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Abstract: In this paper, we aim to study the oscillatory behavior of a class of even-order advanced
differential equations with a non-canonical operator. In addition, we present results on the asymptotic
behavior of this type of equations and provide an example that illustrates our main results.
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1. Introduction

In recent decades, many authors have studied problems of a number of different classes of
advanced differential equations including the asymptotic and oscillatory behavior of their solutions,
see [1–8] and the references cited therein. For some more recent oscillation results, see [9–20].
The interest in studying advanced differential equations is also caused by the fact that they appear in
models of several areas in science. In [21–23], singular systems of differential equations are used to
study the dynamics and stability properties of electrical power systems. Some additional mathematical
background on this can be found in [24]. Systems of differential equations with delays are used to
study additional properties of electrical power systems in [25,26]. Non-linear advanced differential
equations can be used to describe complex dynamical networks, see [27–29], and bring new insight
to their stability. Furthermore, this type of equations can be also used in the modeling of dynamical
networks of interacting free-bodies, see [30]. Finally, properties of advanced differential equations
are used in the study of singular differential equations of fractional order, see [31,32]. Several other
examples in Physics can be found in [33]. In this paper, we consider an even-order non-linear advanced
differential equation with a non-canonical operator of the following type:

Ly + q (υ) g (y (η (υ))) = 0, Ly :=
(

a (υ)
(

y(κ−1) (υ)
)β
)′

, (1)

where υ ≥ υ0, κ is even and β is a quotient of odd positive integers. The operator Ly is said to be in
canonical form if

∫ ∞
υ0

a−1/β (s)ds = ∞; otherwise, it is called noncanonical. Throughout this work,
we suppose that:

C1: a ∈ C1 ([υ0, ∞),R) , a (υ) > 0, a′ (υ) ≥ 0,
C2: q, η ∈ C ([υ0, ∞),R) , q (υ) ≥ 0, η (υ) ≥ υ, lim

υ→∞
η (υ) = ∞,

C3: g ∈ C (R,R) such that g (x) /xβ ≥ k > 0, for x 6= 0 and under the condition

ζ (υ) =
∫ ∞

υ0

1
a1/β (s)

ds < ∞. (2)
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Definition 1. The function y ∈ Cκ−1[υy, ∞), υy ≥ υ0, is called a solution of (1), if
(

y(κ−1) (υ)
)β
∈

C1[υy, ∞), for a ∈ C1 ([υ0, ∞),R) , a (υ) > 0 and y (υ) satisfies (1) on [υy, ∞).

Definition 2. Let

D = {(υ, s) ∈ R2 : υ ≥ s ≥ υ0} and D0 = {(υ, s) ∈ R2 : υ > s ≥ υ0}.

A kernel function Hi ∈ C (D,R) is said to belong to the function class =, written by H ∈ =, if, for i = 1, 2,

(i) Hi (υ, s) > 0, on D0 and Hi (υ, s) = 0 for υ ≥ υ0 with (υ, s) /∈ D0;
(ii) Hi (υ, s) has a continuous and nonpositive partial derivative ∂Hi/∂s on D0 and there exist functions

τ, ϑ ∈ C1 ([υ0, ∞) , (0, ∞)) and hi ∈ C (D0,R) such that

∂

∂s
H1 (υ, s) +

τ′ (s)
τ (s)

H1 (υ, s) = h1 (υ, s) Hβ/(β+1)
1 (υ, s) (3)

and
∂

∂s
H2 (υ, s) +

ϑ′ (s)
ϑ (s)

H2 (υ, s) = h2 (υ, s)
√

H2 (υ, s). (4)

Next we will discuss the results in [34–36]. Actually, our purpose in this article is to complement
and improve these results. Agarwal et al. in [34,35] studied the even-order nonlinear advanced
differential equations ((

y(κ−1) (υ)
)β
)′

+ q (υ) yβ (η (υ)) = 0. (5)

By means of the Riccati transformation technique, the authors established some oscillation criteria
of (5). Grace and Lalli [36] investigated the second-order neutral Emden–Fowler delay dynamic
equations

y(κ) (υ) + q (υ) y (η (υ)) = 0, (6)

and established some new oscillation for (5) under the condition∫ ∞

υ0

1
a1/β (s)

ds = ∞. (7)

To prove this, we apply the previous results to the equation

y(κ) (υ) +
q0

υκ
y (λυ) = 0, υ ≥ 1. (8)

if we set κ = 4 and λ = 2, then by applying conditions in [34–36] on Equation (8), we find the
results in [35] improves those in [36]. Moreover, the those in [34] improves results in [35,36]. Thus,
the motivation in our paper is to complement and improve results in [34–36]. We will use the
following methods:

• Integral averaging technique.
• Riccati transformations technique.
• Method of comparison with second-order differential equations.

We will also use the following lemmas from (1):

Lemma 1 ([3]). If y(i) (υ) > 0, i = 0, 1, ..., κ, and y(κ+1) (υ) < 0, then

y (υ)
υκ/κ!

≥ y′ (υ)
υκ−1/ (κ − 1)!

.



Appl. Sci. 2020, 10, 3130 3 of 12

Lemma 2 ([19]). Suppose that y ∈ Cκ ([υ0, ∞) , (0, ∞)) , y(κ) is of a fixed sign on [υ0, ∞) , y(κ) not identically
zero and there exists a υ1 ≥ υ0 such that

y(κ−1) (υ) y(κ) (υ) ≤ 0,

for all υ ≥ υ1. If we have limυ→∞ y (υ) 6= 0, then there exists υθ ≥ υ1 such that

y (υ) ≥ θ

(κ − 1)!
υκ−1

∣∣∣y(κ−1) (υ)
∣∣∣ ,

for every θ ∈ (0, 1) and υ ≥ υθ .

Lemma 3 ([2]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then

Ux−Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
, V > 0.

Lemma 4. Suppose that y is an eventually positive solution of (1). Then, there exist three possible cases:

(S1) y (υ) > 0, y′ (υ) > 0, y′′ (υ) > 0, y(κ−1) (υ) > 0, y(κ) (υ) < 0,
(S2) y (υ) > 0, y(r)(υ) > 0, y(r+1)(υ) < 0 for all odd integer

r ∈ {1, 3, ..., κ − 3}, y(κ−1)(υ) > 0, y(κ)(υ) < 0,

(S3) y (υ) > 0, y(κ−2) (υ) > 0, y(κ−1) (υ) < 0, Ly ≤ 0,

for υ ≥ υ1, where υ1 ≥ υ0 is sufficiently large.

2. Oscillation Criteria

Theorem 1. Assume that (2) holds. If the differential equations (κ − 2)!a
1
β (υ)

(θυκ−2)
β

(
y′ (υ)

)β

′ + kq (υ) yβ (υ) = 0, ∀θ ∈ (0, 1), (9)

y′′ (υ) + y (υ)
1

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
1

a (ς)

∫ ∞

ς
q (s)ds

)1/β

dς = 0, (10)

and (
a (υ)

(
y′ (υ)

)β
)′

+ yβ (υ) kq (υ)
(

ζ (η (υ))

ζ (υ)

)β ( θ1

(κ − 2)!
ηκ−2 (υ)

)β

= 0, θ1 ∈ (0, 1) (11)

are oscillatory for every constant θ, θ1 ∈ (0, 1), then every solution of (1) is either oscillatory or satisfies
lim

υ→∞
y (υ) = 0.

Proof. Assume to the contrary that y is a positive solution of (1). Then, we can suppose that y (υ)and
y (η (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 4, we have three possible cases
(S1), (S2) and (S3). Let case (S1) hold. Using Lemma 2, we find

y′ (υ) ≥ θ

(κ − 2)!
υκ−2y(κ−1) (υ) , (12)
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for every θ ∈ (0, 1) and for all large υ. We set

ϕ (υ) := τ (υ)

 a (υ)
(

y(κ−1) (υ)
)β

yβ (υ)

 , (13)

and observe that ϕ (υ) > 0 for υ ≥ υ1, where τ ∈ C1 ([υ0, ∞) , (0, ∞)) and

ϕ′ (υ) = τ′ (υ)
a (υ)

(
y(κ−1) (υ)

)β

yβ (υ)
+ τ (υ)

(
a
(

y(κ−1)
)β
)′

(υ)

yβ (υ)

−βτ (υ)
yβ−1 (υ) y′ (υ) a (υ)

(
y(κ−1) (υ)

)β

y2β (υ)
.

Using (12) and (13), we obtain

ϕ′ (υ) ≤
τ′+ (υ)

τ (υ)
ϕ (υ) + τ (υ)

(
a (υ)

(
y(κ−1) (υ)

)β
)′

yβ (υ)

−βτ (υ)
θ

(κ − 2)!
υκ−2

a (υ)
(

y(κ−1) (υ)
)β+1

yβ+1 (υ)

≤ τ′ (υ)

τ (υ)
ϕ (υ) + τ (υ)

(
a (υ)

(
y(κ−1) (υ)

)β
)′

yβ (υ)

− βθυκ−2

(κ − 2)! (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β . (14)

From (1) and (14), we obtain

ϕ′ (υ) ≤ τ′ (υ)

τ (υ)
ϕ (υ)− kτ (υ)

q (υ) yβ (η (υ))

yβ (υ)
− βθυκ−2

(κ − 2)! (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β .

Note that y′ (υ) > 0 and η (υ) ≥ υ, thus, we find

ϕ′ (υ) ≤ τ′ (υ)

τ (υ)
ϕ (υ)− kτ (υ) q (υ)− βθυκ−2

(κ − 2)! (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β . (15)

If we set τ (υ) = k = 1 in (15), then we find

ϕ′ (υ) +
βθυκ−2

(κ − 2)!a
1
β (υ)

ϕ (υ)
β+1

β + q (υ) ≤ 0.

From [37], we can see that Equation (9) is non-oscillatory, which is a contradiction.
Let case (S2) hold. If we set

ψ (υ) := ϑ (υ)
y′ (υ)
y (υ)

,

we see that ψ (υ) > 0 for υ ≥ υ1, where ϑ ∈ C1 ([υ0, ∞) , (0, ∞)). By differentiating ψ (υ), we find

ψ′ (υ) =
ϑ′ (υ)

ϑ (υ)
ψ (υ) + ϑ (υ)

y′′ (υ)
y (υ)

− 1
ϑ (υ)

ψ (υ)2 . (16)
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Now, by integrating (1) from υ to m and using y′ (υ) > 0, we get

a (m)
(

y(κ−1) (m)
)β
− a (υ)

(
y(κ−1) (υ)

)β
= −

∫ m

υ
q (s) g (y (η (s))) ds.

By virtue of y′ (υ) > 0 and η (υ) ≥ υ, we get

a (m)
(

y(κ−1) (m)
)β
− a (υ)

(
y(κ−1) (υ)

)β
≤ −kyβ (υ)

∫ u

υ
q (s) ds.

Letting m→ ∞ , we see that

a (υ)
(

y(κ−1) (υ)
)β
≥ kyβ (υ)

∫ ∞

υ
q (s)ds

and so

y(κ−1) (υ) ≥ y (υ)
(

k
a (υ)

∫ ∞

υ
q (s)ds

)1/β

.

Integrating again from υ to ∞, κ − 4 times, we get

y′′ (υ) +
y (υ)

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
k

a (ς)

∫ ∞

ς
q (s)ds

)1/β

dς ≤ 0. (17)

From (16) and (17), we obtain

ψ′ (υ) ≤ ϑ′ (υ)

ϑ (υ)
ψ (υ)− ϑ (υ)

(κ − 4)!
v (s)− 1

ϑ (υ)
ψ (υ)2 , (18)

where

v (s) =
∫ ∞

υ
(ς− υ)κ−4

(
k

a (ς)

∫ ∞

ς
q (s)ds

)1/β

dς.

If we now set ϑ (υ) = k = 1 in (18), then we obtain

ψ′ (υ) + ψ2 (υ) +
1

(κ − 4)!
v (s) ς ≤ 0.

From [37], we see Equation (10) is non-oscillatory, which is a contradiction.

Let case (S3) hold. By recalling that a (υ)
(

y(κ−1) (υ)
)β

is non-increasing, we obtain

a1/β (s) y(κ−1) (s) ≤ a1/β (υ) y(κ−1) (υ) , s ≥ υ ≥ υ1.

Dividing the latter inequality by a1/β (s) and integrating the resulting inequality from υ to u,
we get

y(κ−2) (u) ≤ y(κ−2) (υ) + a1/β (υ) y(κ−1) (υ)
∫ u

υ
a−1/β (s)ds.

Letting u→ ∞, we obtain

0 ≤ y(κ−2) (υ) + a1/β (υ) y(κ−1) (υ) ζ (υ) .

Thus,
−a1/β (υ) y(κ−1) (υ) ζ (υ)

y(κ−2) (υ)
≤ 1. (19)
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Furthermore, we get (
y(κ−2) (υ)

ζ (υ)

)′
≥ 0, (20)

due to (19). Now define

φ (υ) =
a (υ)

(
y(κ−1) (υ)

)β

(
y(κ−2) (υ)

)β
, (21)

we see that φ (υ) < 0 for υ ≥ υ1, and

φ′ (υ) =

(
a (υ)

(
y(κ−1) (υ)

)β
)′

(
y(κ−2) (υ)

)β
−

βa (υ)
(

y(κ−1) (υ)
)β+1

(
y(κ−2) (υ)

)β+1 .

It follows from (1) and (19) that

φ′ (υ) =
−kq (υ) yβ (η (υ))(

y(κ−2) (υ)
)β

− βφβ/β+1 (υ)

a1/β (υ)
.

From Lemma 2, we find

y (υ) ≥ θ1

(κ − 2)!
υκ−2y(κ−2) (υ) . (22)

Thus, we have

φ′ (υ) =
−kq (υ) yβ (η (υ))(

y(κ−2) (η (υ))
)β

(
y(κ−2) (η (υ))

)β

(
y(κ−2) (υ)

)β
− βφβ/β+1 (υ)

a1/β (υ)
.

From (22), we obtain

φ′ (υ) ≤ −kq (υ)
(

θ1ηκ−2 (υ)

(κ − 2)!

)β (
ζ (η (υ))

ζ (υ)

)β

− βφβ/β+1 (υ)

a1/β (υ)
. (23)

From [37], we can see that Equation (11) is non-oscillatory, which is a contradiction.
Theorem 1 is proved.

Remark 1. It is well known (see [15]) that if

∫ ∞

υ0

1
a (υ)

dυ < ∞, and lim inf
υ→∞

(∫ υ

υ0

1
a (s)

ds
)−1 ∫ ∞

υ

(∫ υ

υ0

1
a (s)

ds
)2

q (s)ds >
1
4

,

then Equations (9)–(11) with β = 1 are oscillatory.

Based on the above results and Theorem 1, we can easily obtain the following Hille and Nehari
type oscillation criteria for (1) with β = 1.

Theorem 2. Let β = k = 1 and assume that (2) holds. If for θ, θ1 ∈ (0, 1)

lim inf
υ→∞

(∫ υ

υ0

θsκ−2

(κ − 2)!a (s)
ds
)−1 ∫ ∞

υ

(∫ υ

υ0

θsκ−2

(κ − 2)!a (s)
ds
)2

q (s)ds >
1
4

, (24)

with ∫ ∞

υ0

θυκ−2

(κ − 2)!a (υ)
dυ < ∞,
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and if

lim inf
υ→∞

υ
∫ υ

υ0

1
(κ − 4)!

∫ υ

v
(ς− υ)κ−4

(
1

a (ς)

∫ υ

ς
q (s)ds

)1/β

dςdv >
1
4

, (25)

lim inf
υ→∞

(∫ υ

υ0

1
a (s)

ds
)−1 ∫ ∞

υ

(∫ υ

υ0

1
a (s)

ds
)2 θ1ζ (η (s)) ηκ−2 (s) q (s)

ζ (s) (κ − 2)!
ds >

1
4

, (26)

then every solution of (1) is either oscillatory or satisfies lim
υ→∞

y (υ) = 0.

In the next theorem, we employ the integral averaging technique to establish a Philos-type
oscillation criteria for (1):

Theorem 3. Let (2) holds. If there exist positive functions τ, ϑ ∈ C1 ([υ0, ∞) ,R) such that

lim sup
υ→∞

1
H1 (υ, υ1)

∫ υ

υ1

(H1 (υ, s) kτ (s) q (s)− π (s))ds = ∞, (27)

lim sup
υ→∞

1
H2 (υ, υ1)

∫ υ

υ1

(
H2 (υ, s)

ϑ (s)
(κ − 4)!

v (s)−
ϑ (s) h2

2 (υ, s)
4

)
ds = ∞, (28)

and,

lim sup
υ→∞

1
H3 (υ, υ1)

∫ υ

υ1

(
H3 (υ, s) kq (s)

(
θ1ηκ−2 (s)
(κ − 2)!

)β

ζβ (η (s))− π̃ (s)

)
ds = ∞,

where

π (s) =
hβ+1

1 (υ, s) Hβ
1 (υ, s)

(β + 1)β+1
((κ − 2)!)β τ (s) a (s)

(θsκ−2)
β

and

π̃ (s) =
ββ+1H3 (υ, s)

(β + 1)β+1
1

a1/β (s) ζ (s)
.

Then every solution of (1) is either oscillatory or satisfies lim
υ→∞

y (υ) = 0.

Proof. Assume to the contrary that y is a positive solution of (1). Then, we can suppose that y (υ)and
y (η (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 4, we have three possible cases
(S1), (S2) and (S3). Assume that (S1) holds. From Theorem 1, we get that (15) holds. Multiplying (15)
by H1 (υ, s) and integrating the resulting inequality from υ1 to υ we find that

∫ υ

υ1

H1 (υ, s) kτ (s) q (s)ds ≤ ϕ (υ1) H1 (υ, υ1) +
∫ υ

υ1

(
∂

∂s
H1 (υ, s) +

τ′ (s)
τ (s)

H1 (υ, s)
)

ϕ (s)ds

−
∫ υ

υ1

βθsκ−2

(κ − 2)! (τ (s) a (s))
1
β

H1 (υ, s) ϕ
β+1

β (s)ds.

From (3), we get∫ υ

υ1

H1 (υ, s) kτ (s) q (s)ds ≤ ϕ (υ1) H1 (υ, υ1) +
∫ υ

υ1

h1 (υ, s) Hβ/(β+1)
1 (υ, s) ϕ (s)ds

−
∫ υ

υ1

βθsκ−2

(κ − 2)! (τ (s) a (s))
1
β

H1 (υ, s) ϕ
β+1

β (s)ds. (29)

Using Lemma 3 with V = βθsκ−2/
(
(κ− 2)! (τ (s) a (s))

1
β

)
H1 (υ, s) , U = h1 (υ, s) Hβ/(β+1)

1 (υ, s)
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And y = ϕ (s), we get

h1 (υ, s) Hβ/(β+1)
1 (υ, s) ϕ (s)− βθsκ−2

(κ − 2)! (τ (s) a (s))
1
β

H1 (υ, s) ϕ
β+1

β (s)

≤
hβ+1

1 (υ, s) Hβ
1 (υ, s)

(β + 1)β+1
((κ − 2)!)β τ (s) a (s)

(θsκ−2)
β

,

which, with (29) gives

1
H1 (υ, υ1)

∫ υ

υ1

(H1 (υ, s) kτ (s) q (s)− π (s))ds ≤ ϕ (υ1) ,

which contradicts (27). Assume that (S2) holds. From Theorem 1, we get that (18) holds. Multiplying
(18) by H2 (υ, s) and integrating the resulting inequality from υ1 to υ, we obtain

∫ υ

υ1

H2 (υ, s)
ϑ (s)

(κ − 4)!
v (s)ds ≤ ψ (υ1) H2 (υ, υ1)

+
∫ υ

υ1

(
∂

∂s
H2 (υ, s) +

ϑ′ (s)
ϑ (s)

H2 (υ, s)
)

ψ (s)ds

−
∫ υ

υ1

1
ϑ (s)

H2 (υ, s)ψ2 (s)ds.

Thus, from (4), we obtain∫ υ

υ1

H2 (υ, s)
ϑ (s)

(κ − 4)!
v (s)ds ≤ ψ (υ1) H2 (υ, υ1) +

∫ υ

υ1

h2 (υ, s)
√

H2 (υ, s)ψ (s)ds

−
∫ υ

υ1

1
ϑ (s)

H2 (υ, s)ψ2 (s)ds

≤ ψ (υ1) H2 (υ, υ1) +
∫ υ

υ1

ϑ (s) h2
2 (υ, s)
4

ds

and so
1

H2 (υ, υ1)

∫ υ

υ1

(
H2 (υ, s)

ϑ (s)
(κ − 4)!

v (s)−
ϑ (s) h2

2 (υ, s)
4

)
ds ≤ ψ (υ1) ,

which contradicts (28). Assume that (S3) holds. Using (19) and (21), we see that

− φ (υ) ζβ (υ) ≤ 1 (30)

due to (30). Multiplying this inequality by ζβ (υ) and integrating the resulting inequality from υ1 to υ,
we get

ζβ (υ) φ (υ)− ζβ (υ1) φ (υ1) + β
∫ υ

υ1

a−1/β (s) ζβ−1 (s) φ (s) ds

≤ −
∫ υ

υ1

kq (s)
(

θ1ηκ−2 (s)
(κ − 2)!

)β

ζβ (η (s)) ds− β
∫ υ

υ1

φβ/β+1 (s)
a1/β (s)

ζβ (s) ds. (31)
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Multiplying (31) by H3 (υ, s), we find that

∫ υ

υ1

H3 (υ, s) kq (s)
(

θ1ηκ−2 (s)
(κ − 2)!

)β

ζβ (η (s))ds ≤ ζβ (υ1) φ (υ1) H3 (υ, υ1)− ζβ (υ) φ (υ) H3 (υ, υ1)

+
∫ υ

υ1

βa−1/β (s) ζβ−1 (s) φ (s) H3 (υ, s)ds

−
∫ υ

υ1

βφβ/β+1 (s)
a1/β (s)

ζβ (s) H3 (υ, s)ds.

Using Lemma 3 with V = ζβ (s) H3 (υ, s) /a1/β (s) , U = a−1/β (s) ζβ−1 (s) H3 (υ, s) and y = φ (s),
we get

βa−1/β (s) ζβ−1 (s) φ (s) H3 (υ, s)− βφβ/β+1 (s)
a1/β (s)

ζβ (s) H3 (υ, s)

≤ ββ+1H3 (υ, s)

(β + 1)β+1
1

a1/β (s) ζ (s)

and easily, we find that

1
H3 (υ, υ1)

∫ υ

υ1

(
H3 (υ, s) kq (s)

(
θ1ηκ−2 (s)
(κ − 2)!

)β

ζβ (η (s))− π̃ (s)

)
ds ≤ ζβ (υ1) φ (υ1) + 1,

which contradicts (27). This completes the proof.

Example 1. We consider the equation(
υ5y′′′ (υ)

)′
+ υq0y (3υ) = 0, υ ≥ 1, (32)

where q0 > 0 is a constant. Note that β = 1, κ = 4, a (υ) = υ5, q (υ) = υq0 and η (υ) = 3υ. If we set k = 1,
then condition (24) becomes

lim inf
υ→∞

(∫ υ

υ0

θsκ−2

(κ − 2)!a (s)
ds
)−1 ∫ ∞

υ

(∫ υ

υ0

θsκ−2

(κ − 2)!a (s)
ds
)2

q (s)ds

= lim inf
υ→∞

(
4υ2
) ∫ ∞

υ

q0

16s3 ds = lim inf
υ→∞

(
4υ2
) ( q0

32υ2

)
=

q0

8
>

1
4

,

while condition (25) becomes

lim inf
υ→∞

υ
∫ υ

υ0

1
(κ − 4)!

∫ υ

v
(ς− υ)κ−4

(
1

a (ς)

∫ υ

ς
q (s)ds

)1/β

dςdv = lim inf
υ→∞

υ
( q0

4υ

)
=

q0

4
>

1
4

,

and hence condition (26) is satisfied. Therefore, from Theorem 2, all solutions of Equation (32) are oscillatory if
q0 > 2.

Remark 2. One can easily see that the results obtained in [18,19] cannot be applied to conditions in Theorem 2,
so our results are new.
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Remark 3. We can generalize our results by studying the equation in the form

(
a (υ)

(
y(κ−1) (υ)

)β
)′

+
j

∑
i=1

qi (υ) yβ (ηi (υ)) = 0, where υ ≥ υ0, j ≥ 1.

For this we leave the results to researchers interested .

3. Conclusions

In this article we studied we provided three new Theorems on the oscillatory and asymptotic
behavior of a class of even-order advanced differential equations with a non-canonical operator in the
form of (1).

For researchers interested in this field, and as part of our future research, there is a nice open
problem which is finding new results in the following cases:

(S1) y (υ) > 0, y′ (υ) > 0, y(κ−2) (υ) > 0, y(κ−1) (υ) ≤ 0,
(

a (υ)
(

y(κ−1) (υ)
)β
)′
≤ 0,

(S2) y (υ) > 0, y(r)(υ) < 0, y(r+1)(υ) > 0, ∀r ∈ {1, 3, ..., κ − 3},

and y(κ−1)(υ) < 0,
(

a (υ)
(

y(κ−1) (υ)
)β
)′
≤ 0.

For all this there is some research in progress.
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