

Article

On the Asymptotic Behavior of Advanced Differential Equations with a Non-Canonical Operator

Omar Bazighifan ^{1,2,†} ond Ioannis Dassios ^{3,*,†}

- ¹ Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen; o.bazighifan@gmail.com
- ² Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
- ³ AMPSAS, University College Dublin, Dublin 4, Ireland
- * Correspondence: ioannis.dassios@ucd.ie
- + These authors contributed equally to this work.

Received: 16 April 2020; Accepted: 27 April 2020; Published: 30 April 2020

Abstract: In this paper, we aim to study the oscillatory behavior of a class of even-order advanced differential equations with a non-canonical operator. In addition, we present results on the asymptotic behavior of this type of equations and provide an example that illustrates our main results.

Keywords: oscillation; even-order; advanced differential equations; asymptotic behavior

1. Introduction

In recent decades, many authors have studied problems of a number of different classes of advanced differential equations including the asymptotic and oscillatory behavior of their solutions, see [1–8] and the references cited therein. For some more recent oscillation results, see [9–20]. The interest in studying advanced differential equations is also caused by the fact that they appear in models of several areas in science. In [21–23], singular systems of differential equations are used to study the dynamics and stability properties of electrical power systems. Some additional mathematical background on this can be found in [24]. Systems of differential equations with delays are used to study additional properties of electrical power systems in [25,26]. Non-linear advanced differential equations can be used to describe complex dynamical networks, see [27–29], and bring new insight to their stability. Furthermore, this type of equations can be also used in the modeling of dynamical networks of interacting free-bodies, see [30]. Finally, properties of advanced differential equations are used in the study of singular differential equations of fractional order, see [31,32]. Several other examples in Physics can be found in [33]. In this paper, we consider an even-order non-linear advanced differential equation with a non-canonical operator of the following type:

$$L_{y} + q(v) g(y(\eta(v))) = 0, \quad L_{y} := \left(a(v) \left(y^{(\kappa-1)}(v)\right)^{\beta}\right)',$$
(1)

where $v \ge v_0$, κ is even and β is a quotient of odd positive integers. The operator L_y is said to be in canonical form if $\int_{v_0}^{\infty} a^{-1/\beta}(s) ds = \infty$; otherwise, it is called noncanonical. Throughout this work, we suppose that:

C1: $a \in C^1([v_0,\infty),\mathbb{R})$, a(v) > 0, $a'(v) \ge 0$,

C2: $q, \eta \in C\left([v_0, \infty), \mathbb{R}\right), q\left(v\right) \ge 0, \eta\left(v\right) \ge v, \lim_{v \to \infty} \eta\left(v\right) = \infty,$

C3: $g \in C(\mathbb{R}, \mathbb{R})$ such that $g(x) / x^{\beta} \ge k > 0$, for $x \ne 0$ and under the condition

$$\zeta(v) = \int_{v_0}^{\infty} \frac{1}{a^{1/\beta}(s)} \mathrm{d}s < \infty.$$
⁽²⁾

Definition 1. The function $y \in C^{\kappa-1}[v_y, \infty)$, $v_y \ge v_0$, is called a solution of (1), if $(y^{(\kappa-1)}(v))^{\beta} \in C^1[v_y, \infty)$, for $a \in C^1([v_0, \infty), \mathbb{R})$, a(v) > 0 and y(v) satisfies (1) on $[v_y, \infty)$.

Definition 2. Let

$$D = \{(v,s) \in \mathbb{R}^2 : v \ge s \ge v_0\}$$
 and $D_0 = \{(v,s) \in \mathbb{R}^2 : v > s \ge v_0\}$

A kernel function $H_i \in C(D, \mathbb{R})$ is said to belong to the function class \Im , written by $H \in \Im$, if, for i = 1, 2, J

- (*i*) $H_i(v,s) > 0$, on D_0 and $H_i(v,s) = 0$ for $v \ge v_0$ with $(v,s) \notin D_0$;
- (ii) $H_i(v,s)$ has a continuous and nonpositive partial derivative $\partial H_i/\partial s$ on D_0 and there exist functions $\tau, \vartheta \in C^1([v_0, \infty), (0, \infty))$ and $h_i \in C(D_0, \mathbb{R})$ such that

$$\frac{\partial}{\partial s}H_{1}(v,s) + \frac{\tau'(s)}{\tau(s)}H_{1}(v,s) = h_{1}(v,s)H_{1}^{\beta/(\beta+1)}(v,s)$$
(3)

and

$$\frac{\partial}{\partial s}H_{2}(v,s) + \frac{\vartheta'(s)}{\vartheta(s)}H_{2}(v,s) = h_{2}(v,s)\sqrt{H_{2}(v,s)}.$$
(4)

Next we will discuss the results in [34–36]. Actually, our purpose in this article is to complement and improve these results. Agarwal et al. in [34,35] studied the even-order nonlinear advanced differential equations

$$\left(\left(y^{(\kappa-1)}\left(v\right)\right)^{\beta}\right)' + q\left(v\right)y^{\beta}\left(\eta\left(v\right)\right) = 0.$$
(5)

By means of the Riccati transformation technique, the authors established some oscillation criteria of (5). Grace and Lalli [36] investigated the second-order neutral Emden–Fowler delay dynamic equations

$$y^{(\kappa)}(v) + q(v)y(\eta(v)) = 0,$$
(6)

and established some new oscillation for (5) under the condition

$$\int_{v_0}^{\infty} \frac{1}{a^{1/\beta}(s)} \mathrm{d}s = \infty.$$
(7)

To prove this, we apply the previous results to the equation

$$y^{(\kappa)}(v) + \frac{q_0}{v^{\kappa}} y(\lambda v) = 0, \ v \ge 1.$$
(8)

if we set $\kappa = 4$ and $\lambda = 2$, then by applying conditions in [34–36] on Equation (8), we find the results in [35] improves those in [36]. Moreover, the those in [34] improves results in [35,36]. Thus, the motivation in our paper is to complement and improve results in [34–36]. We will use the following methods:

- Integral averaging technique.
- Riccati transformations technique.
- Method of comparison with second-order differential equations.

We will also use the following lemmas from (1):

Lemma 1 ([3]). If $y^{(i)}(v) > 0$, $i = 0, 1, ..., \kappa$, and $y^{(\kappa+1)}(v) < 0$, then

$$\frac{y\left(v\right)}{v^{\kappa}/\kappa!} \geq \frac{y'\left(v\right)}{v^{\kappa-1}/\left(\kappa-1\right)!}.$$

Lemma 2 ([19]). Suppose that $y \in C^{\kappa}([v_0, \infty), (0, \infty))$, $y^{(\kappa)}$ is of a fixed sign on $[v_0, \infty)$, $y^{(\kappa)}$ not identically zero and there exists a $v_1 \ge v_0$ such that

$$y^{(\kappa-1)}(v) y^{(\kappa)}(v) \le 0,$$

for all $v \ge v_1$. If we have $\lim_{v\to\infty} y(v) \ne 0$, then there exists $v_{\theta} \ge v_1$ such that

$$y(v) \geq \frac{\theta}{(\kappa-1)!} v^{\kappa-1} \left| y^{(\kappa-1)}(v) \right|,$$

for every $\theta \in (0, 1)$ and $v \geq v_{\theta}$.

Lemma 3 ([2]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then

$$Ux - Vx^{(eta+1)/eta} \leq rac{eta^{eta}}{(eta+1)^{eta+1}} rac{U^{eta+1}}{V^{eta}}, \ V > 0.$$

Lemma 4. Suppose that y is an eventually positive solution of (1). Then, there exist three possible cases:

$$\begin{array}{ll} (\mathbf{S}_1) & y\left(v\right) > 0, \ y'\left(v\right) > 0, \ y''\left(v\right) > 0, \ y^{(\kappa-1)}\left(v\right) > 0, \ y^{(\kappa)}\left(v\right) < 0, \\ (\mathbf{S}_2) & y\left(v\right) > 0, \ y^{(r)}(v) > 0, \ y^{(r+1)}(v) < 0 \ for \ all \ odd \ integer \\ & r \in \{1, 3, ..., \kappa - 3\}, \ y^{(\kappa-1)}(v) > 0, \ y^{(\kappa)}(v) < 0, \\ (\mathbf{S}_3) & y\left(v\right) > 0, \ y^{(\kappa-2)}\left(v\right) > 0, \ y^{(\kappa-1)}\left(v\right) < 0, \ L_y \le 0, \end{array}$$

for $v \ge v_1$, where $v_1 \ge v_0$ is sufficiently large.

2. Oscillation Criteria

Theorem 1. Assume that (2) holds. If the differential equations

$$\left(\frac{(\kappa-2)!a^{\frac{1}{\beta}}(v)}{(\theta v^{\kappa-2})^{\beta}}\left(y'(v)\right)^{\beta}\right)' + kq(v)y^{\beta}(v) = 0, \quad \forall \theta \in (0,1),$$
(9)

$$y''(v) + y(v) \frac{1}{(\kappa - 4)!} \int_{v}^{\infty} (\varsigma - v)^{\kappa - 4} \left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s) \, \mathrm{d}s\right)^{1/\beta} \mathrm{d}\varsigma = 0, \tag{10}$$

and

$$\left(a\left(v\right)\left(y'\left(v\right)\right)^{\beta}\right)' + y^{\beta}\left(v\right)kq\left(v\right)\left(\frac{\zeta\left(\eta\left(v\right)\right)}{\zeta\left(v\right)}\right)^{\beta}\left(\frac{\theta_{1}}{(\kappa-2)!}\eta^{\kappa-2}\left(v\right)\right)^{\beta} = 0, \quad \theta_{1} \in (0,1)$$
(11)

are oscillatory for every constant θ , $\theta_1 \in (0, 1)$, then every solution of (1) is either oscillatory or satisfies $\lim_{v \to \infty} y(v) = 0$.

Proof. Assume to the contrary that *y* is a positive solution of (1). Then, we can suppose that y(v) and $y(\eta(v))$ are positive for all $v \ge v_1$ sufficiently large. From Lemma 4, we have three possible cases (**S**₁), (**S**₂) and (**S**₃). Let case (**S**₁) hold. Using Lemma 2, we find

$$y'(v) \ge \frac{\theta}{(\kappa-2)!} v^{\kappa-2} y^{(\kappa-1)}(v), \qquad (12)$$

for every $\theta \in (0, 1)$ and for all large *v*. We set

$$\varphi(v) := \tau(v) \left(\frac{a(v) \left(y^{(\kappa-1)}(v) \right)^{\beta}}{y^{\beta}(v)} \right),$$
(13)

and observe that $\varphi\left(v\right)>0$ for $v\geq v_{1}$, where $\tau\in C^{1}\left(\left[v_{0},\infty\right),\left(0,\infty\right)\right)$ and

$$\begin{split} \varphi'(v) &= \tau'(v) \frac{a(v) \left(y^{(\kappa-1)}(v)\right)^{\beta}}{y^{\beta}(v)} + \tau(v) \frac{\left(a \left(y^{(\kappa-1)}\right)^{\beta}\right)'(v)}{y^{\beta}(v)} \\ &-\beta \tau(v) \frac{y^{\beta-1}(v) y'(v) a(v) \left(y^{(\kappa-1)}(v)\right)^{\beta}}{y^{2\beta}(v)}. \end{split}$$

Using (12) and (13), we obtain

$$\varphi'(v) \leq \frac{\tau'_{+}(v)}{\tau(v)}\varphi(v) + \tau(v)\frac{\left(a\left(v\right)\left(y^{(\kappa-1)}\left(v\right)\right)^{\beta}\right)'}{y^{\beta}(v)} \\ -\beta\tau(v)\frac{\theta}{(\kappa-2)!}v^{\kappa-2}\frac{a\left(v\right)\left(y^{(\kappa-1)}\left(v\right)\right)^{\beta+1}}{y^{\beta+1}(v)} \\ \leq \frac{\tau'(v)}{\tau(v)}\varphi(v) + \tau(v)\frac{\left(a\left(v\right)\left(y^{(\kappa-1)}\left(v\right)\right)^{\beta}\right)'}{y^{\beta}(v)} \\ -\frac{\beta\theta v^{\kappa-2}}{(\kappa-2)!\left(\tau(v)a\left(v\right)\right)^{\frac{1}{\beta}}}\varphi(v)^{\frac{\beta+1}{\beta}}.$$

$$(14)$$

From (1) and (14), we obtain

$$\varphi'\left(v\right) \leq \frac{\tau'\left(v\right)}{\tau\left(v\right)}\varphi\left(v\right) - k\tau\left(v\right)\frac{q\left(v\right)y^{\beta}\left(\eta\left(v\right)\right)}{y^{\beta}\left(v\right)} - \frac{\beta\theta v^{\kappa-2}}{\left(\kappa-2\right)!\left(\tau\left(v\right)a\left(v\right)\right)^{\frac{1}{\beta}}}\varphi\left(v\right)^{\frac{\beta+1}{\beta}}.$$

Note that y'(v) > 0 and $\eta(v) \ge v$, thus, we find

$$\varphi'(v) \leq \frac{\tau'(v)}{\tau(v)}\varphi(v) - k\tau(v)q(v) - \frac{\beta\theta v^{\kappa-2}}{(\kappa-2)!(\tau(v)a(v))^{\frac{1}{\beta}}}\varphi(v)^{\frac{\beta+1}{\beta}}.$$
(15)

If we set $\tau(v) = k = 1$ in (15), then we find

$$\varphi'(v) + \frac{\beta \theta v^{\kappa-2}}{(\kappa-2)! a^{\frac{1}{\beta}}(v)} \varphi(v)^{\frac{\beta+1}{\beta}} + q(v) \le 0.$$

From [37], we can see that Equation (9) is non-oscillatory, which is a contradiction. Let case (S_2) hold. If we set

$$\psi(v) := \vartheta(v) \frac{y'(v)}{y(v)},$$

we see that $\psi(v) > 0$ for $v \ge v_1$, where $\vartheta \in C^1([v_0, \infty), (0, \infty))$. By differentiating $\psi(v)$, we find

$$\psi'(v) = \frac{\vartheta'(v)}{\vartheta(v)}\psi(v) + \vartheta(v)\frac{y''(v)}{y(v)} - \frac{1}{\vartheta(v)}\psi(v)^2.$$
(16)

Now, by integrating (1) from *v* to *m* and using y'(v) > 0, we get

$$a(m)\left(y^{(\kappa-1)}(m)\right)^{\beta} - a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta} = -\int_{v}^{m} q(s) g(y(\eta(s))) ds.$$

By virtue of y'(v) > 0 and $\eta(v) \ge v$, we get

$$a(m)\left(y^{(\kappa-1)}(m)\right)^{\beta} - a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta} \leq -ky^{\beta}(v)\int_{v}^{u}q(s)\,ds.$$

Letting $m \to \infty$, we see that

$$a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta} \ge ky^{\beta}(v)\int_{v}^{\infty}q(s)\,\mathrm{d}s$$

and so

$$y^{(\kappa-1)}(v) \ge y(v) \left(\frac{k}{a(v)} \int_{v}^{\infty} q(s) \,\mathrm{d}s\right)^{1/\beta}$$

Integrating again from *v* to ∞ , κ – 4 times, we get

$$y''(v) + \frac{y(v)}{(\kappa-4)!} \int_{v}^{\infty} (\varsigma - v)^{\kappa-4} \left(\frac{k}{a(\varsigma)} \int_{\varsigma}^{\infty} q(s) \,\mathrm{d}s\right)^{1/\beta} \mathrm{d}\varsigma \le 0.$$
(17)

From (16) and (17), we obtain

$$\psi'(v) \le \frac{\vartheta'(v)}{\vartheta(v)}\psi(v) - \frac{\vartheta(v)}{(\kappa-4)!}\omega(s) - \frac{1}{\vartheta(v)}\psi(v)^2,$$
(18)

where

$$\omega(s) = \int_{v}^{\infty} (\zeta - v)^{\kappa - 4} \left(\frac{k}{a(\zeta)} \int_{\zeta}^{\infty} q(s) \, \mathrm{d}s \right)^{1/\beta} \mathrm{d}\zeta.$$

If we now set $\vartheta(v) = k = 1$ in (18), then we obtain

$$\psi'(v) + \psi^2(v) + rac{1}{(\kappa - 4)!} \omega(s) \zeta \le 0.$$

From [37], we see Equation (10) is non-oscillatory, which is a contradiction.

Let case (**S**₃) hold. By recalling that $a(v)(y^{(\kappa-1)}(v))^{\beta}$ is non-increasing, we obtain

$$a^{1/\beta}(s) y^{(\kappa-1)}(s) \le a^{1/\beta}(v) y^{(\kappa-1)}(v), s \ge v \ge v_1$$

Dividing the latter inequality by $a^{1/\beta}(s)$ and integrating the resulting inequality from v to u, we get

$$y^{(\kappa-2)}(u) \le y^{(\kappa-2)}(v) + a^{1/\beta}(v) y^{(\kappa-1)}(v) \int_{v}^{u} a^{-1/\beta}(s) \,\mathrm{ds}.$$

Letting $u \to \infty$, we obtain

$$0 \le y^{(\kappa-2)}(v) + a^{1/\beta}(v) y^{(\kappa-1)}(v) \zeta(v).$$

Thus,

$$\frac{-a^{1/\beta}(v)y^{(\kappa-1)}(v)\zeta(v)}{y^{(\kappa-2)}(v)} \le 1.$$
(19)

Appl. Sci. 2020, 10, 3130

Furthermore, we get

 $\left(\frac{y^{(\kappa-2)}(v)}{\zeta(v)}\right)' \ge 0,\tag{20}$

due to (19). Now define

$$\phi(v) = \frac{a(v) \left(y^{(\kappa-1)}(v)\right)^{\beta}}{\left(y^{(\kappa-2)}(v)\right)^{\beta}},$$
(21)

we see that $\phi(v) < 0$ for $v \ge v_1$, and

$$\phi'(v) = \frac{\left(a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta}\right)'}{\left(y^{(\kappa-2)}(v)\right)^{\beta}} - \frac{\beta a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta+1}}{\left(y^{(\kappa-2)}(v)\right)^{\beta+1}}.$$

It follows from (1) and (19) that

$$\phi'(v) = \frac{-kq(v)y^{\beta}(\eta(v))}{(y^{(\kappa-2)}(v))^{\beta}} - \frac{\beta\phi^{\beta/\beta+1}(v)}{a^{1/\beta}(v)}$$

From Lemma 2, we find

$$y(v) \ge \frac{\theta_1}{(\kappa-2)!} v^{\kappa-2} y^{(\kappa-2)}(v).$$

$$(22)$$

Thus, we have

$$\phi'\left(\upsilon\right) = \frac{-kq\left(\upsilon\right)y^{\beta}\left(\eta\left(\upsilon\right)\right)}{\left(y^{\left(\kappa-2\right)}\left(\eta\left(\upsilon\right)\right)\right)^{\beta}} \frac{\left(y^{\left(\kappa-2\right)}\left(\eta\left(\upsilon\right)\right)\right)^{\beta}}{\left(y^{\left(\kappa-2\right)}\left(\upsilon\right)\right)^{\beta}} - \frac{\beta\phi^{\beta/\beta+1}\left(\upsilon\right)}{a^{1/\beta}\left(\upsilon\right)}$$

From (22), we obtain

$$\phi'(v) \leq -kq(v) \left(\frac{\theta_1 \eta^{\kappa-2}(v)}{(\kappa-2)!}\right)^{\beta} \left(\frac{\zeta(\eta(v))}{\zeta(v)}\right)^{\beta} - \frac{\beta \phi^{\beta/\beta+1}(v)}{a^{1/\beta}(v)}.$$
(23)

From [37], we can see that Equation (11) is non-oscillatory, which is a contradiction. Theorem 1 is proved. \Box

Remark 1. It is well known (see [15]) that if

$$\int_{v_0}^{\infty} \frac{1}{a(v)} \mathrm{d}v < \infty, \text{ and } \liminf_{v \to \infty} \left(\int_{v_0}^{v} \frac{1}{a(s)} \mathrm{d}s \right)^{-1} \int_{v}^{\infty} \left(\int_{v_0}^{v} \frac{1}{a(s)} \mathrm{d}s \right)^2 q(s) \, \mathrm{d}s > \frac{1}{4},$$

then Equations (9)–(11) with $\beta = 1$ are oscillatory.

Based on the above results and Theorem 1, we can easily obtain the following Hille and Nehari type oscillation criteria for (1) with $\beta = 1$.

Theorem 2. Let $\beta = k = 1$ and assume that (2) holds. If for $\theta, \theta_1 \in (0, 1)$

$$\liminf_{v \to \infty} \left(\int_{v_0}^{v} \frac{\theta s^{\kappa-2}}{(\kappa-2)! a\left(s\right)} \mathrm{d}s \right)^{-1} \int_{v}^{\infty} \left(\int_{v_0}^{v} \frac{\theta s^{\kappa-2}}{(\kappa-2)! a\left(s\right)} \mathrm{d}s \right)^2 q\left(s\right) \mathrm{d}s > \frac{1}{4}, \tag{24}$$

with

$$\int_{v_{0}}^{\infty}\frac{\theta v^{\kappa-2}}{\left(\kappa-2\right)!a\left(v\right)}\mathrm{d}v<\infty,$$

and if

$$\liminf_{v \to \infty} v \int_{v_0}^{v} \frac{1}{(\kappa - 4)!} \int_{v}^{v} (\varsigma - v)^{\kappa - 4} \left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{v} q(s) \, \mathrm{d}s \right)^{1/\beta} \mathrm{d}\varsigma \mathrm{d}v > \frac{1}{4},\tag{25}$$

$$\liminf_{v \to \infty} \left(\int_{v_0}^{v} \frac{1}{a(s)} \mathrm{d}s \right)^{-1} \int_{v}^{\infty} \left(\int_{v_0}^{v} \frac{1}{a(s)} \mathrm{d}s \right)^{2} \frac{\theta_1 \zeta\left(\eta\left(s\right)\right) \eta^{\kappa-2}\left(s\right) q\left(s\right)}{\zeta\left(s\right)\left(\kappa-2\right)!} \mathrm{d}s > \frac{1}{4}, \tag{26}$$

then every solution of (1) is either oscillatory or satisfies $\lim_{v \to \infty} y(v) = 0$.

In the next theorem, we employ the integral averaging technique to establish a Philos-type oscillation criteria for (1):

Theorem 3. Let (2) holds. If there exist positive functions $\tau, \vartheta \in C^1([v_0, \infty), \mathbb{R})$ such that

$$\limsup_{v \to \infty} \frac{1}{H_1(v, v_1)} \int_{v_1}^{v} (H_1(v, s) k\tau(s) q(s) - \pi(s)) ds = \infty,$$
(27)

$$\limsup_{v \to \infty} \frac{1}{H_2(v, v_1)} \int_{v_1}^{v} \left(H_2(v, s) \frac{\vartheta(s)}{(\kappa - 4)!} \varpi(s) - \frac{\vartheta(s) h_2^2(v, s)}{4} \right) \mathrm{d}s = \infty,$$
(28)

and,

$$\limsup_{v \to \infty} \frac{1}{H_3(v, v_1)} \int_{v_1}^{v} \left(H_3(v, s) \, kq\left(s\right) \left(\frac{\theta_1 \eta^{\kappa-2}\left(s\right)}{(\kappa-2)!}\right)^{\beta} \zeta^{\beta}\left(\eta\left(s\right)\right) - \tilde{\pi}\left(s\right) \right) \mathrm{d}s = \infty,$$

where

$$\pi\left(s\right) = \frac{h_{1}^{\beta+1}\left(v,s\right)H_{1}^{\beta}\left(v,s\right)}{\left(\beta+1\right)^{\beta+1}}\frac{\left(\left(\kappa-2\right)!\right)^{\beta}\tau\left(s\right)a\left(s\right)}{\left(\theta s^{\kappa-2}\right)^{\beta}}$$

and

$$\tilde{\pi}\left(s\right) = \frac{\beta^{\beta+1}H_{3}\left(v,s\right)}{\left(\beta+1\right)^{\beta+1}} \frac{1}{a^{1/\beta}\left(s\right)\zeta\left(s\right)}.$$

Then every solution of (1) *is either oscillatory or satisfies* $\lim_{v \to \infty} y(v) = 0$.

Proof. Assume to the contrary that *y* is a positive solution of (1). Then, we can suppose that y(v) and $y(\eta(v))$ are positive for all $v \ge v_1$ sufficiently large. From Lemma 4, we have three possible cases (**S**₁), (**S**₂) and (**S**₃). Assume that (**S**₁) holds. From Theorem 1, we get that (15) holds. Multiplying (15) by $H_1(v, s)$ and integrating the resulting inequality from v_1 to v we find that

$$\begin{split} \int_{v_1}^{v} H_1\left(v,s\right) k\tau\left(s\right) q\left(s\right) \mathrm{d}s &\leq \quad \varphi\left(v_1\right) H_1\left(v,v_1\right) + \int_{v_1}^{v} \left(\frac{\partial}{\partial s} H_1\left(v,s\right) + \frac{\tau'\left(s\right)}{\tau\left(s\right)} H_1\left(v,s\right)\right) \varphi\left(s\right) \mathrm{d}s \\ &- \int_{v_1}^{v} \frac{\beta \theta s^{\kappa-2}}{\left(\kappa-2\right)! \left(\tau\left(s\right) a\left(s\right)\right)^{\frac{1}{\beta}}} H_1\left(v,s\right) \varphi^{\frac{\beta+1}{\beta}}\left(s\right) \mathrm{d}s. \end{split}$$

From (3), we get

$$\int_{v_{1}}^{v} H_{1}(v,s) k\tau(s) q(s) ds \leq \varphi(v_{1}) H_{1}(v,v_{1}) + \int_{v_{1}}^{v} h_{1}(v,s) H_{1}^{\beta/(\beta+1)}(v,s) \varphi(s) ds - \int_{v_{1}}^{v} \frac{\beta \theta s^{\kappa-2}}{(\kappa-2)! (\tau(s) a(s))^{\frac{1}{\beta}}} H_{1}(v,s) \varphi^{\frac{\beta+1}{\beta}}(s) ds.$$
(29)

Using Lemma 3 with $V = \beta \theta s^{\kappa-2} / \left((\kappa - 2)! (\tau(s) a(s))^{\frac{1}{\beta}} \right) H_1(v,s), U = h_1(v,s) H_1^{\beta/(\beta+1)}(v,s)$

And $y = \varphi(s)$, we get

$$\begin{split} & h_{1}\left(v,s\right)H_{1}^{\beta/(\beta+1)}\left(v,s\right)\varphi\left(s\right) - \frac{\beta\theta s^{\kappa-2}}{\left(\kappa-2\right)!\left(\tau\left(s\right)a\left(s\right)\right)^{\frac{1}{\beta}}}H_{1}\left(v,s\right)\varphi^{\frac{\beta+1}{\beta}}\left(s\right) \\ & \leq \quad \frac{h_{1}^{\beta+1}\left(v,s\right)H_{1}^{\beta}\left(v,s\right)}{\left(\beta+1\right)^{\beta+1}}\frac{\left((\kappa-2)!\right)^{\beta}\tau\left(s\right)a\left(s\right)}{\left(\theta s^{\kappa-2}\right)^{\beta}}, \end{split}$$

which, with (29) gives

$$\frac{1}{H_{1}\left(v,v_{1}\right)}\int_{v_{1}}^{v}\left(H_{1}\left(v,s\right)k\tau\left(s\right)q\left(s\right)-\pi\left(s\right)\right)\mathrm{d}s\leq\varphi\left(v_{1}\right),$$

which contradicts (27). Assume that (S_2) holds. From Theorem 1, we get that (18) holds. Multiplying (18) by $H_2(v,s)$ and integrating the resulting inequality from v_1 to v, we obtain

$$\begin{split} \int_{v_1}^{v} H_2\left(v,s\right) \frac{\vartheta\left(s\right)}{(\kappa-4)!} \varpi\left(s\right) \mathrm{d}s &\leq \psi\left(v_1\right) H_2\left(v,v_1\right) \\ &+ \int_{v_1}^{v} \left(\frac{\partial}{\partial s} H_2\left(v,s\right) + \frac{\vartheta'\left(s\right)}{\vartheta\left(s\right)} H_2\left(v,s\right)\right) \psi\left(s\right) \mathrm{d}s \\ &- \int_{v_1}^{v} \frac{1}{\vartheta\left(s\right)} H_2\left(v,s\right) \psi^2\left(s\right) \mathrm{d}s. \end{split}$$

Thus, from (4), we obtain

$$\int_{v_1}^{v} H_2(v,s) \frac{\vartheta(s)}{(\kappa-4)!} \omega(s) \, ds \le \psi(v_1) H_2(v,v_1) + \int_{v_1}^{v} h_2(v,s) \sqrt{H_2(v,s)} \psi(s) \, ds - \int_{v_1}^{v} \frac{1}{\vartheta(s)} H_2(v,s) \, \psi^2(s) \, ds \le \psi(v_1) H_2(v,v_1) + \int_{v_1}^{v} \frac{\vartheta(s) h_2^2(v,s)}{4} ds$$

and so

$$\frac{1}{H_{2}(v,v_{1})}\int_{v_{1}}^{v}\left(H_{2}(v,s)\frac{\vartheta(s)}{(\kappa-4)!}\varpi(s)-\frac{\vartheta(s)h_{2}^{2}(v,s)}{4}\right)ds \leq \psi(v_{1}),$$

which contradicts (28). Assume that (S_3) holds. Using (19) and (21), we see that

$$-\phi(v)\zeta^{\beta}(v) \le 1 \tag{30}$$

due to (30). Multiplying this inequality by $\zeta^{\beta}(v)$ and integrating the resulting inequality from v_1 to v, we get

$$\zeta^{\beta}(v) \phi(v) - \zeta^{\beta}(v_{1}) \phi(v_{1}) + \beta \int_{v_{1}}^{v} a^{-1/\beta}(s) \zeta^{\beta-1}(s) \phi(s) ds$$

$$\leq -\int_{v_{1}}^{v} kq(s) \left(\frac{\theta_{1}\eta^{\kappa-2}(s)}{(\kappa-2)!}\right)^{\beta} \zeta^{\beta}(\eta(s)) ds - \beta \int_{v_{1}}^{v} \frac{\phi^{\beta/\beta+1}(s)}{a^{1/\beta}(s)} \zeta^{\beta}(s) ds.$$
(31)

Multiplying (31) by $H_3(v,s)$, we find that

$$\begin{split} \int_{v_1}^{v} H_3(v,s) \, kq\,(s) \left(\frac{\theta_1 \eta^{\kappa-2}\,(s)}{(\kappa-2)!}\right)^{\beta} \zeta^{\beta}\,(\eta\,(s)) \, \mathrm{d}s &\leq \zeta^{\beta}\,(v_1)\,\phi\,(v_1)\,H_3\,(v,v_1) - \zeta^{\beta}\,(v)\,\phi\,(v)\,H_3\,(v,v_1) \\ &+ \int_{v_1}^{v} \beta a^{-1/\beta}\,(s)\,\zeta^{\beta-1}\,(s)\,\phi\,(s)\,H_3\,(v,s)\,\mathrm{d}s \\ &- \int_{v_1}^{v} \frac{\beta \phi^{\beta/\beta+1}\,(s)}{a^{1/\beta}\,(s)} \zeta^{\beta}\,(s)\,H_3\,(v,s)\,\mathrm{d}s. \end{split}$$

Using Lemma 3 with $V = \zeta^{\beta}(s) H_3(v,s) / a^{1/\beta}(s)$, $U = a^{-1/\beta}(s) \zeta^{\beta-1}(s) H_3(v,s)$ and $y = \phi(s)$, we get

$$\beta a^{-1/\beta}(s) \zeta^{\beta-1}(s) \phi(s) H_{3}(v,s) - \frac{\beta \phi^{\beta/\beta+1}(s)}{a^{1/\beta}(s)} \zeta^{\beta}(s) H_{3}(v,s)$$

$$\leq \frac{\beta^{\beta+1} H_{3}(v,s)}{(\beta+1)^{\beta+1}} \frac{1}{a^{1/\beta}(s) \zeta(s)}$$

and easily, we find that

$$\frac{1}{H_{3}\left(v,v_{1}\right)}\int_{v_{1}}^{v}\left(H_{3}\left(v,s\right)kq\left(s\right)\left(\frac{\theta_{1}\eta^{\kappa-2}\left(s\right)}{\left(\kappa-2\right)!}\right)^{\beta}\zeta^{\beta}\left(\eta\left(s\right)\right)-\tilde{\pi}\left(s\right)\right)\mathrm{d}s\leq\zeta^{\beta}\left(v_{1}\right)\phi\left(v_{1}\right)+1,$$

which contradicts (27). This completes the proof. \Box

Example 1. We consider the equation

$$\left(v^{5}y^{\prime\prime\prime}(v)\right)' + vq_{0}y(3v) = 0, \ v \ge 1,$$
(32)

where $q_0 > 0$ is a constant. Note that $\beta = 1$, $\kappa = 4$, $a(v) = v^5$, $q(v) = vq_0$ and $\eta(v) = 3v$. If we set k = 1, then condition (24) becomes

$$\begin{aligned} \liminf_{v \to \infty} \left(\int_{v_0}^v \frac{\theta s^{\kappa-2}}{(\kappa-2)! a\left(s\right)} \mathrm{d}s \right)^{-1} \int_v^\infty \left(\int_{v_0}^v \frac{\theta s^{\kappa-2}}{(\kappa-2)! a\left(s\right)} \mathrm{d}s \right)^2 q\left(s\right) \mathrm{d}s \\ = \liminf_{v \to \infty} \left(4v^2 \right) \int_v^\infty \frac{q_0}{16s^3} \mathrm{d}s = \liminf_{v \to \infty} \left(4v^2 \right) \left(\frac{q_0}{32v^2} \right) \\ = \frac{q_0}{8} > \frac{1}{4}, \end{aligned}$$

while condition (25) becomes

$$\liminf_{v \to \infty} v \int_{v_0}^{v} \frac{1}{(\kappa - 4)!} \int_{v}^{v} (\varsigma - v)^{\kappa - 4} \left(\frac{1}{a(\varsigma)} \int_{\varsigma}^{v} q(s) \, \mathrm{d}s \right)^{1/\beta} \mathrm{d}\varsigma \mathrm{d}v = \liminf_{v \to \infty} v \left(\frac{q_0}{4v} \right)$$
$$= \frac{q_0}{4} > \frac{1}{4},$$

and hence condition (26) is satisfied. Therefore, from Theorem 2, all solutions of Equation (32) are oscillatory if $q_0 > 2$.

Remark 2. One can easily see that the results obtained in [18,19] cannot be applied to conditions in Theorem 2, so our results are new.

Remark 3. We can generalize our results by studying the equation in the form

$$\left(a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta}\right)' + \sum_{i=1}^{j} q_i(v) y^{\beta}(\eta_i(v)) = 0, \text{ where } v \ge v_0, j \ge 1.$$

For this we leave the results to researchers interested .

3. Conclusions

In this article we studied we provided three new Theorems on the oscillatory and asymptotic behavior of a class of even-order advanced differential equations with a non-canonical operator in the form of (1).

For researchers interested in this field, and as part of our future research, there is a nice open problem which is finding new results in the following cases:

$$\begin{aligned} & (\mathbf{S}_1) \quad y(v) > 0, \ y'(v) > 0, \ y^{(\kappa-2)}(v) > 0, \ y^{(\kappa-1)}(v) \le 0, \ \left(a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta}\right)' \le 0, \\ & (\mathbf{S}_2) \quad y(v) > 0, \ y^{(r)}(v) < 0, \ y^{(r+1)}(v) > 0, \ \forall r \in \{1, 3, ..., \kappa - 3\}, \\ & \text{ and } y^{(\kappa-1)}(v) < 0, \ \left(a(v)\left(y^{(\kappa-1)}(v)\right)^{\beta}\right)' \le 0. \end{aligned}$$

For all this there is some research in progress.

Author Contributions: The authors claim to have contributed equally and significantly in this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Science Foundation Ireland (SFI), by funding Ioannis Dassios, under Investigator Programme Grant No. SFI/15 /IA/3074.

Acknowledgments: The authors thank the reviewers for for their useful comments, which led to the improvement of the content of the paper.

Conflicts of Interest: There are no competing interests between the authors.

References

- 1. Bazighifan, O.; Postolache, M. An improved conditions for oscillation of functional nonlinear differential equations. *Mathematics* **2020**, *8*, 552. [CrossRef]
- 2. Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. *J. Inequal.Appl.* **2019**, *55*, 1–9.
- 3. Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. *Symmetry* **2020**, *12*, 555. [CrossRef]
- 4. Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations. *Symmetry* **2019**, *11*, 628. [CrossRef]
- 5. Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. *Symmetry* **2020**, *12*, 379. [CrossRef]
- 6. Cesarano, C.; Bazighifan, O. Qualitative behavior of solutions of second order differential equations. *Symmetry* **2019**, *11*, 777. [CrossRef]
- 7. Grace, S.; Dzurina, J.; Jadlovska, I.; Li, T. On the oscillation of fourth order delay differential equations. *Adv. Differ.Equ.* **2019**, *118*, 1–15. [CrossRef]
- 8. Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991.
- 9. Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. *Bound. Value Probl.* **2014**, *56*, 41–58. [CrossRef]
- 10. Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. *Adv. Differ. Equ.* **2017**, *261*, 1–13. [CrossRef]
- 11. Moaaz, O.; Dassios, I.; Bazighifan, O.; Muhib, A. Oscillation Theorems for Nonlinear Differential Equations of Fourth-Order. *Mathematics* **2020**, *8*, 520. [CrossRef]

- 12. Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. *Mathematics* **2020**, *8*, 590. [CrossRef]
- 13. Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. *Mathematics* **2020**, *8*, 402. [CrossRef]
- 14. Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. *Appl. Math.Comput.* **2020**, *377*, 125192. [CrossRef]
- 15. Nehari, Z. Oscillation criteria for second order linear differential equations. *Trans. Am. Math. Soc.* **1957**, *85*, 428–445. [CrossRef]
- 16. Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. *Arch. Math.* **1981**, *36*, 168–178. [CrossRef]
- 17. Rehak, P. How the constants in Hille–Nehari theorems depend on time scales. *Adv. Differ. Equ.* **2006**, 2006, 064534. [CrossRef]
- 18. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. *Appl. Math. Lett.* **2013**, *26*, 179–183. [CrossRef]
- 19. Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. *Symmetry* **2020**, *12*, 524. [CrossRef]
- 20. Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–308. [CrossRef]
- 21. Tzounas, G.; Dassios, I.; Milano, F. Modal Participation Factors of Algebraic Variables. *IEEE Trans. Power Syst.* **2020**, *35*, 742–750. [CrossRef]
- 22. Dassios, I.; Tzounas, G.; Milano, F. Generalized fractional controller for singular systems of differential equations. *J. Comput. Appl. Math.* **2020**, *378*, 112919. [CrossRef]
- 23. Dassios, I.; Tzounas, G.; Milano, F. Participation Factors for Singular Systems of Differential Equations Circuits. *Syst. Signal Process.***2020**, *39*, 83–110. . [CrossRef]
- 24. Dassios, I.; Tzounas, G.; Milano, F. The Mobius transform effect in singular systems of differential equations. *Appl. Math. Comput.* **2019**, *361*, 338–353. [CrossRef]
- 25. Liu, M.; Dassios, I.; Tzounas, G.; Milano, F. Model-Independent Derivative Control Delay Compensation Methods for Power Systems. *Energies* **2020**, *13*, 342. [CrossRef]
- 26. Liu, M.; Dassios, I.; Tzounas, G.; Milano, F. Stability Analysis of Power Systems with Inclusion of Realistic-Modeling of WAMS Delays. *IEEE Trans. Power Syst.* **2019**, *34*, 627–636. [CrossRef]
- 27. Dassios, I. Stability of Bounded Dynamical Networks with Symmetry. Symmetry 2018, 10, 121. [CrossRef]
- 28. Boutarfa, B.; Dassios, I. A stability result for a network of two triple junctions on the plane. *Math. Methods Appl. Sci.* **2017**, *40*, 6076–6084. [CrossRef]
- 29. Dassios, I. Stability of basic steady states of networks in bounded domains. *Comput. Math. Appl.* 2015, 70, 2177–2196.
- 30. O'Keeffe, G.; Dassios, I. Ideas From Bounded Confidence Theory Applied to Dynamical Networks of Interacting Free-Bodies. *Front. Phys.* **2019**, *7*, 131. [CrossRef]
- 31. Dassios, I.; Baleanu, D. Optimal solutions for singular linear systems of Caputo fractional differential equations. *Math. Methods Appl. Sci.* **2020**. [CrossRef]
- Dassios, I.; Baleanu, D. Caputo and related fractional derivatives in singular systems. *Appl. Math. Comput.* 2018, 337, 591–606. [CrossRef]
- 33. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977.
- Agarwal, R.; Grace, S.R. Oscillation theorems for certain functional differential equations of higher order. *Math. Comput. Model.* 2004, 39, 1185–1194. [CrossRef]
- 35. Agarwal, R.; Grace, S.R.; O'Regan, D. Oscillation criteria for certain n th order differential equations with deviating arguments. *J. Math. Anal. Appl.* **2001**, *262*, 601–622. [CrossRef]

37. Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarded differential equations. *Math. Comput. Model.* **1997**, *26*, 1–11. [CrossRef]

 \odot 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).