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Abstract: This paper considers two approaches to hydroacoustic signal classification, taking the
sounds made by whales as an example: a method based on harmonic wavelets and a technique
involving deep learning neural networks. The study deals with the classification of hydroacoustic
signals using coefficients of the harmonic wavelet transform (fast computation), short-time Fourier
transform (spectrogram) and Fourier transform using a kNN-algorithm. Classification quality metrics
(precision, recall and accuracy) are given for different signal-to-noise ratios. ROC curves were also
obtained. The use of the deep neural network for classification of whales’ sounds is considered.
The effectiveness of using harmonic wavelets for the classification of complex non-stationary signals
is proved. A technique to reduce the feature space dimension using a ‘modulo N reduction’ method
is proposed. A classification of 26 individual whales from the Whale FM Project dataset is presented.
It is shown that the deep-learning-based approach provides the best result for the Whale FM Project
dataset both for whale types and individuals.

Keywords: harmonic wavelets; classification; kNN-algorithm; deep neural networks;
machine learning; Fourier transform; short-time Fourier transform; wavelet transform; spectrogram;
confusion matrix; ROC curve

1. Introduction

The whale was one of the main commercial animals in the past. Whalers were attracted by
the huge carcass of this animal—from one whale they could get much more fat and meat than
from any other marine animal. Today, many of its species have almost been driven to extinction.
For this reason, they are listed in the IUCN Red List of Threatened Species [1]. Currently, the main
threat to whales is an anthropogenic factor, expressed in violation of their usual way of life and
pollution of the seas. To ensure the safety of rare animals, the number of individuals must be
monitored. Within the framework of environmental monitoring programs approved by governments
and public organizations of different countries, cetacean monitoring activities are carried out year-round
using all of the modern achievements in data processing [2]. Monitoring includes work at sea and
post-processing of the collected data: determining the coordinates of whale encounters, establishing the
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composition of the group, and photographing the animals for subsequent observation of individually
recognizable individuals.

Systematic observation of animals presents scientists with the opportunity to learn about how
mammals share the water area among themselves, to collect data on age and gender composition [3].
An important task is to find out where the whales come from and where they then go to in the winter,
to track their routes of movements. You must also be able to determine which population the whales
belong to.

Sounds made by cetaceans for communication are called “whale songs”. The word “songs”
is used to emphasize the repeating and melodic nature of these sounds, reminiscent of human
singing. The use of sounds as the main communication channel is due to the fact that, in an aquatic
environment, visibility can be limited, and smells spread much slower than in air [4]. It is believed
that the most complex songs of humpback whales and some toothless whales are used in mating
games. Simpler signals are used all year round and perhaps serve for day-to-day communication and
navigation. Toothed whales (including killer whales) use emitted sounds for echolocation. In addition,
it was found that whales that have lived in captivity for long can mimic human speech. All these
signals are transmitted to different distances, under different water conditions and in the presence of a
variety of noises. Additionally, stable flocks have their own dialects, i.e., there is wide variability in the
sounds made by whales, both within the population and between populations. Thus, sounds can be
used to classify both whale species and individuals. The task of classifying whales by sound has been
solved by many researchers for different types of whales in different parts of the world, using various
methods and approaches, the most popular being signal processing algorithms [5,6] and algorithms
based on neural networks [2,7–10]. Neural-network-based approaches present different architectures,
models and learning methods. In [2], the authors developed and empirically studied a variety of
deep neural networks to detect the vocalizations of endangered North Atlantic right whales. In [7],
an effective data-driven approach based on pre-trained convolutional neural networks (CNN) using
multi-scale waveforms and time-frequency feature representations was developed in order to perform
classification of whale calls from a large open-source dataset recorded by sensors carried by whales.
The authors of [8] constructed an ensembled deep learning CNN model to classify beluga detections.
The applicability of basic CNN models is also being explored for the bio-acoustic task of whale call
detection, such as with respect to North Atlantic right whale calls [9] and humpback whale calls [10].

This paper considers two approaches to hydroacoustic classification, taking the sounds made by
whales as examples: on the basis of harmonic wavelets and deep learning neural networks. The main
contributions of our work can be summarized as follows. The effectiveness of using harmonic wavelets
for the classification of hydroacoustic signals was proved. A technique to reduce the feature space
dimension using a ‘modulo N reduction’ method was developed. A classification of 26 individual
whales is presented for the dataset. It was shown that the deep-learning-based approach provides the
best result for the dataset both for whale types and individuals.

The remainder of this paper is organized as follows. In Section 2, we briefly describe hydroacoustic
signal processing and review related works on it. In Section 3, we introduce details of the harmonic
wavelets and their application to the processing of hydroacoustic signals. In Section 4, we review the
kNN algorithm for classification based on harmonic wavelets and present experimental results to verify
the proposed approach. In Section 5, experimental results are presented to verify the approach for
classification based on neural networks and machine learning. In Section 6, we discuss the results and
how they can be interpreted from the perspective of previous studies and of the working hypotheses.
Future research directions also are highlighted. Finally, we present the conclusions in Section 7.

2. Hydroacoustic Signal Processing

Before classifying hydroacoustic signals, which are sounds made by whales in an aquatic
environment, they must be pre-processed, as the quality of the classification will depend on their
quality. Hydroacoustic signal processing includes data preparation, as well as the use of further
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algorithms allowing the extraction of useful signals from certain directions. Preliminary processing
includes de-noising, estimation of the degree of randomness, extraction of short-term local features,
pre-filtering, etc. Preprocessing affects the process of further analysis within a hydroacoustic monitoring
system [11–13]. Even though the preprocessing of hydroacoustic signals has been studied for a long
time, there are several unresolved problems, namely: working in conditions of a priori uncertainty
of signal parameters; processing complex non-stationary hydroacoustic signals with multiple local
features; and analysis of multicomponent signals. Another set of problems is represented by effective
preliminary visual processing of hydroacoustic signals and the need for a mathematical apparatus for
signal preprocessing tasks.

Current advances in applied mathematics and digital signal processing along with the development
of high-performance hardware allow the effective application of numerous mathematical techniques,
including continuous and discrete wavelet transforms. Wavelets are an effective tool for signal
preprocessing, due to their adaptability, the availability of fast computational algorithms and the
diversity of wavelet bases.

Using wavelets for hydroacoustic signal analysis provides the following possibilities [14,15]:

1. Detection of foreign objects in marine and river areas, including icebergs and other ice formations,
the size estimation of these objects, hazard assessment based on analyzing local signal features;

2. Detection and classification of marine targets based on the analysis of local signal features;
3. Detection of hydroacoustic signals in the presence of background noise;
4. Efficient visualization and processing of hydroacoustic signals based on multiscale

wavelet spectrograms.

Classification is an important task of modern signal processing. The quality of the classification
depends on the noise level, training size and testing datasets, and the algorithm. It is also important to
choose classification features and determine the size of the feature space. The classification feature is
the feature or characteristic of the object used for classification. If we classify real non-stationary signals,
it is important to have informative classification features. Among such features are wavelet coefficients.

3. Harmonic Wavelets

Wavelet transform uses wavelets as the basis functions. An arbitrary function can be obtained from
one function (“mother” wavelet) by using translations and dilations in the time domain. The wavelet
transform is commonly used for analyzing non-stationary (seismic, biological, hydroacoustic etc.)
signals, usually together with various spectral analysis algorithms [16,17].

Consider the basis of harmonic wavelets whose spectra are rectangular in the given frequency
band [15,16]. Harmonic wavelets are usually represented in the frequency domain. Wavelet-function
(mother wavelet) can be written as:

Ψ(ω) =

{ 1
2π , 2π ≤ ω < 4π

0, ω < 2π,ω ≥ 4π
⇔ ψ(x) =

∞∫
−∞

Ψ(ω)eiωxdω =
ei4πx

− ei2πx

i2πx
(1)

There are some techniques that allow us to decompose input signals using different basic functions:
wavelets, sine waves, damped sine waves, polynomials, etc. These functions form the atom dictionary
(basis functions) and each function is localized in the time and frequency domains. Often the dictionary
of atoms is full (all types of functions are used) and redundant (the functions are not mutually
independent). One of the main problems in these techniques is the selection of basic functions and
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dictionary optimization to acheive optimal decomposition levels [17]. Decomposition levels for
wavelets can be defined as:

Ψ jk(ω) =

 1
2π2− je

−
iωk
2 j , 2π2 j

≤ ω < 4π2 j

0, ω < 2π2 j,ω ≥ 4π2 j

ψ jk(x) = ψ(2 jx− k) =
∞∫
−∞

Ψ jk(ω)eiωxdω = ei4π(2 jx−k)
−ei2π(2 jx−k)

i2π(2 jx−k)

(2)

where j is decomposition level and k is dilation.
Very often, wavelets are basis functions because of their useful properties [14] and the potential

to process signals in the time-frequency domain. The Fourier transform of a scaling function can be
written as:

Φ(ω) =

{ 1
2π , 0 ≤ ω < 2π

0, ω < 0,ω ≥ 2π
⇔ φ(x) =

∞∫
−∞

Φ(ω)eiωxdω =
ei2πx

− 1
i2πx

(3)

We can formulate the following properties of harmonic wavelets, which relate them with other
classes of wavelets:

• Harmonic wavelets have compact support in the frequency domain, which can be used for
localizing signal features.

• There are fast algorithms based on the fast Fourier transform (FFT) for computing wavelet
coefficients and reconstructing signals in the time domain.

The drawback of harmonic wavelets is their weak localization properties in the time domain in
comparison with other types of wavelets. The spectrum in the form of a rectangular wave leads to
decay in the time domain as 1/x, which is not sufficient for extracting short-term singularities in a signal
in the time domain.

Wavelet Transform in the Basis of Harmonic Wavelets

Detailed coefficients a jk, ã jk and approximation coefficients aφk, ãφk:

a jk = 2 j
∞∫
−∞

f (x)ψ(2 jx− k)dx

aφk = 2 j
∞∫
−∞

f (x)φ(x− k)dx

ã jk = 2 j
∞∫
−∞

f (x)ψ(2 jx− k)dx

ãφk = 2 j
∞∫
−∞

f (x)φ(x− k)dx
(4)

where j is the decomposition level; k is the dilation.
If f(x) is a real-valued function, then: ã jk = a jk, ãφk = aφk.
Wavelet decomposition [14]:

f (x) =
∞∑

j=−∞

∞∑
k=−∞

a jkψ(2
jx− k) =

∞∑
k=−∞

aφkφ(x− k)+
∞∑

j=0

∞∑
k=−∞

a jkψ(2
jx− k) (5)

Wavelet decomposition using harmonic wavelets [18]:

f (x) =
∞∑

j=−∞

∞∑
k=−∞

[
a jkψ

(
2 jx− k

)
= ã jkψ

(
2 jx− k

)]
=

∞∑
k=−∞

[
aφkφ(x− k) = ãφkφ(x− k)

]
+
∞∑

j=0

∞∑
k=−∞

[
a jkψ

(
2 jx− k

)
+ ã jkψ

(
2 jx− k

)]
a jk = 2 j

∞∫
−∞

f (x)ψ(2 jx− k)dx

(6)

Calculations with the last two formulae are inefficient.
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Fast decomposition can be implemented in the following way:

a jk = 2 j

∞∫
−∞

F(ω)
1

2π
2− je

iωk
2 j dω =

1
2π

4π2 j∫
2π2 j

F(ω)e
iωk
2 j dω ≈

4π2 j∫
2π2 j

F(ω)e
iωk
2 j dω (7)

The substitution is of the following form:

n = 2 j + s
F2 j+s = 2πF

[
ω = 2π

(
2 j + s

)] (8)

We can show that:

a jk =
2 j
−1∑

s=0

F2 j+se
i2πsk

2 j k = 0 . . . 2 j
− 1; j = 0 . . . n− 1. (9)

ã jk =
2 j
−1∑

s=0
FN−(2 j+s)e

i2πsk
2 j k = 0 . . . 2 j

− 1; j = 0 . . . n− 1.

ã jk = a jk

(10)

Thus, the algorithm for computing wavelet coefficients of the octave harmonic wavelet
transform [19] of a continuous-time function f(x) can be written in the following way:

1. The original function f(x) is represented by discrete-time samples: f(n), n = 0 . . . N−1, where N is
of degree 2 (if necessary, we use zero-padding).

2. We calculate the discrete Fourier transform using the fast Fourier transform to obtain a set of
complex numbers f(n), n = 0 . . . N−1—Fourier coefficients (DFT coefficients).

3. Octave blocks F are processed using the discrete Fourier transform (DFT) to obtain coefficients:
a jk = a2 j+k. The calculation results for the coefficients are given in Table 1.

Table 1. Distribution of wavelet coefficients among decomposition levels.

Number of Decomposition Level j Wavelet Coefficients Number of Wavelet Coefficients

−1 a0 = F0 1
0 a1 = F1 1
1 a2, a3 2
2 a4, a5, a6, a7 4
3 a8 . . . a15 8
. . . . . . . . .
j a2 j . . . a2 j+1−1 2 j

. . . . . . . . .
n−2 aN/4 . . . aN/2−1 2n−2

n−1 aN/2 1

Further, consider two approaches to classifying bio-acoustic signals. We have used real
hydroacoustic signals of whales from the database [20].

4. Classification Using the kNN-Algorithm

The classification was based on 14,822 records of whales of two types: ‘killer’ (4673 records) and
‘pilot’ (10,149 records). Data for processing was taken from [20]. Research has been conducted for the
following signal-to-noise ratios (SNR): 100, 3, 0 and −3 dB. Training of the classifier was based on 85%
of records of each class, and testing was based on 15% of records of each class. The following attributes
have been used for comparison: the harmonic wavelet transform (HWT) coefficients, the short-time
Fourier transform (STFT) coefficients and the discrete Fourier transform (DFT) coefficients.



Appl. Sci. 2020, 10, 3097 6 of 14

All records had different numbers of samples (8064–900,771) and different sampling rates.
To perform classification, we had to change the lengths of the records so that they equaled 2. To reduce
the feature space dimension, we employed the approach based on modulo N reduction [21]. Such an
approach allows us to reduce the data dimension when calculating N-point DFT if N < L (L is signal
length). The final signal matrix size (N = 4096) was 14,822 × 4096.

To reduce the feature space dimension, we also used coefficients of symmetry for the harmonic
wavelet transform and the DFT: we used 50% coefficients (matrix: 14,822 × 2048). In the case of using a
short-time Fourier transform (Hamming window of the size 256, overlap 50%), the final signal matrix
size was 14,822 × 3999.

Below we can see the classification results (Tables 2–13, Figure 1) using the kNN-algorithm [22]
for different features and different SNR values.
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The classification problem is to attribute vectors to different classes. We have two classes: positive
and negative. In this case, we can have four different situations at the output of a classifier:

• If the classification result is positive, and the true value is positive as well, we have a true-positive
value—TP.

• If the classification result is positive, but the true value is negative, we have false-positive
value—FP.

• If the classification result is negative, and the true value is negative as well, we have a true-negative
value—TN.

• If the classification result is negative, but the true value is positive, we have a false-negative
value—FN.

We have calculated the following classification quality metrics: precision, recall and accuracy.

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

; Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Tables 14–16 contain precision, recall and accuracy for different classification features and different
signal-to-noise ratios. Additionally, we can find the average final efficiency score characterizing the
use of different classification features.
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Table 2. Classification results: HWT, SNR = 100 dB.

Feature: HWT
SNR = 100 dB Killer Pilot Totals

Killer TP = 590 FN = 110 700
Pilot FP = 85 TN = 1437 1522

Totals 675 1547 2222

Table 3. Classification results: STFT, SNR = 100 dB.

Feature: STFT
SNR = 100 dB Killer Pilot Totals

Killer TP = 591 FN = 109 700
Pilot FP = 107 TN = 1415 1522

Totals 698 1524 2222

Table 4. Classification results: DFT, SNR = 100 dB.

Feature: DFT
SNR = 100 dB Killer Pilot Totals

Killer TP = 592 FN = 108 700
Pilot FP = 93 TN = 1429 1522

Totals 685 1537 2222
Totals 813 1409 2222

Table 5. Classification results: HWT, SNR = 3 dB.

Feature: HWT
SNR = 3 dB Killer Pilot Totals

Killer TP = 642 FN = 58 700

Pilot FP = 171 TN = 1351 1522

Table 6. Classification results: STFT, SNR = 3 dB.

Feature: STFT
SNR = 3 dB Killer Pilot Totals

Killer TP = 642 FN = 58 700
Pilot FP = 238 TN = 1284 1522

Totals 880 1342 2222

Table 7. Classification results: DFT, SNR = 3 dB.

Feature: DFT
SNR = 3 dB Killer Pilot Totals

Killer TP = 535 FN = 165 700
Pilot FP = 112 TN = 1410 1522

Totals 647 1575 2222

Table 8. Classification results: HWT, SNR = 0 dB.

Feature: HWT
SNR = 0 dB Killer Pilot Totals

Killer TP = 669 FN = 31 700

Pilot FP = 228 TN = 1294 1522

Totals 897 1325 2222
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Table 9. Classification results: STFT, SNR = 0 dB.

Feature: STFT
SNR = 0 dB Killer Pilot Totals

Killer TP = 646 FN = 54 700
Pilot FP = 297 TN = 1225 1522

Totals 943 1279 2222

Table 10. Classification results: DFT, SNR = 0 dB.

Feature: DFT
SNR = 0 dB Killer Pilot Totals

Killer TP = 439 FN = 261 700
Pilot FP = 145 TN = 1377 1522

Totals 584 1638 2222

Table 11. Classification results: HWT, SNR = −3 dB.

Feature: HWT
SNR = −3 dB Killer Pilot Totals

Killer TP = 674 FN = 26 700
Pilot FP = 333 TN = 1189 1522

Totals 1007 1215 2222

Table 12. Classification results: STFT, SNR = −3 dB.

Feature: STFT
SNR = −3 dB Killer Pilot Totals

Killer TP = 617 FN = 83 700
Pilot FP = 336 TN = 1186 1522

Totals 953 1269 2222

Table 13. Classification results: DFT, SNR = −3 dB.

Feature: DFT
SNR = −3 dB Killer Pilot Totals

Killer TP = 294 FN = 406 700
Pilot FP = 144 TN = 1378 1522

Totals 438 1784 2222

Table 14. Classification results: HWT.

HWT SNR = 100 dB SNR = 3 dB SNR = 0 dB SNR = −3 dB

Precision 0.8740 I * 0.7897 II * 0.7458 II * 0.6693 II *
Recall 0.8429 III * 0.9171 I * 0.9557 I * 0.9629 I *

Accuracy 0.9122 I * 0.8969 I * 0.8834 I * 0.8384 I *
Averaged score for

three metrics I I I I

Final score I

* score of a particular metric for each SNR. The “averaged score for three metrics” means that we estimated the
average score for three metrics with the same SNR. Then, the final score for each feature (HWT, STFT, DFT) with
different SNRs was chosen. We can see that using HWT as features gives the best result.
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Table 15. Classification results: STFT.

STFT SNR = 100 dB SNR = 3 dB SNR = 0 dB SNR = −3 dB

Precision 0.8467 III * 0.7295 III * 0.6850 III * 0.6474 III *
Recall 0.8443 II * 0.9171 I * 0.9229 II * 0.8814 II *

Accuracy 0.9028 III * 0.8668 III * 0.8420 II * 0.8114 II *
Averaged score for three metrics III III II–III II–III

Final score III

* score of a particular metric for each SNR. The “averaged score for three metrics” means that we estimated the
average score for three metrics with the same SNR. Then, the final score for each feature (HWT, STFT, DFT) with
different SNRs was chosen. We can see that using HWT as features gives the best result.

Table 16. Classification results: DFT.

DFT SNR = 100 dB SNR = 3 dB SNR = 0 dB SNR = −3 dB

Precision 0.8642 II * 0.8269 I * 0.7517 I * 0.6712 I *
Recall 0.8457 I * 0.7643 II * 0.6271 III * 0.4200 III *

Accuracy 0.9095 II * 0.8753 II * 0.8173 III * 0.7525 III *
Averaged score for three metrics II II II–III II–III

Final score II

* score of a particular metric for each SNR. The “averaged score for three metrics” means that we estimated the
average score for three metrics with the same SNR. Then, the final score for each feature (HWT, STFT, DFT) with
different SNRs was chosen. We can see that using HWT as features gives the best result.

5. Classification Using a Deep Neural Network

The classification was based on 14,822 records of whales of two types: ‘killer’ (4673 records) and
‘pilot’ (10,149 records). Data for processing were taken from [20], containing sound recordings of 26
whales of two types: killer whale (15 individuals) and pilot whale (11 individuals).

In [23], for this dataset, two classifiers were constructed based on the kNN-algorithm. In the first
case, the sounds were classified into a grind or killer whale sounds. For training, 800 whale sounds of
each class were used; for testing, 400 of each were used. A classification accuracy of 92% was obtained.
In the second experiment, 18 whales were separated from each other. For training, they took 80 records;
for testing, they took 20. The classification accuracy was 51%.

In this work, records less than 960 ms long were removed from the dataset. After that, 14,810 records
with an average duration of 4 s remained: 10,149 records of the grind and 4661 records of killer whales.

The classifier for both tasks was based on the VGGish model [24], which is a modified deep neural
network VGG [25] pre-trained on the YouTube-8M dataset [26]. Cross entropy was used as a loss
function. The audio files have been pre-processed in accordance with the procedure presented in [24].
Each record is divided into non-overlapping 960 ms frames, and each frame inherits the label of its
parent video. Then log-mel spectrogram patches of 96 × 64 bins are then calculated for each frame.
These form the set of inputs to the classifier. The output for the entire audio recording was carried out
according to the maximum likelihood for all classes for each segment. As features, the output of the
penultimate layer of dimension 128 was taken. More details can be found in the paper [23].

5.1. Experiment 1—Classification by Type

For the first task, we divided the dataset into training and test data in the proportion 85:15; in the
training and the test sample there are no sounds from the same whales. The killer whale was designated
0, and the pilot whale was designated 1. Statistics on the training set: 8486–1, 3995–0. Statistics on the
test set: 1663–1, 666–0.

The following results were obtained. On the training set, the confusion matrix was:(
3994 1
27 8459

)
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1—FP, 27—FN.
On the test set, the confusion matrix was:(

633 33
86 1577

)
33—FP, 86—FN

Recall = 0.95, precision = 0.98 or accuracy = 0.95, AUC = 0.99.
Figure 2 shows the ROC curve for the test set.
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The confusion matrix for the training set is given in Figure 4.
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The accuracy of the classification of individuals in percent on a test sample is presented in Figure 6.
Blue lines indicate the true-positive value, orange lines indicate false-positive value.
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As can be seen, the 25th (whale ID 26) class never predicts. Only for the 9th (whale ID 10),
14th (whale ID 15), 24th (whale ID 25) classes was the classification accuracy below 60%; for all the
others it was higher. For some classes, classification accuracy is higher than 95%.

6. Discussion

Classification of whale sounds is a challenging problem that has been studied for a long time.
Despite great achievements in feature engineering, signal processing and machine learning techniques,
there still remain some major problems to be solved. In this paper, we used harmonic wavelets and
deep neural networks. The results of the classification of whale types and individuals by means of
deep neural networks are better than in previous works [23] with this dataset, but accuracy in the
classification of types using harmonic wavelets as features and in the classification of individuals
using deep neural networks should be increased. In further studies, we will use a Hilbert–Huang
transform [27] and adaptive signal processing algorithms [28] to generate features.

For improvement of individual classification, two approaches can be suggested. The first
combines data augmentation with other architectures of the neural network, but this will lead to
large computational costs. The second approach is to use technology for simple and non-iterative
improvements of multilayer and deep learning neural networks and artificial intelligence systems,
which was proposed some years ago [29,30]. Our further research in the classification of hydroacoustic
signals will be related to these two approaches. We also intend to test these approaches by adding
noises at different SNRs, as we have done for harmonic wavelets.

7. Conclusions

In our paper, we considered the harmonic wavelet transform and its application to classifying
hydroacoustic signals from whales of two types. We have provided a detailed representation of
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the mathematical tools, including fast computation of the harmonic wavelet transform coefficients.
Classification results analysis allows us to draw conclusions about the reasonability of using harmonic
wavelets when analyzing complex data. We have established that the smallest classification error is
provided by the k-NN algorithm based on the harmonic wavelet transform coefficients.

The analysis (Table 17 Figures 5 and 6) illustrates the superiority of using a neural network for
the Whale FM Project dataset in comparison with known work [23] and a kNN-classifier for the
classification problem [31]. However, it is worth noting that the implementation of a neural network of
such a complicated structure requires significant computational resources.

Table 17. Analysis of different approaches to bioacoustic signal classification of whale types (pilot and killer).

Recall Precision

Neural network 0.95 0.98
kNN-algorithm Feature: HWT

SNR = 100 dB 0.84 0.87

Classification of 26 individual whales from the Whale FM Project dataset was proposed, and better
results in comparison with previous works were achieved [23].

The proposed approach can be used in the study of the fauna of the oceans by research institutes,
environmental organizations, and enterprises producing equipment for sonar monitoring. In addition,
the study showed that the same methods can be used for speech processing and classification of
underwater bioacoustic signals, which will subsequently allow the creation of effective medical devices
based on these methods.
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