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Abstract: This work proposes to exploit functional redundancy as a tool to enhance the energy
efficiency of a robotic system. In a functionally redundant system, i.e., one in which the number of
degrees of freedom required to complete the task is smaller than the number of available degrees
of freedom, the motion of the extra degrees of freedom can be tailored to enhance a performance
metric. This work showcases a method that can be used to effectively enhance the energy efficiency
through motion design, using a detailed dynamic model of the UR5 serial robot arm. The method is
based on an optimization of the motion profile, using a parametrized description of the end-effector
orientation: the results showcase an increased efficiency that allows energy savings up to 20.8%,
according to the energy consumption results according to the electro-mechanical dynamic model of
the robot.
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1. Introduction

The optimization of robotic operation is a topic that has drawn a considerable attention and has
been the central topic of countless works, also in the light that several metrics can be defined to measure
the performance of a robot. Most often the only tool available for optimizing a robotic operation in the
trajectory planning, as most industrial robots are programmed by defining their motion as a sequence
of via-points or by composing the motion using a pre-defined set of motion primitives.

Within this framework, traditionally trajectory optimization has been used to minimize
the execution time of a task [1,2], or the smoothness of the motion profile [3,4] for minimum
motion-induced vibrations. Later on, the minimization of the actuator effort, usually defined as the
mechanical energy required to drive the robot joint or a quadratic torque norm, has been investigated
in several works, such as [5–7]. Recently, the attention has shifted to the investigation and optimization
of the energy consumption of a robotic system [8]. Such works are motivated by the energy saving
policies supported by the European Union, as well as by the clear economic advantage associated
with increased efficiency. The review work [8] lists several methods to reduce energy consumption,
among which are the use of regenerative motor drives and energy sharing on a bus [9,10], the use
of mechanical energy storage devices [11–15]. Such methods are listed in the work [8] as hardware
solutions, meaning that the energy efficiency enhancement is obtained by introducing some physical
modifications to the system. On the other hand, all methods that do not require any physical alteration
are listed as software solutions, being based just on the modification of the software that handles the
robotic operation. Among them, the most common solution is to define an energy-optimal motion
profile: within this approach the estimated energy saving can be very significant, since improvements
up to 33% are testified by Park in the work [16].
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The energy optimization can be used also together with the exploitation of redundancy, that can
be either intrinsic or functional. An intrinsically redundant robot is one for which the dimension of the
joint space is larger than the dimension of the operational space, as in the case of a seven degrees of
freedom robot. A manipulator is then said to be functionally redundant when the dimension of the
operational space is larger than the dimension of the task space: in this case the number of degrees of
freedom required by the task is larger than the number of degrees of freedom of the end-effector of the
robot [17]. The key concept behind the use of redundancy as a tool to optimize a robot performance
metric is that among the infinite solutions of the inverse kinematic problem an optimal one can be
defined. One example is provided in the work [18], where the use of a kinematically redundant SCARA
robot is proposed and it is shown that redundancy can be exploited to maximize the capability of the
robot to produce high-speed motion. The topic of energy saving in a kinematically redundant robotic
cell has been investigated by two of the authors of this work in [19], in which it is shown that by
adding an additional degree of freedom to a SCARA robot through a moving platform, its energetic
performance when executing a pick and place task can be significantly improved. According to the
classification proposed above, such work can be classified as a mixed approach, since it combines
both hardware modifications by the added degree of freedom, and software modifications through the
trajectory modification.

This work explores a similar topic by focusing on functional redundancy. Several operations that
are commonly performed by robots in industry are actually characterized by functional redundancy,
considering that a radial symmetry of the end-effector tool is sufficient to define a functional
redundancy. Common examples include welding [20–22], deburring [23,24] or spray painting [25,26]
performed by a robot. The latter is investigated in the work [27], where it is shown that functional
redundancy can be exploited to enhance a robotic spray operation, choosing manipulability as the
optimization goal.

In this work the use of functional redundancy is tested as a tool to enhance the energy consumption
of a robot during the execution of a simple motion task. A detailed dynamic and electric model of
a commercially available robot is set up, and it is used to estimate and then optimize its motion.
Functional redundancy is parametrized by the absolute tool orientation, for the cases in which the
operation being performed allows for it to be varied within a pre-defined range.

2. Energy Consumption Estimation in Robots

In this section the model used to describe the mechanical and the electric model of the robot under
investigation is outlined. The model is defined for the UR5 robot chosen as the testbench, shown in
Figure 1, but the same formulation is suitable to describe the dynamics of most serial robots used in
industry. The model is used to provide an estimation of the energy consumption associated with the
execution of a task.
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Figure 1. Kinematic structure of the Universal Robot UR5 manipulator—global reference frame and
end-effector reference frame.
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The dynamic model of the robot can be described, according to the Lagrangian formalism, by
the formulation:

M(q)q̈ + C(q, q̇) + G(q) + fvq̇ + Fc(sign(q̇)) = Bτm (1)

q = [q1, . . . , q6]
T is the vector of the independent joint coordinates, M(q) is the mass

matrix, C(q, q̇) collects the centrifugal effects and G(q) models gravitational effects. Motor torques
are included in vector τm and B is the force distribution matrix, that accounts for the the gear ratios
too. Friction in the joints due to the one in the motors and in the speed reducers is included through
the diagonal matrix of viscous joint friction coefficients, fv and the vector of Coulomb friction forces Fc.

The inverse dynamic model of Equation (1) is used to compute the instantaneous values of the
motor torques as a function of the desired kinematic quantities q(t), q̇(t) and q̈(t).

The energy consumption is computed starting from the following equations, as usually done in
the literature:

τm(t) = KtI(t) (2)

V(t) = R I(t) + Kbq̇m(t) (3)

Kt is the diagonal matrix of motor torque constants, Kb is the diagonal matrix of the back-emf
constants, R is the diagonal matrix of motor winding resistances and q̇m(t) is the vector of the motor
speeds. The effect of inductances is negligible, as widely proved in the literature. This model applies
to DC motors, as well as to AC brushless motors, according to Park’s model [28,29]. The electric power
drawn by the robot can then be represented by the voltage-current product:

Wm(t) = V(t)TI(t) (4)

Wm is the electric power draw by the six actuators. The consumption of the robot as a whole is
simply computed as the sum of the aix individual joint motor consumptions, as in;

Wr(t) =
6

∑
i=1

Wm,i(t) (5)

Finally, the overall energy expenditure associated with a task defined within the time frame [ta, tb]

can be computed as:

Erobot =

tb∫
ta

Wr(t)dt (6)

It should be pointed out that a correct application of the expression in Equations (5) and (6) to the
test-case used in this work should take into account only the positive values of Wm,i, as the robot is
not equipped with regenerative motor drives or energy sharing among actuators. As a consequence,
when the electric power flows from a motor to the drive, such energy is not stored or shared over a
bus, but it is dissipated on a so-called braking resistor [30].

3. UR5 Robot Parameters

The robot chosen as the test-case here is a Universal Robot UR5 manipulator. Most of its
mechanical and electrical parameters are available in the literature including the robot manufacturer
datasheet [31], or the components manufacturers’ one. The kinematic properties of the manipulator,
according to the manufacturers’ data, are collected in Table 1.
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Table 1. Denavit-Hartenberg parameters of the UR5 robot.

Joint # θ [rad] a [m] d [m] α [rad]

1 0 0 0.089159 π/2
2 0 −0.425 0 0
3 0 −0.39225 0 0
4 0 0 0.10915 π/2
5 0 0 0.09465 −π/2
6 0 0 0.0823 0

The mass properties of the robot are collected in Table 2 by listing the center of mass and the total
mass of each link, as declared by the manufacturer.

Table 2. Mass properties of the UR5 robot.

Link # Mass [kg] Center of Mass Position [m]

1 3.7 [0,−0.02561, 0.00193]
2 8.393 [0.2125, 0, 0.11336]
3 2.33 [0.15, 0.0, 0.0265]
4 1.219 [0,−0.0018, 0.01634]
5 1.219 [0, 0.0018, 0.01634]
6 0.1879 [0, 0,−0.001159]

As for the other parameters required by Equations (1)–(6), they have been obtained by the
commercial catalogs of the components used in the UR5.

The motors are produced by Kollmorgen and belong to the KBM ‘frameless’ series [32]: three ‘size
1’ motors, which can exert a peak torque of 28 Nm at the joint, and three ‘size 3’ motors, which can
deliver up to 150 Nm at the joint. The actual motors can actually deliver higher torque values, as the
torque is limited by the robot control unit to enforce the the maximum safety force limits [31]. To cope
with the lack of more specific data, according to the authors’ knowledge, the electrical and mechanic
parameters of the motors have been estimated through similar motors. Such data are collected in
Table 3, including the continuous service torque Tcs, the back-emf constant kb, the torque constant kt,
winding resistance Ω, motor shaft inertia Jm, static friction torque TC and viscous friction constant fv.

Table 3. Estimated motor parameters.

Joint # Tcs [Nm] kb [V/rad/s] kt [Nm/a] R [Ω] Jm [kg m2] TC [Nm] fv [Nm s/rad]

1 2.87 0.61 1.05 9.0 8.8× 10−5 7.4× 10−2 6.6× 10−5

2 2.87 0.61 1.05 9.0 8.8× 10−5 7.4× 10−2 6.6× 10−5

3 2.87 0.61 1.05 9.0 8.8× 10−5 7.4× 10−2 6.6× 10−5

4 1.41 0.20 0.34 2.9 2.0× 10−5 3.4× 10−2 3.4× 10−5

5 1.41 0.20 0.34 2.9 2.0× 10−5 3.4× 10−2 3.4× 10−5

6 1.41 0.20 0.34 2.9 2.0× 10−5 3.4× 10−2 3.4× 10−5

The reducers used in the UR5 are harmonic drive speed reducers [33] and belong to the HFUS-2SH
family with 100:1 reduction ratio [34]. Again, the data used to set-up the dynamic model refer to
the reducers that, according to the datasheet, better fit the specifications provided by the robot
manufacturer. The main parameters that describe the reducers are reported in Table 4, including the
static friction TC, the reducer moment of inertia Jr and the average efficiency η.
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Table 4. Estimated reduction gears parameters: Coulomb friction torque, moment of inertia,
average efficiency.

Joint # TC [Nm] Jr [kg m2] η

1 0.069 1.07 × 10−4 0.75
2 0.069 1.07 × 10−4 0.75
3 0.069 1.07 × 10−4 0.75
4 0.029 0.19 × 10−4 0.75
5 0.029 0.19 × 10−4 0.75
6 0.029 0.19 × 10−4 0.75

4. Trajectory Optimization and Results

In this section the dynamic and the energy model of the robot are used to measure and optimize a
robotic operation under the hypothesis of functional redundancy. Since the robot has six degrees of
freedom, any task in which the specified motion can be described by five or less degrees of freedom
can be classified as a functionally redundant one. Functionally redundant tasks are quite common in
industrial applications, which often include operation such as deburring, painting or welding. In all
these applications functional redundancy is the result of the irrelevant rotation of the end-effector
about the approach vector, as a result of its axial symmetry. The most basic example is spray painting
with a gun that produces a conic spray pattern [35], resulting in task that is described by five degrees
of freedom and 1 redundant degree of freedom. Similarly, welding can be performed by varying the
orientation of the welding tool relative to the workpiece [36].

In this work the energy consumption associated with a simple task is optimized to minimize
energy consumption, referring to a case in which one degree of freedom is unspecified, and two
degrees of freedom are partially specified. This occurrence might happen in a painting application,
in which the rotation of the end-effector of the robot about the approach vector (i.e., the roll angle)
is irrelevant to the task, and the pitch and yaw angles are specified within a range, given that they
have a minor impact on the spray results. The proposed method however can be adapted to cope with
other situations, simply by using wider on narrower bounds on the functionally redundant degrees
of freedom, which can be adjusted to obtain the preferred trade-off between the optimization goal,
i.e., energy consumption, and suboptimal spray paint coverage. It is assumed, therefore, that the each
task is specified by the end-effector position as three positions in the operational space and three Euler
angles (roll, pitch and yaw) as:

PT(t) = [xT , yT , zT , ϕ, θ, ψ]T (7)

Once the motion of the end-effector position and orientation is fully specified, the corresponding
motion of the robot joints can be found by using a suitable inverse kinematic algorithm, that for the
robot under consideration, takes a simple closed-form expression [37]. If the roll angle does not affect
the task execution, and the pitch and yaw angles can vary within a specified range, the latter can be
used as optimization variables in a constrained optimization routine.

4.1. Test-Case 1

In the first test-case, a horizontal rest-to-rest motion of the end-effector was taken into
consideration. The motion took place between the Cartesian positions P0 = [−0.5, 0.5, 0.3]T m and
P f = [0.5, 0.5, 0.3] m, with initial and final orientation angles set to φ = [ϕ, θ, ψ]T = [0, 0, 3

2 π]T rad
following a path defined as a straight line. The motion therefore described a 1 m displacement along a
horizontal line, with the end-effector aligned with the Y-axis of the global reference frame.

First, a non-optimized motion planning was simulated to provide a measure of the performance
improvement that results from the proposed optimization method. In this case the motion of the
end-effector, specified according to the pose described as in Equation (7), was set so that the orientation
of the end-effector was kept constant and equal to φ = [0, 0, 3

2 π]T rad, while the Cartesian motion of
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the end-effector was described by a trapezoidal speed profile with acceleration and deceleration ramp
duration equal to 150 ms. The overall duration of the task was chosen to be T = 750 ms. The choice of
the trapezoidal speed profile was motivated by the availability of this motion primitive among the
ones made available by the robot programming environment. The results of executing the task in
the simulation environment are provided in Figures 2–4. The optimization of the motion profile was
performed using a custom simulator developed in MATLAB, which was also used to plot the results
of the simulations. Figure 2 shows the motor speed profiles: the plot shows that the sixth joint of the
robot is not moved, as it dictates the roll of the end-effector reference frame, which is not required by
the task. The electric power drawn by each motor is shown in Figure 4.
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Figure 2. Motor speed for nominal tool orientation with the non-optimized profile: ϕ = 0 rad ,
θ = 0 rad, ψ = 3π/2 rad.
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Figure 3. Motor torque for nominal tool orientation with the non-optimized profile: ϕ = 0 rad ,
θ = 0 rad, ψ = 3π/2 rad.
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Figure 4. Motor electric power for nominal tool orientation: ϕ = 0 rad , θ = 0 rad, ψ = 3π/2 rad.

The overall consumption associated with the task, evaluated according to Equation (6), is equal to
220.4 J.

A set of energy optimization procedures have been developed to make the pitch and yaw angles
properly vary form their nominal values (i.e., θ = 0 rad and ψ = 3

2 π rad) to reduce the energy
consumption. These approaches can be summarized through the following optimization problem:

min
[θ(t),ψ(t)]

Erobot (8)

subject to: θ(t) ∈ [−π/9, π/9] rad;

ψ(t) ∈ [25/18π, 29/19π] rad;

t ∈ [0, T]

The bounds set to the pitch and yaw angles in Equation (8) highlight that the pose of the
end-effector is allowed to vary as much as ±20 deg from their nominal values. Tighter or wider
bounds can be set according to the limitations imposed by the specific application under consideration.
Several motion profiles for the two redundant angles will be tested here to analyze which choice
provides the best energy saving.

To provide a further comparison with a metric widely adopted in robotics, a performance index
based on manipulability is evaluated for each motion design trial, and a separate manipulability
optimization has been implemented as well as a further benchmark. Manipulability is defined as:

m(q) =
√

J(q)JT(q) = σ1σ2 . . . σn (9)

in which J(q) is the configuration-dependent Jacobian matrix of the end-effector of the robot, and can
be evaluated also as the product of the Jacobian singular values. The manipulability takes small values
in proximity of a singularity, and is proportional to the volume of the speed ellipsoid, and as such
measures the capability of the robot to produce end-effector speed. By increasing manipulability,
the sensitivity coefficients that relate the velocity of the end-effector to the joint velocities are increased
as well, with the effect that the same speed of the tool can be obtained with lower joint speeds: thus it
is expected that the motor effort is reduced as well. While it is true that a precise measure of the energy
consumption can be captured only by a detailed description of the robot dynamics, manipulability
has been chosen in countless works for its simple computation (it requires only the knowledge of
the Denavit-Hartenberg parameters of the robot) and for its clear physical interpretation. As such,
manipulability is often chosen as the performance measure to be be enhanced when redundancy
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allows it [17]. Since manipulability is a local measure, i.e., it is related to a single value of the robot
configuration q, the measure is extended to a whole task by measuring its time integral along the
duration of the task, leading to the following optimization problem:

min
[θ(t),ψ(t)]

T∫
0

1
m(q(t))

dt (10)

subject to: θ(t) ∈ [−π/9, π/9] rad;

ψ(t) ∈ [25/18π, 29/19π] rad;

t ∈ [0, T]

We chose five different approaches, by adopting standard motion profiles to define θ(t) and ψ(t).
The actual motion of the robot axes is then defined by its inverse kinematics.

The first approach, which is also the simplest one, aims at reducing the energy consumption
by finding two constant values of the pitch and yaw angles, always within the allowable ±20 deg
domain. In this situation the tool orientation is constant along the whole trajectory, and the position of
the end-effector follows the prescribed straight line. The constant values of pitch and yaw are found
by solving the trajectory optimization problem of Equations (8) or (10). A different approach can be
defined by assuming that the tool orientation can be continuously changed during the execution of
the task, moving from an initial value to a final value, always allowing to vary both pitch and yaw.
These four angle values, i.e., initial and final pitch angle, initial and final yaw angle, are therefore
the unknown parameters, i.e., the optimization variables. The motion primitive assumed to define
these motions leads to the other four strategies investigated in this work. In the second scenario the
pitch and yaw motion are allowed to move at constant speed. The third, fourth and fifth optimization
scenarios are defined by assuming three simple standard trajectories: a symmetric trapezoidal speed
profile with with 150 ms ramp duration, a third-order polynomial profile, and a fifth order polynomial
profile, respectively.

The results of the computation of the five optimization scenarios are reported in Table 5.
The results include also the manipulability index measured as in Equation (10), as well as a comparison
with the non-optimized motion. As expected, all the optimization routines provide a meaningful
energy saving. The least effective way to reduce the energy consumption is to choose constant value
for the pitch and yaw: such a method, in the case under consideration, provides a rather modest saving,
which falls just below 3%. Rather higher savings can be obtained when a motion of the end-effector
pose is allowed: in such cases the estimated energy reduction varies between 15.97% and 18.60%,
reaching therefore quite significant energy savings. The best option is, within this test-case selection,
to adopt a trapezoidal speed profile, nevertheless other choices provide similar results. By looking
at the manipulability too, as reported in Table 5, it can be seen that the non-optimized motion leads
to the lowest, i.e., ‘worst’, manipulability measure. As suggested by this evidence, the effect of
the maximization the manipulability on the effective energy consumption is analyzed by the results
presented in Table 6. The data show that, regardless of the specific choice of the parametrization of the
end-effector pose, the maximization of the manipulability is incapable of reducing the overall energy
consumption associated with the task. This means that this simple and commonly used metric is not
capable of capturing the complexity of the dynamics associated with the robot energy consumption
which involves several other robot properties.
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Table 5. Energy minimization: test-case I, motion along a horizontal line.

Optimization Variables Energy [J] Energy Saving Manipulability Index

No optimization 220.4 - 0.0476
Constant pitch and yaw 214.5 2.68 % 0.0507

Constant speed pitch and yaw 185.2 15.97 % 0.0499
Trapezoidal pitch and yaw speed profile 179.4 18.60 % 0.0499

Poly3 pitch and yaw 181.1 17.83 % 0.0488
Poly5 pitch and yaw 179.9 18.37 % 0.0502

Table 6. Manipulability maximization: test-case I, motion along a horizontal line.

Optimization Variables Manipulability Index ∆ Energy [J] Energy Saving

No optimization 0.0476 - 220.4 -
Constant pitch and yaw 0.0508 6.72 % 238.4 −8.17%

Constant speed pitch and yaw 0.0563 18.27 % 227.9 −3.4%
Trapezoidal pitch and yaw speed profile 0.0570 19.75 % 226.5 −2.77%

Poly3 pitch and yaw 0.0572 20.12 % 226.9 −2.95%
Poly5 pitch and yaw 0.0575 20.81 % 227.7 −3.31%

The time history of the optimal tool orientation, i.e., the one that minimizes the overall energy
cost, is shown in Figure 5.
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Figure 5. Energy-optimal tool orientation: trapezoidal pitch and yaw angles.

To better highlight the improvement in the energy consumption brought by the proposed method,
the time history of the energy required in the non-optimized task and in the energy-optimal task are
compared in Figure 6. The significant energy saving resulting from the optimized tool orientation
is evident.
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Figure 6. Absorbed electric power: non-optimized motion profile vs. optimized motion with
trapezoidal pitch and yaw tool angles.

4.2. Test-Case 2

A second test-case is here proposed, by requiring a motion along a vertical line from
P0 = [0.5, 3,−0.4]T m to P f = [0.5, 3, 0.6]T m. As in the previous test-case, roll angle was kept
constant and equal to zero, while the nominal values of roll and pitch were set to, θ = π/2 rad and

φ =
3
2

π rad, respectively. The motion duration was set to 1.25 s and the motion of the end-effector
followed a trapezoidal speed profile with acceleration and deceleration segments with 312 ms time
duration. Again, the optimization of the pitch and yaw motion allowed for a ±π/9 rad angular
excursion.

The data collected in Tables 7 and 8 again show that the optimization of the end-effector orientation
can lead to meaningful energy saving as high as 8.94%. The performance improvement was smaller
than the one achieved for the first test-case: this is probably due to the fact that the energy-based
trajectory optimization techniques are more effective for high speed motion, i.e., in all cases in which
the inertial forces dominate the dynamics of the robot. The data presented in the two tables show that
the energy consumption associated with a task was hardly related to the manipulability index, as the
energy-optimal profiles presenedt a manipulability index that was very similar to the one observed
for the non-optimized motion. Moreover, maximizing the manipulability measure does not provide
any energy improvement, as can be inferred from the data available in Table 8 and as observed in the
first test-case.

Table 7. Energy minimization: test-case II, motion along a vertical line.

Optimization Variables Energy [J] Energy Improvement Manipulability Index

No optimization 222.7 - 0.0654
Constant pitch and yaw 218.9 1.71% 0.0305

Constant speed pitch and yaw 205.2 7.86% 0.0658
Trapezoidal pitch and yaw speed profile 202.8 8.94% 0.0656

Poly3 pitch and yaw 211.6 4.98% 0.0650
Poly5 pitch and yaw 208.1 6.56% 0.0653
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Table 8. Manipulability maximization: test-case II, motion along a vertical line.

Optimization Variables Manipulability Index ∆ Energy [J] Energy Saving

No optimization 0.0654 - 222.7 -
Constant pitch and yaw 0.0870 32.02 % 223.4 −0.31%

Constant speed pitch and yaw 0.0874 33.64 % 229.0 −2.83%
Trapezoidal pitch and yaw speed profile 0.0874 33.64 % 228.9 −2.78%

Poly3 pitch and yaw 0.0874 33.64% 228.7 −2.69%
Poly5 pitch and yaw 0.0874 33.64% 228.7 −2.69%

5. Conclusions

This works has presented a method to optimize the energy consumption of a robot by exploiting
functional redundancy, i.e., the availability of more degrees of freedom in the robot structure than the
number of degrees of freedom required by the task. The suggested method, which is based on the
use of parametrized motion profiles for the redundant degrees of freedom, is applied to a UR5 serial
robot arm, showcasing significant energy reduction in the execution of simple motion tasks. The work
shows also that the maximization of the manipulability index, which is commonly used to cope
with kinematic and functional redundancy, in most cases fails at improving the energy consumption.
The method is applied to six degree of freedom serial arm, but it is of general use, being suitable to
any robotic configuration and any motion task, provided that accurate dynamic and electric model of
the robot is available. The application of the proposed method has shown that a task can be executed
with a significant energetic improvement, that can reach values as high as 20.8% without altering
the execution time. These data, together with the one available in the work [19], show that both
functional and intrinsic redundancy can be exploited to obtain significant energy reductions, provided
that the motion of the redundant degrees of freedom is carefully optimized. In comparison with the
previous work, the method presented in this work does not require any hardware modification, thus is
it potentially less expensive.
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