
applied
sciences

Article

Online Mining Intrusion Patterns from IDS Alerts

Kai Zhang 1,*, Shoushan Luo 1, Yang Xin 1,2,*, Hongliang Zhu 1 and Yuling Chen 2

1 National Engineering Laboratory for Disaster Backup and Recovery, Information Security Center, School of
Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
buptlou@bupt.edu.cn (S.L.); zhuhongliang@bupt.edu.cn (H.Z.)

2 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guizhou 550025, China;
ylchen3@gzu.edu.cn

* Correspondence: kaikai4006@163.com (K.Z.); yangxin@bupt.edu.cn (Y.X.)

Received: 22 March 2020; Accepted: 19 April 2020; Published: 24 April 2020
����������
�������

Featured Application: In this paper, an influence model is proposed to tackle the sequence
data analysis problems such as disordering, element missing and random noises. The proposed
method can be used for mining intrusion patterns from the intrusion action sequence extracted
from IDS (Intrusion Detection System) alerts.

Abstract: The intrusion detection system (IDS) which is used widely in enterprises, has produced a
large number of logs named alerts, from which the intrusion patterns can be mined. These patterns
can be used to construct the intrusion scenarios or discover the final objectives of the malicious actors,
and even assist the forensic works of network crimes. In this paper, a novel algorithm for the intrusion
pattern mining is proposed which aimsto solve the difficult problems of the intrusion action sequence
such as the loss of important intrusion actions, the disorder of the action sequence and the random
noise actions. These common problems often occur in the real production environment which cause
serious performance decrease in the analyzing system. The proposed algorithm is based on the
online analysis of the intrusion action sequences extracted from IDS alerts, through calculating the
influences of a particular action on the subsequent actions, the real intrusion patterns are discovered.
The experimental results show that the method is effective in discovering pattern from the complex
intrusion action sequences.

Keywords: IDS (Intrusion Detection System) alerts; intrusion pattern; intrusion scenarios; correlation
analysis; intrusion detection; attack scenario; online mining; sequence learning; pattern mining

1. Introduction

According to the kill chain proposed by Bryant et al. [1], the inside multi-step attack has become
the main part of the intrusion process, which includethe pre hack (reconnaissance and delivery),
hack (installation and privilege escalation), compromise (lateral movement, actions on objective)
and theft (exfiltration). Currently, many sophisticated intrusion attacks [2–4] start from the inside of
victim networks through the spear-phishing email or the host with vulnerabilities. Once the victim
host executes the malicious code, the attacker begins to explore the whole network to discover the
resources they need for further attacking. The attacker will hide the traits and avoid detection during
intrusion [5,6]. In a word, it is critical to enhancing the existing multi-step attack detection abilities
inside the network.

However, the multi-step attack detection approaches are mostly based on the intrusion detection
system (IDS) sensors deployed in the hosts or the entrance of the network and are facing more severe
challenges: (1) high false positives, which leads to the insertion of irrelevant intrusion actions into the
data stream; (2) high redundancy, which is caused by the IDS detection mechanisms or the intended

Appl. Sci. 2020, 10, 2983; doi:10.3390/app10082983 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/10/8/2983?type=check_update&version=1
http://dx.doi.org/10.3390/app10082983
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 2983 2 of 14

intrusion strategies; (3) incomplete data, which is a common situation in the real environment due to
the network delay or the system error; (4) disordered data, which is caused by the intended intrusion
strategies [7] or multiple parallel attacking paths. These issues will cause the failure of the methods
based on sequence learning.

Recently, researchers have been making their systems more lightweight, more sensitive to the
threats, and capable of online analysis and processing of large-scale streaming data with noises and
errors, rather than learning outdated patterns based on limited historical data. They hope that the
whole system can automatically adapt to the variances of data and capture the known or unknown
threat patterns in an unsupervised way [8]. This is one of the most important studies in the intrusion
detection field.

Modeling the multi-step attack is a process of gathering the evidence extracted from the network
logs or IDS alerts, to find out how the attack might transpire over time, it is a broader concept than
traditional intrusion detection [9]. In the whole process of attack scenario construction, a few kinds
of literatures focus on the data preprocessing such as alert normalization, alert aggregation, noise
reduction, and hyper-alert extraction, while others focus on the correlation analysis, intrusion pattern
discovery, attack scenario construction and attack prediction [10]. Unfortunately, few of them are
dedicated to addressing the challenges described above.

Liu et al. [11] proposed a framework for reconstructing the attack scenarios based on the reasoning
methods, which can deal with the incomplete evidence using the known vulnerabilities database and
other expert knowledge, but it was difficult for them to work out the missing part of the unknown
attack scenario.

Angelini et al. [12] proposed a graph-based online multi-step attack detector which can detect
the on-going attacks early enough for managers to take proper countermeasures, and a visualization
interface was developed to represent comprehensive network situations. The preprocessing of the
sensor data was not described, and it was also based on the known vulnerabilities, besides, there was
no evaluation based on unknown intrusion patterns.

Shen et al. [13] noticed the problems caused by the incomplete, disordered intrusion action
sequences. They proposed a framework named Tiresias which is based on the RNN (Recurrent Neural
Networks) algorithm, which can effectively deal with the disordered alert stream. Although Tiresias
can calculate the probabilities of multiple actions that may happen in the future, it is trained based on
the pre-labeled events, the labeled data imply that the framework is based on the known attack analysis.

Haas et al. [14] proposed a framework for multi-step attack detection by alert correlation process.
The alert clustering is leveraged to reduce the number of alerts, and highlight the intrusion actions. The
communication patterns are identified based on the clusters, and then the graph-based alert correlation
(GAC) algorithm is applied to realize the alert correlations. In addition, the clusters will be labeled
based on the vulnerabilities database, and then correlated together with IP addresses. The irrelevant
intrusion actions will mix in the discovered attack scenarios due to the correlation based on IP.

In this paper, the backward influence factor (BIF) algorithm is proposed aiming to overcome
the problems caused by the disordered, incomplete and noisy IDS logs in a real-time manner. It is a
sequence pattern mining algorithm, which is suitable for analyzing the streaming data generated online
by IDS or other devices. The BIF algorithm is evaluated in the context of a multi-step attack scenario
discovery task. The whole system is based on IDS alert analysis containing five phases: normalizing,
intrusion action extraction, intrusion session pruning, correlation discovery, dynamic correlation graph
construction. The first three phases are inherited from our previous work [15] because we want to use
the data structures and concepts that have been created before. Each phase is summarized as follows:

In the normalizing phase, it unifies the raw alerts from different types of sensors and converts
them into the common data structures that can be solved by the system. After normalizing, the raw
alerts are converted into alert objects (alert for short).

In the intrusion action extraction phase, it groups alerts by two fields: the source IP address
and the destination IP address. Then the intrusion actions are extracted based on the type field and

Appl. Sci. 2020, 10, 2983 3 of 14

the destination port field of alerts derived from the same group. In this phase, most redundant and
repeated alerts are merged.

In the intrusion session pruning phase, a long action sequence can be divided into several short
sequences (intrusion sessions) by calculating the average time interval of actions. Then a pruning
process begins to remove the repeat sub-patterns from the original sequence. The pruning algorithm
can significantly reduce the length of the intrusion sessions without destroying the original associations
of actions.

In the correlation discovery phase, all the pruned sessions will be fed to the correlation discovery
module according to the start time of the session. The BIF algorithm is applied to calculate the attraction
levels between any two actions of the session. The influence factor (IF) values which express the
attraction level will increase or decrease with the incoming data over time, then the real association
relations are built.

The dynamic correlation graph (DCG) is constructed based on the discovered correlations with
higher IF values, the DCG links and nodes are dynamically created or destroyed with the influence
factor matrix (IFM) which is the matrix maintaining all IF values and updating them in real-time.

In this paper, the proposed BIF algorithm will be introduced in detail, it can be leveraged either as
an optimized method for the intrusion scenario discovery task of our former work [15] or a separate
intrusion pattern mining system.

The proposed algorithm is based on the assumptions: the distance of two actions in a session can
be used to measure the association strength of them.

2. Materials and Methods

The network environment is always complex and unpredictable, the problems caused by the
network environment can badly impact the network security systems. In addition, the IDS can also
cause problems such as redundant alerts and repeated patterns.

As shown in Figure 1, S1 is the correct intrusion session extracted under the experimental
environment, while S2, S3, and S4 are three different states in a running environment. The action
sequence is altered due to the different configurations of the network and the security systems.
Therefore, it is necessary to pay attention to these problems and try to minimize their impact.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 15

In the intrusion action extraction phase, it groups alerts by two fields: the source IP address and
the destination IP address. Then the intrusion actions are extracted based on the type field and the
destination port field of alerts derived from the same group. In this phase, most redundant and
repeated alerts are merged.

In the intrusion session pruning phase, a long action sequence can be divided into several short
sequences (intrusion sessions) by calculating the average time interval of actions. Then a pruning
process begins to remove the repeat sub-patterns from the original sequence. The pruning algorithm
can significantly reduce the length of the intrusion sessions without destroying the original
associations of actions.

In the correlation discovery phase, all the pruned sessions will be fed to the correlation discovery
module according to the start time of the session. The BIF algorithm is applied to calculate the
attraction levels between any two actions of the session. The influence factor (IF) values which
express the attraction level will increase or decrease with the incoming data over time, then the real
association relations are built.

The dynamic correlation graph (DCG) is constructed based on the discovered correlations with
higher IF values, the DCG links and nodes are dynamically created or destroyed with the influence
factor matrix (IFM) which is the matrix maintaining all IF values and updating them in real-time.

In this paper, the proposed BIF algorithm will be introduced in detail, it can be leveraged either
as an optimized method for the intrusion scenario discovery task of our former work [15] or a
separate intrusion pattern mining system.

The proposed algorithm is based on the assumptions: the distance of two actions in a session can
be used to measure the association strength of them.

2. Materials and Methods

The network environment is always complex and unpredictable, the problems caused by the
network environment can badly impact the network security systems. In addition, the IDS can also
cause problems such as redundant alerts and repeated patterns.

As shown in Figure 1, S1 is the correct intrusion session extracted under the experimental
environment, while S2, S3, and S4 are three different states in a running environment. The action
sequence is altered due to the different configurations of the network and the security systems.
Therefore, it is necessary to pay attention to these problems and try to minimize their impact.

Figure 1. The illustration of the real intrusion sessions. S1, S2, and S3 are three intrusion sessions; A-
H is intrusion actions that composed an intrusion scenario; S1 denotes the original session state; S2 is
disordered and some irrelevant actions engaged; B is lost in S3; B-C in S4 is repeated due to the
intrusion detection system (IDS).

For some IDS introduced problems, a few methods were proposed in our previous work [16,17],
the redundant alerts, for example, can be reduced in the action extraction phase, and a few repeated
action patterns can be removed in the session pruning phase by the pruning algorithm. In this paper,
we mainly focus on the incomplete and disordered session (sequence) learning and attack pattern
discovery in real-time.

Definitions

Figure 1. The illustration of the real intrusion sessions. S1, S2, and S3 are three intrusion sessions;
A-H is intrusion actions that composed an intrusion scenario; S1 denotes the original session state; S2
is disordered and some irrelevant actions engaged; B is lost in S3; B-C in S4 is repeated due to the
intrusion detection system (IDS).

For some IDS introduced problems, a few methods were proposed in our previous work [16,17],
the redundant alerts, for example, can be reduced in the action extraction phase, and a few repeated
action patterns can be removed in the session pruning phase by the pruning algorithm. In this paper,
we mainly focus on the incomplete and disordered session (sequence) learning and attack pattern
discovery in real-time.

Definitions

The problem domain can be formalized as follows. An intrusion action ai ∈ A consists of a group
of alerts, where A denotes the set of all unique actions, and |A| denotes the size of A. An intrusion

Appl. Sci. 2020, 10, 2983 4 of 14

session which is a sequence of actions ordered by their time field, s(xy)
i =

{
a(xy)

i1 , a(xy)
i2 , . . . , a(xy)

in

}
where

x and y denote the two hosts from which the session is extracted.
It is assumed that an intrusion action has an attraction effect on the subsequent actions, and

a particular action happens due to the attractions of one or more other actions which happened in
different sessions. The degree of influence can be calculated and used to measure the association
strength between actions.

For a given session s(xy)
i =

{
a(xy)

i1 , a(xy)
i2 , . . . , a(xy)

in

}
, a(xy)

i1 has a direct influence on a(xy)
i2 , and indirect

influence on a(xy)
i3 , the degree of influence will get lower with the longer distance between a(xy)

i1 and

a(xy)
in . The influence range is 1 ≤ ω ≤ w, where w is the number of actions influenced. For a given
ω, if an intrusion action B falls in the influence range of A, A influents B (A attracts B) which can be
denoted as A 7→ B . The algorithm will calculate the influences on the actions that fall in the influence
range of specified action in the session. The influence range is shown in Figure 2.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 15

The problem domain can be formalized as follows. An intrusion action ia A∈ consists of a
group of alerts, where A denotes the set of all unique actions, and |A| denotes the size of A. An
intrusion session which is a sequence of actions ordered by their time field,

() () () ()
1 2{ , ,..., }xy xy xy xy

i i i ins a a a= where x and y denote the two hosts from which the session is extracted.
It is assumed that an intrusion action has an attraction effect on the subsequent actions, and a

particular action happens due to the attractions of one or more other actions which happened in
different sessions. The degree of influence can be calculated and used to measure the association
strength between actions.

For a given session () () () ()
1 2{ , ,..., }xy xy xy xy

i i i ins a a a= , ()
1
xy
ia has a direct influence on ()

2
xy
ia , and indirect

influence on ()
3
xy
ia , the degree of influence will get lower with the longer distance between ()

1
xy
ia and

()xy
ina . The influence range is ω≤ ≤1 w , where w is the number of actions influenced. For a given ω ,

if an intrusion action B falls in the influence range of A, A influents B (A attracts B) which can be
denoted as A B . The algorithm will calculate the influences on the actions that fall in the influence
range of specified action in the session. The influence range is shown in Figure 2.

Figure 2. The influence range of A and B in a session when ω = 3 .

The influence degree of ia on ja can be calculated using Equation (1):

= >
− +

 2() ()
1i jF a a j i

j i
, (1)

where ia and ja denotes the ith and jth action of the session, respectively, ω is the influence range,

and |s| denotes the length of the session. The more actions exist between two actions, the lower their
influence is and the lower their association strength is. The influence of each pair of actions will
update the old values recorded in the influence matrix shown in Figure 3. In the matrix, the values in
a row express the attraction strengths of the particular action on other actions, and the values in a
column express the attraction strengths of other actions on the particular action.

Figure 3. The influence matrix. a1–a8 indicates intrusion actions. The IF value of a1 on a2 is 0.26.

Figure 2. The influence range of A and B in a session when ω = 3.

The influence degree of ai on a j can be calculated using Equation (1):

F(ai 7→ a j) =
2

j− i + 1
(j > i), (1)

where ai and a j denotes the ith and jth action of the session, respectively, ω is the influence range,
and |s| denotes the length of the session. The more actions exist between two actions, the lower their
influence is and the lower their association strength is. The influence of each pair of actions will update
the old values recorded in the influence matrix shown in Figure 3. In the matrix, the values in a row
express the attraction strengths of the particular action on other actions, and the values in a column
express the attraction strengths of other actions on the particular action.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 15

The problem domain can be formalized as follows. An intrusion action ia A∈ consists of a
group of alerts, where A denotes the set of all unique actions, and |A| denotes the size of A. An
intrusion session which is a sequence of actions ordered by their time field,

() () () ()
1 2{ , ,..., }xy xy xy xy

i i i ins a a a= where x and y denote the two hosts from which the session is extracted.
It is assumed that an intrusion action has an attraction effect on the subsequent actions, and a

particular action happens due to the attractions of one or more other actions which happened in
different sessions. The degree of influence can be calculated and used to measure the association
strength between actions.

For a given session () () () ()
1 2{ , ,..., }xy xy xy xy

i i i ins a a a= , ()
1
xy
ia has a direct influence on ()

2
xy
ia , and indirect

influence on ()
3
xy
ia , the degree of influence will get lower with the longer distance between ()

1
xy
ia and

()xy
ina . The influence range is ω≤ ≤1 w , where w is the number of actions influenced. For a given ω ,

if an intrusion action B falls in the influence range of A, A influents B (A attracts B) which can be
denoted as A B . The algorithm will calculate the influences on the actions that fall in the influence
range of specified action in the session. The influence range is shown in Figure 2.

Figure 2. The influence range of A and B in a session when ω = 3 .

The influence degree of ia on ja can be calculated using Equation (1):

= >
− +

 2() ()
1i jF a a j i

j i
, (1)

where ia and ja denotes the ith and jth action of the session, respectively, ω is the influence range,

and |s| denotes the length of the session. The more actions exist between two actions, the lower their
influence is and the lower their association strength is. The influence of each pair of actions will
update the old values recorded in the influence matrix shown in Figure 3. In the matrix, the values in
a row express the attraction strengths of the particular action on other actions, and the values in a
column express the attraction strengths of other actions on the particular action.

Figure 3. The influence matrix. a1–a8 indicates intrusion actions. The IF value of a1 on a2 is 0.26. Figure 3. The influence matrix. a1–a8 indicates intrusion actions. The IF value of a1 on a2 is 0.26.

With the continuous arrival of the intrusion sessions, the two actions A and B may have different
influence values in different sessions, the old influence in the matrix should be updated with the new
values using Equation (2):

Fo = Fo + α(Fn − Fo) (0 < α < 1), (2)

Appl. Sci. 2020, 10, 2983 5 of 14

where α indicates the refreshing rate, Fo denotes the original value of influence recorded in the matrix,
Fn denotes the newly calculated influence value. Note that, the calculated Fo may increase or decrease.

The number of sessions contains A 7→ B can be denoted as f (A 7→ B) , and the total number of
sessions in an analyzing period can be denoted as |S|. The probability of A 7→ B can be calculated
using Equation (3):

P(A 7→ B) =
f (A 7→ B)
|S|

, (3)

The comprehensive influence of intrusion action A on B can be calculated using Equation (4):

CF(A 7→ B) = F(A 7→ B) × P(A 7→ B), (4)

where with Equation (4), the influence strength of A on B can be calculated based on the
historical observation.

For a given intrusion action A, what predictions will the algorithm make? First, the influenced
actions by A will be collected as the candidate predictions, second, the comprehensive influences are
calculated, and the strongly influenced actions will be selected and predicted.

3. Results

In this section, the evaluation results of the proposed algorithm are discussed. Four types of
datasets are generated automatically and the algorithm is tested based on them. The experimental
results are discussed separately.

3.1. Evaluations On The Automatically Generated Dataset

We extracted the intrusion sessions based on the CICIDS2017 intrusion detection evaluation
dataset [18] in the previous work [15], but the extracted sessions are not complicated and varied
enough to evaluate the proposed method. In addition, we mainly focused on the sequence analyzing
performance and intrusion pattern discovery accuracy, rather than the data preprocessing, however,
an effective data preprocessing can increase the capacity of the proposed method.

According to the characteristics of intrusion patterns extracted from real data in our former work,
we generated multiple datasets with each having different types of defects described in Section 2.

3.1.1. Baseline Dataset

First, we generate a standard baseline dataset for comparison tests with other datasets. The baseline
dataset contains 10 different intrusion patterns (action sequences) involving 90 unique actions and
500 random background action sequences. Each intrusion pattern shares no common actions with
others, and contains no irrelevant actions, in a word, they have no data problem. The details of the
generated dataset are listed in Table 1.

Table 1. The baseline dataset.

Characteristics Value Note

Pattern sessions 10 Need to be learned and predicted
Random traffic 500 Background sessions
Unique actions 190 Total number of unique actions in the dataset
Missed actions 0 Number of actions lost in each pattern

Disordered actions 0 Actions changed their positions in the session
Shared actions 0 Actions shared in any two pattern sessions

The pattern sessions used to generate the baseline dataset are listed in Table 2:

Appl. Sci. 2020, 10, 2983 6 of 14

Table 2. Generated pattern sessions.

Pattern Sessions Appear Times 1

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14 5
a15, a16, a17, a18, a19, a20 5

a21, a22, a23, a24, a25, a26, a27, a28, a29 5
a30, a31, a32, a33, a34, a35, a36, a37, a38, a39 4
a40, a41, a42, a43, a44, a45, a46, a47, a48, a49 5

a50, a51, a52, a53, a54, a55 4
a56, a57, a58, a59, a60, a61, a62, a63, a64 4

a65, a66, a67, a68, a69, a70, a71, a72 5
a73, a74, a75, a76 3

a77, a78, a79, a80, a81, a82, a83, a84, a85, a86, a87, a88, a89, a90 5
1 Appear times are random in each round of test.

We first tested the method with the baseline data set. After learning the dataset, the different
actions were fed to the algorithm to check the prediction results by calculating the top average
influences. The result shows that the algorithm can predict the future action sequence accurately due
to the clean session patterns. The test results are listed in Table 3.

Table 3. Prediction results based on the baseline dataset.

Inputs TopPredicted Actions (Average Influence Factor)

a1 a2(0.020), a3(0.013), a4(0.010), a5(0.008), a6(0.007)
a6 a7(0.020), a8(0.013), a9(0.010), a10(0.008), a11(0.007)

a16 a17(0.027), a18(0.018), a19(0.013), a20(0.011)
a24 a25(0.033), a26(0.022), a27(0.017), a28(0.013), a29(0.011)
a33 a34(0.027), a35(0.018), a36(0.013), a37(0.011), a38(0.009)
a40 a41(0.032), a42(0.027), a43(0.023), a44(0.020)
a52 a53(0.027), a54(0.018), a55(0.013)
a61 a62(0.033), a63(0.022), a64(0.017)
a68 a69(0.020), a70(0.013), a71(0.010), a72(0.008)
a83 a84(0.027), a85(0.018), a86(0.013), a87(0.011), a88(0.009)

Based on the data shown in Table 3, the algorithm works well with the baseline dataset. The top
average influence will be used to determine what is probably the next action. The baseline dataset is
only used to check whether our thinking is feasible.

In the following evaluations, three datasets each with a different data defect are generated and
used to test the proposed algorithm. In the end, a dataset with all three types of data defects are
generated to simulate the real data environment, and the BIF algorithm is fully tested.

3.1.2. Noisy Dataset

By only inserting random irrelevant actions into each pattern session of the baseline dataset to
generate a noisy dataset, the number of noise action inserts into each of the pattern sessions can be
specified. We inserted 1–10 noise actions (10 noise levels) into the random positions of each pattern
session to observe the prediction errors which are compared to the baseline dataset. There were
10 tests for each noise level, for each test, the data set was regenerated to ensure sufficient randomness.
The system made 10 predictions based on different inputs and the prediction errors were counted.
The average influences of each candidate action were calculated and the top n actions with the highest
average influences were selected as the prediction results which were compared with the predictions
shown in Table 3.

A part of the generated noisy dataset is shown in Figure 4, of which each row contains an intrusion
session. The actions that start with “b” are the noise actions, and all the actions are divided by a comma.

Appl. Sci. 2020, 10, 2983 7 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 15

The average influences of each candidate action were calculated and the top n actions with the highest
average influences were selected as the prediction results which were compared with the predictions
shown in Table 3.

A part of the generated noisy dataset is shown in Figure 4, of which each row contains an
intrusion session. The actions that start with “b” are the noise actions, and all the actions are divided
by a comma.

Figure 4. The generated noisy sessions.

The accuracy of the analysis based on the noisy dataset is shown in Table 4.

Table 4. Prediction results based on the noisy dataset.

Inputs Prediction Errors Prediction Accuracy 1
a1 (0,0,0,0,3,3,4,0,3,7) 98.5%
a6 (0,0,0,1,2,1,0,0,1,2) 99%
a16 (0,0,4,0,3,1,7,6,10,0) 92.3%
a24 (1,0,0,0,1,2,2,2,5,10) 95.4%
a33 (0,0,4,2,1,7,3,12,2,8) 93.3%
a40 (1,0,2,0,1,4,4,2,8,0) 97.6%
a52 (0,0,1,0,1,2,4,2,2,5) 94.3%
a61 (0,0,0,1,0,1,0,2,0,1) 98.3%
a68 (0,0,1,0,0,0,5,4,6,5) 94.8%
a83 (0,0,0,0,0,1,0,2,0,1) 99.4%
1 #() (1) 100%

#
= − ×actions wrongly predictedaccuracy action

actions should be correctly predicted
.

The evaluation results are shown in Figure 5:

Figure 4. The generated noisy sessions.

The accuracy of the analysis based on the noisy dataset is shown in Table 4.

Table 4. Prediction results based on the noisy dataset.

Inputs Prediction Errors Prediction Accuracy 1

a1 (0,0,0,0,3,3,4,0,3,7) 98.5%
a6 (0,0,0,1,2,1,0,0,1,2) 99%

a16 (0,0,4,0,3,1,7,6,10,0) 92.3%
a24 (1,0,0,0,1,2,2,2,5,10) 95.4%
a33 (0,0,4,2,1,7,3,12,2,8) 93.3%
a40 (1,0,2,0,1,4,4,2,8,0) 97.6%
a52 (0,0,1,0,1,2,4,2,2,5) 94.3%
a61 (0,0,0,1,0,1,0,2,0,1) 98.3%
a68 (0,0,1,0,0,0,5,4,6,5) 94.8%
a83 (0,0,0,0,0,1,0,2,0,1) 99.4%

1 accuracy(action) = (1− #actions wrongly predicted
#actions should be correctly predicted) × 100%.

The evaluation results are shown in Figure 5:Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 15

Figure 5. The prediction accuracy based on different noisy levels.

As shown in Figure 5, the average accuracy of the prediction decreases with the increasing of
the noise level. When inserting 10 noise actions into each pattern sessions, the prediction accuracy
stays above 93.7%. The average accuracy of predictions based on the input actions is 96.3%. In a word,
the proposed algorithm can learn the patterns from the noisy sequences with a higher accuracy.

3.1.3. Disordered Dataset

In this section, we will test the algorithm using the disordered dataset generated based on the
baseline data. The term disordered in this paper means the action in an intrusion session (action
sequence) changed their position due to various reasons—the session is called the disordered session.
The action that changed its original position is called the disordered action. The disorder level of a
dataset is the average number of disordered actions in each pattern session.

There are five disorder levels, and 10 tests for each disorder level. For each test, two datasets will
be generated: the training dataset and the testing dataset, each dataset is generated separately. The
disordered actions in each pattern session are randomly selected and moved to a random position in
the session. The pattern sessions each with 10 actions are shown in Table 5.

Table 5. The pattern sessions should be discovered by system.

No. Pattern Sessions Appear Times
1 a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 5
2 a11, a12, a13, a14, a15, a16, a17, a18, a19, a20 5
3 a21, a22, a23, a24, a25, a26, a27, a28, a29, a30 5
4 a31, a32, a33, a34, a35, a36, a37, a38, a39, a40 5
5 a41, a42, a43, a44, a45, a46, a47, a48, a49, a50 5
6 a51, a52, a53, a54, a55, a56, a57, a58, a59, a60 5

The appear times means the number of appearances of each disordered pattern sessions in the
dataset. For each test, an input action will be fed to the system for prediction. The testing results are
shown in Table 6.

Table 6. Testing results based on the disordered dataset.

Inputs Prediction Errors Prediction Accuracy 1
a1 (9,7,9,14,10) 89.1%
a11 (7,7,8,11,13) 89.8%
a21 (2,8,8,14,12) 90.2%
a31 (3,7,12,11,15) 89.3%
a41 (5,7,7,8,18) 90%

Figure 5. The prediction accuracy based on different noisy levels.

As shown in Figure 5, the average accuracy of the prediction decreases with the increasing of the
noise level. When inserting 10 noise actions into each pattern sessions, the prediction accuracy stays
above 93.7%. The average accuracy of predictions based on the input actions is 96.3%. In a word, the
proposed algorithm can learn the patterns from the noisy sequences with a higher accuracy.

Appl. Sci. 2020, 10, 2983 8 of 14

3.1.3. Disordered Dataset

In this section, we will test the algorithm using the disordered dataset generated based on the
baseline data. The term disordered in this paper means the action in an intrusion session (action
sequence) changed their position due to various reasons—the session is called the disordered session.
The action that changed its original position is called the disordered action. The disorder level of a
dataset is the average number of disordered actions in each pattern session.

There are five disorder levels, and 10 tests for each disorder level. For each test, two datasets
will be generated: the training dataset and the testing dataset, each dataset is generated separately.
The disordered actions in each pattern session are randomly selected and moved to a random position
in the session. The pattern sessions each with 10 actions are shown in Table 5.

Table 5. The pattern sessions should be discovered by system.

No. Pattern Sessions Appear Times

1 a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 5
2 a11, a12, a13, a14, a15, a16, a17, a18, a19, a20 5
3 a21, a22, a23, a24, a25, a26, a27, a28, a29, a30 5
4 a31, a32, a33, a34, a35, a36, a37, a38, a39, a40 5
5 a41, a42, a43, a44, a45, a46, a47, a48, a49, a50 5
6 a51, a52, a53, a54, a55, a56, a57, a58, a59, a60 5

The appear times means the number of appearances of each disordered pattern sessions in the
dataset. For each test, an input action will be fed to the system for prediction. The testing results are
shown in Table 6.

Table 6. Testing results based on the disordered dataset.

Inputs Prediction Errors Prediction Accuracy 1

a1 (9,7,9,14,10) 89.1%
a11 (7,7,8,11,13) 89.8%
a21 (2,8,8,14,12) 90.2%
a31 (3,7,12,11,15) 89.3%
a41 (5,7,7,8,18) 90%
a51 (5,7,11,11,13) 89.6%

1 accuracy(action) = (1− #actions wrongly predicted
#actions should be correctly predicted) × 100%.

There are more prediction errors than the result of the noisy data evaluation. The average accuracy
of prediction for each pattern session is 89.7%. The relation between prediction accuracy and the
disorder level is illustrated in Figure 6.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15

a51 (5,7,11,11,13) 89.6%
1 #() (1) 100%

#
= − ×actions wrongly predictedaccuracy action

actions should be correctly predicted
.

There are more prediction errors than the result of the noisy data evaluation. The average
accuracy of prediction for each pattern session is 89.7%. The relation between prediction accuracy
and the disorder level is illustrated in Figure 6.

Figure 6. The prediction accuracy based on 5 disordered levels.

The proposed algorithm is more sensitive to the disordered data than the noisy data, that is
because it is the major method for the algorithm to learn patterns by accumulating the influence
between ordered actions, if the orders of actions are changing frequently, it will be hard for the
algorithm to learn any patterns. With 50% disordered actions in each session, the prediction accuracy
is 85% which is an acceptable result.

3.1.4. Incomplete Dataset

For the incomplete dataset, which refers to the situation that actions in an intrusion session are
lost for various reasons. The missing action will not change the order of other actions in the session;
however, it will cause serious problems in the data mining systems and the statistical systems,
especially the sequential learning systems.

The proposed method can solve the missing data problem by creating the association relations
between actions. The influence relation of two actions becomes stronger if they always appear in the
same session and are close to each other, otherwise, the influence relation will weaken. So, the missing
action will not impact the learned patterns.

The evaluation test is similar to the disordered data evaluation. The six types of pattern sessions
are the same as the ones in Table 5. There are five missing-levels for each intrusion sessions. For
instance, level 2 means two random actions of the pattern sessions are lost. For each missing level, 10
predictions are made for the particular input by the system. The prediction results are shown in Table
7.

Table 7. Testing results based on the incomplete dataset.

Inputs Prediction Errors Prediction Accuracy 1
a1 (2,5,4,6,7) 94.7%
a11 (0,4,1,4,5) 96.9%
a21 (3,3,3,7,6) 95.1%
a31 (1,2,4,5,7) 95.8%
a41 (0,0,2,3,7) 97.3%
a51 (0,2,5,4,7) 96%

Figure 6. The prediction accuracy based on 5 disordered levels.

Appl. Sci. 2020, 10, 2983 9 of 14

The proposed algorithm is more sensitive to the disordered data than the noisy data, that is because
it is the major method for the algorithm to learn patterns by accumulating the influence between
ordered actions, if the orders of actions are changing frequently, it will be hard for the algorithm to
learn any patterns. With 50% disordered actions in each session, the prediction accuracy is 85% which
is an acceptable result.

3.1.4. Incomplete Dataset

For the incomplete dataset, which refers to the situation that actions in an intrusion session
are lost for various reasons. The missing action will not change the order of other actions in the
session; however, it will cause serious problems in the data mining systems and the statistical systems,
especially the sequential learning systems.

The proposed method can solve the missing data problem by creating the association relations
between actions. The influence relation of two actions becomes stronger if they always appear in the
same session and are close to each other, otherwise, the influence relation will weaken. So, the missing
action will not impact the learned patterns.

The evaluation test is similar to the disordered data evaluation. The six types of pattern sessions
are the same as the ones in Table 5. There are five missing-levels for each intrusion sessions. For instance,
level 2 means two random actions of the pattern sessions are lost. For each missing level, 10 predictions
are made for the particular input by the system. The prediction results are shown in Table 7.

Table 7. Testing results based on the incomplete dataset.

Inputs Prediction Errors Prediction Accuracy 1

a1 (2,5,4,6,7) 94.7%
a11 (0,4,1,4,5) 96.9%
a21 (3,3,3,7,6) 95.1%
a31 (1,2,4,5,7) 95.8%
a41 (0,0,2,3,7) 97.3%
a51 (0,2,5,4,7) 96%

1 accuracy(action) = (1− #actions wrongly predicted
#actions should be correctly predicted) × 100%.

The average accuracy of the predictions made for particular input is 96%, which means the
algorithm has a strong resistance to the incomplete data. The relation between the missing level and
the prediction accuracy is shown in Figure 7.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15

1 #() (1) 100%
#

= − ×actions wrongly predictedaccuracy action
actions should be correctly predicted

.

The average accuracy of the predictions made for particular input is 96%, which means the
algorithm has a strong resistance to the incomplete data. The relation between the missing level and
the prediction accuracy is shown in Figure 7.

Figure 7. The prediction accuracy based on 5 missing levels.

The algorithm will first analyze the training dataset and then load the testing dataset which is
generated with the same parameters of the training dataset, all the datasets contain the pattern
sessions randomly generated and the background sessions. The experimental results show that the
missing actions can hardly impact the proposed algorithm. The average prediction accuracy has been
kept above 93% when even 40% of the actions are missing.

3.1.5. The Heterogeneous Dataset

Combined with the three types of data defects described above, we generated the final version
of the heterogeneous dataset containing 50% of noise actions, 20% of disordered actions and 20%
missing actions. There is only one type of intrusion session that expresses the unknown intrusion
pattern in the dataset. The BIF algorithm should analyze the overall data to discover the unknown
intrusion pattern. The actions of the unknown intrusion pattern will also appear randomly in other
sessions. Finally, the discovered pattern will be compared with the initial session.

In this experiment, the dataset will be firstly described, and then, the experimental results will
be discussed. We want to know how bad data the algorithm can analyze to discover the whole
unknown pattern and the performance of finding effective patterns.

First, the composition of the generated dataset is listed in Table 8:

Table 8. The heterogeneous dataset for analyzing.

Sessions Types Amount Note
Pattern sessions 1 10–20 The target that should be discovered

Irrelevant sessions 50 150 The other ordinary irrelevant patterns
Background sessions Not limited 2000 The background traffic

As shown in Table 8, the first type data are the pattern session which is the target pattern <a1,
a2, …, a10>, the actions which are related to the target pattern will be named with the prefix “a” to
distinguish them. When generating the pattern sessions, it will obfuscate these sessions with the
following steps:

Figure 7. The prediction accuracy based on 5 missing levels.

Appl. Sci. 2020, 10, 2983 10 of 14

The algorithm will first analyze the training dataset and then load the testing dataset which is
generated with the same parameters of the training dataset, all the datasets contain the pattern sessions
randomly generated and the background sessions. The experimental results show that the missing
actions can hardly impact the proposed algorithm. The average prediction accuracy has been kept
above 93% when even 40% of the actions are missing.

3.1.5. The Heterogeneous Dataset

Combined with the three types of data defects described above, we generated the final version of
the heterogeneous dataset containing 50% of noise actions, 20% of disordered actions and 20% missing
actions. There is only one type of intrusion session that expresses the unknown intrusion pattern in the
dataset. The BIF algorithm should analyze the overall data to discover the unknown intrusion pattern.
The actions of the unknown intrusion pattern will also appear randomly in other sessions. Finally,
the discovered pattern will be compared with the initial session.

In this experiment, the dataset will be firstly described, and then, the experimental results will be
discussed. We want to know how bad data the algorithm can analyze to discover the whole unknown
pattern and the performance of finding effective patterns.

First, the composition of the generated dataset is listed in Table 8:

Table 8. The heterogeneous dataset for analyzing.

Sessions Types Amount Note

Pattern sessions 1 10–20 The target that should be discovered
Irrelevant sessions 50 150 The other ordinary irrelevant patterns

Background sessions Not limited 2000 The background traffic

As shown in Table 8, the first type data are the pattern session which is the target pattern <a1,
a2, . . . , a10>, the actions which are related to the target pattern will be named with the prefix “a” to
distinguish them. When generating the pattern sessions, it will obfuscate these sessions with the
following steps:

• Inserting noise actions. The noise actions are named with the prefix “b”, for example, b1, b2.
• Removing actions. The pattern related actions may be removed from the session randomly to

simulate the incomplete data.
• Changing positions. The positions of a few actions may be changed randomly in the session to

simulate the disordered situations.

Figure 8 shows a part of the pattern sessions with different types of defects.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15

• Inserting noise actions. The noise actions are named with the prefix “b”, for example, b1, b2.
• Removing actions. The pattern related actions may be removed from the session randomly to

simulate the incomplete data.
• Changing positions. The positions of a few actions may be changed randomly in the session to

simulate the disordered situations.

Figure 8 shows a part of the pattern sessions with different types of defects.

Figure 8. A fragment of the first type of data. Each row denotes a pattern session.

There are 50 types of sessions contained in the irrelevant sessions shown in Table 8;, they are
ordinary patterns used to mislead the algorithm by containing a few actions appeared in the target
pattern sessions at a specified percentage to simulate the real data environment. Intrusion patterns
always share common actions with other sessions. The actions of the irrelevant sessions are named
with the prefix “c”. These irrelevant intrusion patterns are also obfuscated through the steps
described above. The generated data are shown in Figure 9.

Figure 9. A fragment of the second type of data. Each row denotes an intrusion session.

The third type of data are generated in a random way to increase the total data volume and
introduce the data sparsity problem. In addition, these sessions have a specified probability to contain
the actions appeared in the first type of data. The generated data of this type are shown in Figure 10.

Figure 10. A fragment of the third type of data. Each row denotes a normal session.

Figure 8. A fragment of the first type of data. Each row denotes a pattern session.

Appl. Sci. 2020, 10, 2983 11 of 14

There are 50 types of sessions contained in the irrelevant sessions shown in Table 8;, they are
ordinary patterns used to mislead the algorithm by containing a few actions appeared in the target
pattern sessions at a specified percentage to simulate the real data environment. Intrusion patterns
always share common actions with other sessions. The actions of the irrelevant sessions are named
with the prefix “c”. These irrelevant intrusion patterns are also obfuscated through the steps described
above. The generated data are shown in Figure 9.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15

• Inserting noise actions. The noise actions are named with the prefix “b”, for example, b1, b2.
• Removing actions. The pattern related actions may be removed from the session randomly to

simulate the incomplete data.
• Changing positions. The positions of a few actions may be changed randomly in the session to

simulate the disordered situations.

Figure 8 shows a part of the pattern sessions with different types of defects.

Figure 8. A fragment of the first type of data. Each row denotes a pattern session.

There are 50 types of sessions contained in the irrelevant sessions shown in Table 8;, they are
ordinary patterns used to mislead the algorithm by containing a few actions appeared in the target
pattern sessions at a specified percentage to simulate the real data environment. Intrusion patterns
always share common actions with other sessions. The actions of the irrelevant sessions are named
with the prefix “c”. These irrelevant intrusion patterns are also obfuscated through the steps
described above. The generated data are shown in Figure 9.

Figure 9. A fragment of the second type of data. Each row denotes an intrusion session.

The third type of data are generated in a random way to increase the total data volume and
introduce the data sparsity problem. In addition, these sessions have a specified probability to contain
the actions appeared in the first type of data. The generated data of this type are shown in Figure 10.

Figure 10. A fragment of the third type of data. Each row denotes a normal session.

Figure 9. A fragment of the second type of data. Each row denotes an intrusion session.

The third type of data are generated in a random way to increase the total data volume and
introduce the data sparsity problem. In addition, these sessions have a specified probability to contain
the actions appeared in the first type of data. The generated data of this type are shown in Figure 10.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15

• Inserting noise actions. The noise actions are named with the prefix “b”, for example, b1, b2.
• Removing actions. The pattern related actions may be removed from the session randomly to

simulate the incomplete data.
• Changing positions. The positions of a few actions may be changed randomly in the session to

simulate the disordered situations.

Figure 8 shows a part of the pattern sessions with different types of defects.

Figure 8. A fragment of the first type of data. Each row denotes a pattern session.

There are 50 types of sessions contained in the irrelevant sessions shown in Table 8;, they are
ordinary patterns used to mislead the algorithm by containing a few actions appeared in the target
pattern sessions at a specified percentage to simulate the real data environment. Intrusion patterns
always share common actions with other sessions. The actions of the irrelevant sessions are named
with the prefix “c”. These irrelevant intrusion patterns are also obfuscated through the steps
described above. The generated data are shown in Figure 9.

Figure 9. A fragment of the second type of data. Each row denotes an intrusion session.

The third type of data are generated in a random way to increase the total data volume and
introduce the data sparsity problem. In addition, these sessions have a specified probability to contain
the actions appeared in the first type of data. The generated data of this type are shown in Figure 10.

Figure 10. A fragment of the third type of data. Each row denotes a normal session. Figure 10. A fragment of the third type of data. Each row denotes a normal session.

The three types of data are generated separately, however, they will be randomly mixed into
the data stream fed to the analyzing algorithm. About 2350 sessions are generated, and more than
20,000 actions are created in the dataset. It takes about 600 milliseconds to finish the whole process
including data-generating, analyzing, file writing and results calculating. All the tests in this paper are
running on a server with 8 GB RAM and 2.6 GHz Intel CPU, on which Windows 10 operating system
is installed, and the Java programing language is used to implement all the tests.

Based on the dataset with 20% disordered actions, 50% noise actions and 20% missing actions,
and the pattern sessions sharing 20% of actions with the ordinary patterns sessions, the target intrusion
pattern discovery result is illustrated in Figure 11:

Appl. Sci. 2020, 10, 2983 12 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 15

The three types of data are generated separately, however, they will be randomly mixed into the
data stream fed to the analyzing algorithm. About 2350 sessions are generated, and more than 20,000
actions are created in the dataset. It takes about 600 milliseconds to finish the whole process including
data-generating, analyzing, file writing and results calculating. All the tests in this paper are running
on a server with 8 GB RAM and 2.6 GHz Intel CPU, on which Windows 10 operating system is
installed, and the Java programing language is used to implement all the tests.

Based on the dataset with 20% disordered actions, 50% noise actions and 20% missing actions,
and the pattern sessions sharing 20% of actions with the ordinary patterns sessions, the target
intrusion pattern discovery result is illustrated in Figure 11:

Figure 11. The dynamic correlation graph based on the analysis results.

As shown in Figure 12, the orange circle denotes the action, and the attraction list lists the top
five actions that are heavily influenced by the specified action. The first bold action in the list is the
next action that the particular action will point to and the float numbers in the list are the
comprehensive influence factors. There are two orange arrows in Figure 12 pointing at the wrong
actions comparing with the initial pattern which means the proposed method needs more adjustment
and optimization. The influence threshold β = 0.01 can be used to filter out the actions with
influences below β , thus, there are no subsequent actions after a10. The correlation graph can be
updated over time and the links between actions will be altered too.

Figure 12. Intrusion pattern discovery accuracy of the proposed method.

Figure 11. The dynamic correlation graph based on the analysis results.

As shown in Figure 12, the orange circle denotes the action, and the attraction list lists the top five
actions that are heavily influenced by the specified action. The first bold action in the list is the next
action that the particular action will point to and the float numbers in the list are the comprehensive
influence factors. There are two orange arrows in Figure 12 pointing at the wrong actions comparing
with the initial pattern which means the proposed method needs more adjustment and optimization.
The influence threshold β = 0.01 can be used to filter out the actions with influences below β, thus,
there are no subsequent actions after a10. The correlation graph can be updated over time and the
links between actions will be altered too.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 15

The three types of data are generated separately, however, they will be randomly mixed into the
data stream fed to the analyzing algorithm. About 2350 sessions are generated, and more than 20,000
actions are created in the dataset. It takes about 600 milliseconds to finish the whole process including
data-generating, analyzing, file writing and results calculating. All the tests in this paper are running
on a server with 8 GB RAM and 2.6 GHz Intel CPU, on which Windows 10 operating system is
installed, and the Java programing language is used to implement all the tests.

Based on the dataset with 20% disordered actions, 50% noise actions and 20% missing actions,
and the pattern sessions sharing 20% of actions with the ordinary patterns sessions, the target
intrusion pattern discovery result is illustrated in Figure 11:

Figure 11. The dynamic correlation graph based on the analysis results.

As shown in Figure 12, the orange circle denotes the action, and the attraction list lists the top
five actions that are heavily influenced by the specified action. The first bold action in the list is the
next action that the particular action will point to and the float numbers in the list are the
comprehensive influence factors. There are two orange arrows in Figure 12 pointing at the wrong
actions comparing with the initial pattern which means the proposed method needs more adjustment
and optimization. The influence threshold β = 0.01 can be used to filter out the actions with
influences below β , thus, there are no subsequent actions after a10. The correlation graph can be
updated over time and the links between actions will be altered too.

Figure 12. Intrusion pattern discovery accuracy of the proposed method. Figure 12. Intrusion pattern discovery accuracy of the proposed method.

The discovery accuracy is used to measure the ability of the system to discover patterns. It can be
calculated by δ=|D|/|E| × 100% where |D| denotes the correct relations discovered by system, and |E|

denotes all the relations the system should correctly discover.
The quantitative testing method is used to find out which factors have a potential impact on

the accuracy of the proposed method. For the three types of data listed in Table 8, the relationship
between the proportion of them in the dataset and the pattern discovery accuracy is tested. The results
show that:

• The number of background sessions has little effect on the discovery accuracy;
• The irrelevant pattern sessions will impact the accuracy depending on the number of common

actions sharing the target pattern sessions;

Appl. Sci. 2020, 10, 2983 13 of 14

• With the fixed percentage of noise data, disordered data and incomplete data, the discovery
accuracy is mainly impacted by the appearance frequency of pattern sessions.

The experimental results are shown in Figure 12. If an intrusion pattern appears above 50 times in
the dataset with the three types of data defects, the discovery accuracy can be 91% and remains stable.

If the percentage of actions sharing between target pattern sessions and the irrelevant pattern
sessions is lower than 40%, the pattern identifying accuracy can be kept above 90%. This is effective for
distinguishing the particular intrusion patterns from other similar intrusion patterns.

4. Discussion

In this paper, a novel sequence learning and mining algorithm is proposed to meet the challenges
of network log (or the IDS logs) defects caused by various environmental problems. The algorithm is
simple, lightweight and effective in discovering the patterns hiding in the network logs.

The proposed algorithm is based on the backward attraction calculation, which means the
association relation between two intrusion actions can be measured by the distance of their indices
in the intrusion session (action sequence). The nearer of their position in the session, the stronger
the attraction between them. The attraction strength is updated and accumulated with the different
distances of actions in different sessions. The actions with higher attractions are selected to construct
the correlation graph which is used for attack prediction or attack scenario recognition.

Three types of automatically generated datasets each with a different type of data defects are
tested on the algorithm, the results show that the proposed algorithm is effective in learning and
mining the sequence patterns from the disordered, noisy and incomplete session data. The prediction
tests are used to measure the learning ability of the algorithm, and the average prediction accuracy
is kept above 90%. Finally, the heterogeneous dataset is generated by combining all data defects to
simulate the real data environment, and the pattern discovery ability of the algorithm is measured
in different conditions. The experimental results show that the algorithm can discover the unknown
intrusion pattern in the dataset containing 50 other different intrusion patterns sharing 40% actions
with the target pattern session, and the discovery accuracy is kept above 91%.

Although the algorithm is effective in mining the intrusion patterns in the complex dataset, it is
still impacted by the high disordered sessions, if 50% of actions in each session is randomly changed
their position, the accuracy of the algorithm will go down to 85%. Solving this problem will be the aim
of subsequent studies.

The proposed algorithm is designed based on online unsupervised learning and with no complex
parameter tuning and retraining. In addition, the network logs normalization, aggregation, and other
clustering processes are preferred to prevent the explosive growth of the action types.

Author Contributions: K.Z. conceived and designed the experiments; K.Z. performed the experiments; K.Z.
analyzed the data; S.L. and H.Z. contributed environment; Y.X. and Y.C. provide resources; K.Z. wrote the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China, grant number 2017YFB0802300, the
Major Scientific and Technological Special Project of Guizhou Province, grant number 20183001, and the Foundation
of Guizhou Provincial Key Laboratory of Public Big Data, grant numbers 2018BDKFJJ008, 2018BDKFJJ020, and
2018BDKFJJ021 And The APC was funded by Y.X. and Y.C.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bryant, B.D.; Saiedian, H. A novel kill-chain framework for remote security log analysis with SIEM software.
Comput. Secur. 2017, 67, 198–210. [CrossRef]

2. Stringhini, G.; Shen, Y.; Han, Y.; Zhang, X. Marmite: Spreading Malicious File Reputation through Download
Graphs. In Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA,
4–8 December 2017; pp. 91–102.

http://dx.doi.org/10.1016/j.cose.2017.03.003

Appl. Sci. 2020, 10, 2983 14 of 14

3. Blond, S.L.; Uritesc, A.; Gilbert, C.; Chua, Z.L.; Saxena, P.; Kirda, E. A look at targeted attacks through the
lense of an NGO. In Proceedings of the 23rd USENIX conference on Security Symposium, San Diego, CA,
USA, 20–22 August 2014; pp. 543–558.

4. Farinholt, B.; Rezaeirad, M.; Pearce, P.; Dharmdasani, H.; Yin, H.; Blond, S.L.; McCoy, D.; Levchenko, K. To
Catch a Ratter: Monitoring the Behavior of Amateur DarkComet RAT Operators in the Wild. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 770–787.

5. Lu, G.; Guo, R.; Wang, J. An Analysis of the Behavior of APT Attack in the Ngay Campaign. In Proceedings
of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China,
8–11 October 2018; pp. 1115–1122.

6. Ghafir, I.; Kyriakopoulos, K.G.; Lambotharan, S.; Aparicio-Navarro, F.J.; Assadhan, B.; Binsalleeh, H.;
Diab, D.M. Hidden Markov Models and Alert Correlations for the Prediction of Advanced Persistent Threats.
IEEE Access 2019, 7, 99508–99520. [CrossRef]

7. Navarro, J.; Deruyver, A.; Parrend, P. A systematic survey on multi-step attack detection. Comput. Secur.
2018, 76, 214–249. [CrossRef]

8. Husák, M.; Komárková, J.; Bou-Harb, E.; Čeleda, P. Survey of Attack Projection, Prediction, and Forecasting
in Cyber Security. IEEE Commun. Surv. Tutor. 2019, 21, 640–660. [CrossRef]

9. Yang, S.J.; Du, H.; Holsopple, J.; Sudit, M. Attack Projection. In Cyber Defense and Situational Awareness;
Kott, A., Wang, C., Erbacher, R.F., Eds.; Springer: Cham, Switzerland, 2014; pp. 239–261.

10. Ramaki, A.A.; Rasoolzadegan, A.; Bafghi, A.G. A Systematic Mapping Study on Intrusion Alert Analysis in
Intrusion Detection Systems. ACM Comput. Surv. 2018, 51, 1–41. [CrossRef]

11. Liu, C.; Singhal, A.; Wijesekera, D. A logic-based network forensic model for evidence analysis. In Proceedings
of the 11th IFIP International Conference on Digital Forensics (DF), Orlando, FL, USA, October 2015;
Volume 462, pp. 129–145.

12. Angelini, M.; Bonomi, S.; Borzi, E.; Pozzo, A.D.; Lenti, S.; Santucci, G. An Attack Graph-based On-line
Multi-step Attack Detector. In Proceedings of the 19th International Conference on Distributed Computing
and Networking, Varanasi, India, 4–7 January 2018; pp. 1–10.

13. Shen, Y.; Mariconti, E.; Vervier, P.-A.; Stringhini, G. TIRESIAS: Predicting Security Events through Deep
Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
Toronto, ON, Canada, 15 January 2018; pp. 592–605.

14. Haas, S.; Fischer, M. On the alert correlation process for the detection of multi-step attacks and a graph-based
realization. SIGAPP Appl. Comput. Rev. 2019, 19, 5–19. [CrossRef]

15. Zhang, K.; Zhao, F.; Luo, S.; Xin, Y.; Zhu, H. An Intrusion Action-Based IDS Alert Correlation Analysis and
Prediction Framework. IEEE Access 2019, 7, 150540–150551. [CrossRef]

16. Su, Y.-H.; Cho, M.C.Y.; Huang, H.-C. False Alert Buster: An Adaptive Approach for NIDS False Alert
Filtering. In Proceedings of the 2nd International Conference on Computing and Big Data, Taichung, Taiwan,
18–20 October 2019; 2019; pp. 58–62.

17. Kawakani, C.T.; Junior, S.B.; Miani, R.S. Intrusion Alert Correlation to Support Security Management.
In Proceedings of the XII Brazilian Symposium on Information Systems on Brazilian Symposium on
Information Systems: Information Systems in the Cloud Computing Era-Volume 1, Florianopolis, Santa
Catarina, Brazil, 17 May 2016; pp. 313–320.

18. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP), Funchal, Madeira, Portugal, 22–24 January 2018; Volume 1, pp. 108–116.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2930200
http://dx.doi.org/10.1016/j.cose.2018.03.001
http://dx.doi.org/10.1109/COMST.2018.2871866
http://dx.doi.org/10.1145/3184898
http://dx.doi.org/10.1145/3325061.3325062
http://dx.doi.org/10.1109/ACCESS.2019.2946261
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Evaluations On The Automatically Generated Dataset
	Baseline Dataset
	Noisy Dataset
	Disordered Dataset
	Incomplete Dataset
	The Heterogeneous Dataset

	Discussion
	References

