability and security assessments show
insufficient performance to deal with the new challenges [7–9].

To address the security challenges with the PE-based power systems, the first step is to establish
a precise definition of security. The security of a power system is defined as its ability to overcome
contingencies, such a severe fault, and deliver the energy to customers in abnormal conditions [10].
A general scheme of the security assessment of a PE-based power system is shown in Figure 1. A secure
system is also a stable one—both during and after a contingency. Therefore, stability assessment of
the system is necessary to ensure its security. However, the definition of power system stability is
modified by moving from conventional systems to PE-based ones [11]. In this way, there are some
main issues regarding the modern PE-based power systems, which need to be considered:

• PE-based energy sources are smaller in size in comparison with conventional ones [11–13].
In addition, some PE-based units, such as wind turbine type IV, are decoupled from the system
from a frequency point of view. In general, it can be stated that PE-based energy sources, such as
wind turbines and photovoltaics, do not introduce the inertial support as the synchronous
generator does. Therefore, they suffer from lower system inertia, which makes the whole system
more vulnerable to disturbances [12].
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• Based on the grid codes and the relevant standards, grid-connected voltage source converters
(VSCs) should support the main grid during a severe fault on the grid side [14,15]. However,
under some specific circumstances, these units should be disconnected from the main system.
For instance, if a wind farm is unable to withstand a certain amount of voltage drop for a specific
time period, or in case of extreme frequency range, it will be disconnected from the power
system [16,17]. This may cause cascading consequences for the power system.

• Uncertainty in the nature of renewable energy sources makes the security assessment of the
system more complex for both solar and wind [18,19].

Grid-connected VSCs’ stability challenges are significantly exploited in the literature [20–24].
Therefore, based on the developed small-signal and large-signal models, one can accurately assess
the PE-based unit’s stability and security [6,25]. On the other hand, the power system stability and
security are well-matured topics, which are discussed extensively in the literature [10,26]. In addition,
the stability of the PE-based power systems is presented in some recent works [27–29]. However,
only a few approaches regarding the security assessment of the PE-based power systems have been
presented so far [18,30,31].
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Figure 1. Overall schematic of the PE-based power system security assessment concept.

The main aim of this paper is to develop a step-by-step guideline for the security assessment
of PE-based power systems. The security and stability assessment discussed in this paper is an
enlargement of an earlier work by the same authors presented in [32]. However, it should be noticed
that in this paper, we try introduce more details regarding the security and stability assessments of
large-scale power systems that have high penetration of wind turbines, such as inertial response and
synchronization challenges, which are not discussed and assessed in [32]. To do so, first, an appropriate
model for each security level (steady-state, dynamic, and transient security) is developed. Notably,
the security of modern power systems can be affected by failures at the device level, as mentioned
in Figure 1. According to [33], around 50% of power outages for 140 worldwide outage dates are
attributed to equipment failure. Moreover, power converters are failure-prone components in power
systems, e.g., in wind power systems and photovoltaic applications, according to field experience [34].
Among converter components, power modules and capacitors are the main sources of failure leading
to shutdown of the specific converters. Then, based on the system model, a general guideline for the
security assessment is discussed. The necessity of security assessment of PE-based units for power
systems is shown through simulation results. Thus, the component failure may cause system failure
depending on its security. However, a device level security assessment is not the focus of this paper,
though it is a matter of importance for a PE-based power system’s security assessment. The main
contributions of this work can be summarized as follows:
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• To review and discuss some events in some electrical grids that are derived by PE-based units,
which lead to major blackouts.

• To discuss electrical power system security challenges caused by PE-based units; specifically,
the grid-feeding power converters. This includes system frequency support, small-signal stability
challenges, and the PE-based units’ synchronization issue.

• To present the static, dynamic, and transient security assessment models of PE-based power
systems having high levels of wind turbine penetration with the grid-feeding control mode.
For each level of security assessment, e.g., static, dynamic, and transient security assessments,
an appropriate model of PE-based units is needed.

The rest of the paper is organized as follows: in Section 2, the security assessments of the
conventional power systems are discussed. Section 3 investigates the power system’s security
challenges introduced by the PE-based units. Here, some major real-world events are presented
and discussed. The proposed guideline used for the security assessment of the system is introduced
at the same part. The effectiveness of the proposed guideline for different levels of studies, such as
static, dynamic, and transient security, is verified using the simulation results in Section 4. Section 5
concludes this paper.

2. Conventional Power System Security Assessment

A power system’s reliability is defined as its ability to cope with its demand and withstand any
outage and contingency [26,35]. It is generally divided into two categories, including adequacy and
security, as shown in Figure 2 [19,35]. Adequacy measure represents the ability of a power system to
cope with its demand at all times, considering planned and unplanned outages and uncertainties [36].
The system adequacy is associated with the planning of power systems for long-term facility expansion,
short-term marketing, and operational planning, including unit commitment and economic dispatch
among available generation systems. Meanwhile, the system is subjected to different kinds of
uncertainties within its operations, which may have planned or unplanned sources. It is worth
mentioning that the power system security becomes a more challenging issue when information and
communication technology (ICT) is counted in the security assessment [37].

The planned outage can be due to the maintenance of sub-systems and components. Moreover,
the unplanned uncertainties can be induced by generation-demand unbalance, load forecasting,
renewable power uncertainty, failure of any component, short-circuiting, large load changes, and so
on. The occurrence of any contingency in the system may cause system variables violation. These
violations could be thermal overloading of lines, system bus voltage, generator rotor angels, and system
frequency. They are associated with the different phenomena in the power system and may disturb
the power delivery. Therefore, the system must be able to withstand and/or respond to any sudden
contingency to maintain power delivery. This ability is called power system security [10,38].

As can be seen from Figure 2, there is a close relationship between the security and stability
concepts. However, there is a slight difference between them. A secure system is the one that is
stable for all credible contingencies. However, for the stability of the system, only the current system
condition needs to be checked (without any contingency assessment) [10,39].

To guarantee the system security, it is high of importance to examine all likely contingency
occurrences through analytical analysis and simulations. Therefore, the system operator should
evaluate the different contingency occurrences to understand the system behavior after any outage.
The impact of any likely disturbance on the system’s stability and the voltage and thermal limits must
be analyzed. For the cases which violate the system’s performance, appropriate corrective and/or
preventive actions should be applied to sustain the system’s security. The system’s security assessment
is classified into two categories, including static and transient/dynamic security [40].
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Figure 2. Power system security assessment categories, including both static and dynamic analysis.

A static security assessment evaluates the system voltage and the equipment’s thermal limits
violations after any contingency to ensure that they remain in acceptable intervals [32,41]. Otherwise,
the protection system will separate the components, or it may isolate a part of the system [42–44].
However, before entering into the steady state region, the system stability should be assured after a
contingency [45]. Following the causes of instabilities, power system stability issues are conventionally
classified as voltage stability, angular stability, or frequency stability issues [10,26].

Voltage stability is associated with the ability of a power system to maintain the voltage of all
buses after any contingency. Voltage instability may occur once the system controllers and/or operators
cannot prevent progressive voltage rise or fall under a disturbance [10,46]. Voltage instability causes
loss of load, transmission line outages, loss of generation, and consequently, cascading outages. In the
case of widespread voltage instability, voltage collapse may occur, leading to a blackout.

Angular stability is associated with the ability of a power system to maintain the synchronism
of the synchronous generators, when it is subjected to a contingency. In the steady state, there is an
equilibrium between the mechanical and electro-magnetic torques of turbine-generators, and hence
the rotor speed of all generators is constant. Further, the generators are synchronized to be at the
same frequency. Any contingency in the system may cause acceleration or deceleration of the rotors
in the generators. The relative rotor angles will be changed, and depending on the initial operating
state before disturbance and the disturbance severity, the relative rotor angles might be settled in an
equilibrium state or become unstable by losing synchronism. Loss of synchronism can occur between
a generator and the rest of system, or between two groups of generators.

Frequency stability represents the power system’s ability to maintain the system frequency
after a severe disturbance, which causes generation-demand unbalance. Frequency instability may
occur in the form of frequency fluctuations, which may trigger the protection devices [47]. Severe
contingencies cause large digressions in the system frequency. Controls, protections, and processes
will respond to these severe excursions to maintain the system stability. The system stability depends
on the appropriate coordination of controls and protection systems, sufficient equipment responses,
and adequate primary and secondary reserves. System instability may occur due to lack of adequate
reserves, inappropriate under-frequency load-shedding, overspeed controls of turbines, and so on.

2.1. Power System Blackouts-Examples

Most of the power systems all over the world have experienced blackouts. A shortlist of major
power outages are listed in Table 1. Some reviews, regarding the history of the power system blackouts,
can be found in [48]. Some PE-based power system blackouts are discussed as follows:
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Table 1. Major blackouts in modern power systems with substantial power-electronic-based
(PE-based) units.

Location Date Duration (hrs) Affected People (million) Causes

India [49] July 2012 15 620 Transmission line overload

Bangladesh [50] November 2014 24 150 HVDC station outage

South Australia [51] September 2016 6 1.7
Transmission line outage and
cascading events

The US [52] August 2016 6 1.7
Transmission line outage and
cascading events

The US [53] March 2017 11 21
Transmission line outage and
cascading events

The US [54] September 2017 5 7.6 Transmission line trip

Brazil [55] March 2018 1 10 Transmission line trip

Canada [56] December 2018 4 0.6 Wind reached speed of 100 km/h

2.1.1. South Australia (SA) Blackout September 2016

On 28 September 2016, 52% of wind turbines were lost in SA’s network, due to a severe storm [51].
Consequently, the SA network was separated from the rest of the network. The isolated SA network
became a system with a high penetration of wind turbines, which collapsed afterwards. There are a
couple of issues which were identified as the main points of the SA network blackout: (a) Over-voltage
of two synchronous machines that lead to generation trips. This led the system to have even less inertial
support. (b) High rate of change of frequency (ROCOF) (6 Hz/s based on the Australian Energy Market
Operator’s report [57]) that probably affected some ROCOF-sensitive protection systems. This led to
more generation trips. (c) Under frequency load shedding (UFLS) detected in the system (47.5 Hz).

What can be concluded from the SA network blackout is: power systems with high penetration
levels of PE-based units have low inertia, which leads to higher ROCOF and fluctuations in the bus
voltage magnitudes.

The other issue worth mentioning is the undesired affect on the protection system from
converter-based energy sources, due to an incorrect frequency estimation in some buses. Most often,
the frequency is measured by the phase-locked loop (PLL) for a converter-based energy source.
However, the PLL is very sensitive to its input magnitude and phase angle. A phase-jump may lead to
a wrong estimation of the frequency, and the act of protection system set based on the PLL’s estimated
frequency [58].

2.1.2. 1200 MW PV Resource Interruption August 2016

On 16 August 2016, fifteen transmission line faults happened in the Southern California network;
four of them lead to loss of solar photovoltaic (PV) generation. In the North American Electric
Reliability Cooperation (NERC) report [52], it is mentioned that the PV generation cut because of the
wrong frequency detection and in consequence an undesired act of the protection system. Although
the system frequency remains constant after the transmission line faults, the inverter PLL detects a
frequency drop which is more than 3 Hz. This happens as the PLL transient response is sensitive to its
input phase angle and magnitude. A 26◦ phase-jump during the faults was detected in the system,
which led to a wrong frequency estimation by the PLL. Then, the frequency-sensitive protection system
acted and disconnected the 1200 MW PV generation from the system.

What can be concluded from the Southern California interruption report is that PE-based
generation units should be set in order to avoid an undesired unit tripping. On the other hand, a large
loss of generation, such as 1200 MW, may cause a cascading trip, which may lead to system instability.
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3. Power-Electronic-Based Power System Security

3.1. PE-Based Power System Security Challenges

In this section, the main challenges of power system security caused by the increase of PE-based
unit penetration are discussed.

One of the main differences between the conventional energy sources, such as thermal and
hydro-power plants, with renewable energy sources (RES), such as wind turbines and PV power
plants, is the lack of inertia in the latter one. PE-based energy sources have no rotational part that
acts as the inertia source to support the system’s frequency response [59,60]. Therefore, a disturbance
that leads to frequency fluctuations in a system with high penetration of PE-based energy sources,
may lead to lower frequency nadir response and a higher ROCOF, which consequently may lead
to unsynchronization of the generators. This type of instability is related to the frequency stability
and also rotor angle stability, in which systems with less inertia are more vulnerable to the large
disturbances, such as loss of generation. It is worth mentioning that low-inertia PE-based power
systems show higher ROCOF in comparison with the conventional power systems. This is extensively
seen in small power systems, such as microgrids [12,61].

On the other hand, the control system of PE-based units is more complex in comparison with
the conventional one. Generally, a control system is used to synchronize the PE-based unit with the
power system. A standard control system used in the synchronization unit is the phase-locked loop
(PLL). The PLL is a nonlinear feedback control loop; its stability is related to its parameters and also to
the system configuration. Increasing the number of PE-based units makes the power system weaker,
which means that the system states are less controllable. In this case, the PE-based unit connected to
the weak grid using the PLL for the synchronization may become unstable. The PLL is sensitive to
system fluctuations. Although the voltage phase angle and the frequency are decoupled variables in
the system, they are coupled in a standard PLL. Therefore, a phase jump in the system may converge
to a wrong estimation of the frequency by the PLL. If a protection system is based on the PLL output
signals, then a phase jump may converge to an undesired trip of a PE-based unit [23,58,62].

Besides the voltage, angular, and frequency stabilities, the modern power electronics-based power
systems are exposed to electro-mechanical-magnetic (EMM) instabilities due to the interactions of the
control and hardware components of converters with electrical, magnetic, or mechanical components
of the power systems [11,63,64]. The time of interest for this kind of stability is from microseconds
related to the switching frequency of converters up to several milliseconds related to the power sharing
control loops. So far, EMM stability has not been considered in the security assessments of power
systems; the proliferation of converters will highlight the impact of EMM stability on the overall
system performance. More security challenges of the PE-based power systems are listed in Table 2.

Table 2. PE-based power system security challenges.

PE-based
Power
System
Security
Challenges

Contingencies
derived by PE-based
units’ design

System frequency support

Lack of inertia/high ROCOF [65]

Fast frequency response
limitations [66]

Small-signal stability

Harmonic stability
& Oscillations [67]

Grid-tied VSC synchronization [68]

Undesired
contingencies

Grid codes requirement

VSC’s current limitations [69]

Grid codes for the VSC’s fault
ride through [70]

Synchronization challenges

Wrong frequency estimation
& PLL transient response [58,62]

Lack of standardization [71]
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3.2. A New Guideline for the PE-Based Power System Security Assessment

In this section, a new guideline to assess the PE-based power system security is proposed.
The guideline was developed based on the conventional security assessment with some modifications.

The conventional security assessment is discussed in [32]. The first step in the security assessment
of the power system is related to the static security of the system, in which the load flow feasibility and
different system constraints are checked for a system with different N-1 (or even N-2) contingencies.
At this stage, the system static security will be checked for all contingencies. Then, if the system
static security is guaranteed for all contingencies, the dynamic security will be checked for the whole
system. The dynamic security of the system is related to the stability of the system, when the system is
subjected to a contingency. In this way, regarding the dynamic security of the system, the small-signal
model of it concerning different contingencies is assessed. If the system’s small-signal model is stable
for different contingencies, then the dynamic security is guaranteed. The last step is to check whether
the system’s transient security is guaranteed. To do so, the stability of the system subjected to all
credible large disturbances is checked. In a conventional security assessment model, the impact of the
PE-based unit on the system security is not included.

Regarding the PE-based power system security assessment, the PE-based units’ security is
included in all steps of the conventional model. This is shown in Figure 3. In this way, for the
static security of the system, no further efforts are needed in comparison with the conventional method.
However, for the dynamic and transient security, the PE-based units’ model should be included in the
assessment. This can be done by including the PE-based security in the assessment loop, as shown in
Figure 3. In order to execute the security assessment of PE-based power systems based on Figure 3,
the PE-based units’ synchronization and the system frequency changes should be checked. For the
synchronization of PE-based units, the main outline is to check the performance of the synchronization
unit of the PE-based energy source. For instance, if a PLL is used to synchronize the unit with the
rest of the system, then it should be able to estimate the PCC phase angle and introduce the system
frequency with an appropriate dynamic response [58]. In this way, first, the small-signal model of
the grid should be checked, so if all eigenvalues of the small-signal model are in the left half of the
imaginary plane, it can be concluded that all the oscillatory modes of the system can be damped. Then,
for the transient response, it should be checked whether the synchronization unit can estimate the
system frequency with an appropriate dynamic response or not [62]. On the other hand, the frequency
nadir and the ROCOF can be checked for the whole system. To do so, an average of the synchronous
generators’ rotor speed (in pu) is used to define the system frequency, and based on its response to
disturbances, ROCOF and system frequency nadir can be defined [65].

Regarding the dynamic security of the PE-based power systems, the small-signal model of
the system should be used for the small-signal stability assessment. In this way, for every N-1
contingency, the system small-signal model is checked as to whether it is stable for all small
disturbances. If the system is stable for all small-signal case studies (N-1 contingencies), then the
system is dynamically stable.

The same process should be done for the transient stability assessment. If the system is stable
for all large disturbances, then its transient security is guaranteed. However, as it is mentioned in
the latter section, PE-based units’ control system may be affected by large-disturbances. Therefore,
their stability for large disturbances should be checked.
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Figure 3. PE-based power system security assessment. (a) Static security assessment, (b) dynamic
security assessment, (c) and transient security assessment.

4. Simulation Results

To study the security of PE-based power systems, a modified version of the IEEE 39-bus test
system is considered as a benchmark test system [72]. Assume all generators are synchronous machines,
as is described in Table 3. All moment of inertia values are rated based on their generators’ rated

power. The inertia constant is calculated as H = 1
2

Jω2
0

Sb
, where J.ω0.2π and Sb are the inertia gain of the

machine and the rated power of it, respectively. For instance, the moment of inertia for G7 equals 3.771
based on 700 MVA. G2 is the reference generator, and G1 presents the equivalent of the interconnection
to the rest of the USA and Canada.

The power grid should be able to withstand a loss of a major component in a generation trip [10].
Therefore, in this section, the loss of generator 5 (G5) is considered as the contingency. To assess the
impact of the PE-based units on the security of the power system, three case studies are presented.
Case study 1 presents a conventional power system without any PE-based energy generation source.
Case study 2 includes a wind farm, in which a wind farm is modeled as an aggregation of wind turbines
connected in parallel at the same bus. For instance, in order to substitute a 100 MVA synchronous
generator with a wind farm, one hundred 1 MVA wind turbines connected at the same bus can be used.
In this case study, it is shown that the conventional power system security analysis is still credible.
Case study 3 presents a power system with high penetration of wind turbines. In this case study, it is
shown that although the system is stable from the point of view of power system operation, due to the
low center of inertia of the system, the system may enter into an unstable mode for a generation trip.
All simulations are done in DigSILENT PowerFactory.
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Table 3. IEEE 39-bus test system synchronous generator data.

Generator Number Nominal Power [MVA] Moment of Inertia [s]

G1 (Genetator connected to Bus 39) 10000 5
G2 (Genetator connected to Bus 31) 700 4.329
G3 (Genetator connected to Bus 32) 800 4.475
G4 (Genetator connected to Bus 33) 800 3.575
G5 (Genetator connected to Bus 34) 300 4.333
G6 (Genetator connected to Bus 35) 800 4.35
G7 (Genetator connected to Bus 36) 700 3.771
G8 (Genetator connected to Bus 37) 1000 3.471
G9 (Genetator connected to Bus 38) 1000 3.45
G10 (Genetator connected to Bus 30) 1000 4.2

It should be noticed that, in this study, wind turbines are controlled as the grid-feeding
converters [73]. Based on that, it could be replaced with other PE-based energy sources, that are
controlled in the same mode, such as photovoltaics. In this way, this study can be extended to the
penetration of other types of PE-based units. However, other control modes of converters, such as
grid-forming converters, can have different impacts on the system-level stability.

4.1. Case Study 1: Conventional Power Systems

For a loss of generation (G5 at t = 50 s), the system frequency and voltage magnitude at bus 6, 25,
and 28 voltage magnitudes of the IEEE 39-bus test system are shown in Figures 4 and 5, respectively.
Figure 4 shows that the system frequency is stable after a fault; however, it fluctuates by more than
1.3 Hz. It is worth mentioning that the frequency is returning to its initial value because of the governor
response. In order to compensate for the frequency change, a secondary control is needed, which is
not considered in this simulation. In this way, the system is stable from the rotor angle stability point
of view, as all generators are staying synchronized with the system; however the system frequency
stability may be violated, due to the large frequency deviation. Figure 5 shows the voltage magnitudes
of some of the buses. It should be noted that the system security depends on how the fluctuations
can be tolerated in the system [15]. On the other hand, to complete the security assessment the of the
system, the analyses that are shown in Figures 4 and 5 should be redone for all N-1 contingencies
(and if it is necessary, they should be repeated for N-2 contingency analysis as well).

50 100 150 200
Time (s)

58.5

59

59.5

60

Figure 4. System frequency response to the G5 trip at t = 50 s (case study 1).

45 50 55 60 65 70
Time (s)

0.98

1

1.02

1.04

1.06

Bus 6
Bus 25
Bus 28

Figure 5. Bus 6, 25, and 28 voltage magnitude responses to G5 trip at t = 50 s for the conventional
power system case study (case study 1).
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4.2. Case Study 2: PE-Based Power Systems

In this case study, instead of G4, which is a synchronous generator, a wind farm with the same
power rating (800 MVA) is used. In this way, wind power penetration is 11.2% (excluding the external
generation, G1). The control model of the wind turbine is shown in Figure 6. The wind farm is
considered as a parallel combination of the wind turbines.
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Q Pdq
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Figure 6. Hardware and control model of the wind turbine used in the simulation used for security
analysis in case studies 2 and 3.

Considering that G5 trips at t = 50 s, the system stands stable; however, its frequency response
becomes worse compared with the conventional method, due to the less inertia of the system.
The frequency response of the system is shown in Figure 7. Although Figure 7 is very similar to
Figure 4, the frequency nadir is higher in comparison with case study 1. This shows less inertial
response in case study 2, due to the higher penetration level of wind turbines.

50 100 150 200
Time (s)

58.5

59

59.5

60

Figure 7. The PE-based power system frequency response to the generator 5 trip at t = 50 s for the
PE-based power system case study (case study 2).

Bus voltages for some buses are shown in Figure 8. It can be seen that the bus voltages oscillate
more than 5%, which may not be desired for the transmission system, and may converge to some
protection system actions. It should be noticed that voltage range can be varied from system to
system, and acceptable voltage variation range can be defined by the grid codes [74]. Although in this
simulation, the protection system actions are not considered, an under-voltage protection system may
disconnect a transmission line, and may lead to a cascading failure of the system components.

Like case study 1, it should be noticed that the process of the security analysis should be repeated
for all contingencies. If the system is stable for all contingencies, then it can be said that the system
is secure.
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Figure 8. Bus 6, 25, and 28 voltage magnitude responses to generator 5 trip at t = 50 s for the PE-based
power system case study (case study 2).

4.3. Case Study 3: PE-Based Power Systems with High Penetration of Wind Power

In this scenario, the penetration of wind power is increased in the system. In this way, generators
3, 4, 6, 7, and 8 (see Table 3) are replaced with wind farms with the same nominal apparent power.
In this way, the wind turbine penetration is 43.6% (excluding the external power generation, G1). If G5
trips at t = 50 s, the system will become unstable, as shown in Figures 9 and 10. The system frequency
and some bus voltages after the generator trip are shown in Figures 9 and 10, respectively.

49.5 50 50.5 51 51.5
Time (s)

58

59

60

61

62

Figure 9. The PE-based power system frequency response to the G5 trip at t = 50 s for the system with
high penetration of wind turbine (case study 3).
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Figure 10. Bus 6, 25, and 28 voltage magnitude responses to G5 trip at t = 50 s for the system with a
high penetration of wind turbine (case study 3).

Figure 9 shows the average frequency of the system, which is the mean value of synchronous
generators’ speed (frequency in Hz) based on their inertia. After the generator trip at t = 50 s, frequency
of the system decreases, due to the mismatch of loads and generation. However, at t = 50.3 s some
generators become unsynchronized, which leads to instability. This type of instability is referred to the
rotor angle instability, which is considered as a transient stability issue. Considering Figure 3c, it is
worth mentioning that the system transient security is not guaranteed. As the system is not secure for
N contingency analysis, there is not need to further assess the N-1 contingencies, due to the fact that
the system cannot maintain its stability without any contingency.

It is worth mentioning that all eigenvalues of the system are on the left-hand-side of the imaginary
axis, as shown in Figure 11, which means that the power system is dynamically secure, while its
transient stability is not guaranteed; see Figure 3b,c. More specifically, Figure 11 indicates the
small-signal stability analysis and does not give any insight into the transient stability assessment.
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Therefore, while the system can be stable from a small-signal stability point of view (dynamic stability),
it might be unstable from a transient stability viewpoint (transient stability).

Imaginary axis

real axis

Figure 11. Eigenvalue analysis of IEEE 39-bus test system with high wind turbine penetration
(case study 3).

5. Conclusions

In this paper, a new guideline for the security assessment method of power systems with
the penetration of wind turbines is presented. Moreover, the importance of PE-based units in the
security and stability of power systems is highlighted. The proposed security assessment guideline
includes static, dynamic, and transient security assessments. Based on the proposed model of the
security assessment, three case studies are presented to highlight the importance of the PE-based
unit penetration on the grid’s stability. It is concluded that the power systems with high penetration
levels of converter-based energy sources, such as wind turbines, need more accurate considerations
regarding the security and stability of the system. The importance of inertial response and PE-based
unit synchronism are assessed in the simulation results. In a case study related to a power system
with a high penetration of wind turbines, it is shown that although the grid can be dynamically secure,
it may be transiently insecure. In this way, the importance of the proposed security guideline for
large-scale power systems is highlighted.

In this paper, only the penetration of wind turbines is considered. However, other converter-based
energy sources, such as PE-based energy storage and photovoltaics, may have different impacts on the
system security. In addition, HVDC lines may affect system security, due to their voltage and active
power control systems, which will be considered in future work.
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