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Abstract: Stabilization projects of rock masses cannot be performed without a proper geomechanical
characterization. The classical approaches, due to logistic issues, typically are not able to cover
extensively the areas under study. Geo-structural analysis on point cloud from terrestrial laser scanning
and photogrammetry from unmanned aerial vehicles are valid tools for analysis of discontinuity
systems. Such methodologies provide reliable data even in complex environmental settings (active
cliffs) or at inaccessible sites (excavation fronts in tunnels), offering advantages in terms of both safety
of the operators and economic and time issues. We present the implementation of these techniques at
a tuff cliff over the Santa Caterina beach (Campania) and at the main entrance of Castellana Caves
(Apulia). In the first case study, we also perform an integration of the two techniques. Both sites are
of significant tourist and economic value, and present instability conditions common to wide areas
of southern Italy: namely, retrogressive evolution of active cliffs along the coast, and instability at
the rims of natural and/or artificial sinkholes. The results show the reliability of the data obtained
through semi-automatic methods to extract the discontinuity sets from the point clouds, and their
agreement with data collected in the field through classical approaches. Advantages and drawbacks
of the techniques are illustrated and discussed.
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1. Introduction

Rock masses are typically anisotropic, due to presence of a variety of discontinuities of both
primary (bedding planes) and secondary (joints, faults) origin. They present therefore significant
variations in the geotechnical and mechanical properties, also in reference to their time-dependent
behavior. At this goal, the design in different fields of engineering projects generally considers the use
of geotechnical models to characterize a site [1–13]. In such models, the rock types are subdivided
into units that can be considered homogenous based upon their lithology and technical properties.
In this way a 2- or 3-D schematic representation is obtained, aimed at providing a basis for forecasting
the behavior of the involved materials, but also at understanding the likely interactions between the
ground and the engineering works.

In the case of carbonate rock masses, the complexity becomes still higher, due to peculiarity of
carbonate rocks, and to the effects of karst processes [14–18]. Networks consisting of karst conduits
and passages are able to significantly change the behavior of the rock mass; as a matter of fact,
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they are typically the discontinuity sets of greater size and frequency, at the same time showing
high pervasiveness throughout the rock mass. This results also in controlling the water flow, which
occurs in particular during the most significant rainstorm events. From all these considerations, it
appears that karst features strongly complicate any analysis dealing with fractured and karstified
carbonate rock masses. Nevertheless, this complication is generally not considered at all in the classical
geo-mechanical approaches [19], that are implemented disregarding these important aspects. Karst is
known as a particularly difficult to examine environment, so that planning and designing engineering
works should be performed with extreme care, including as much as possible the knowledge of the
surficial and subterranean karst features, also obtained through direct speleological research and
exploration [20–23].

It therefore appears that, whatever the setting and the lithologies involved, the issue of discontinuity
analysis within rock masses is crucial for a correct evaluation of the rock stability, as well as for choosing
the most suitable stabilization measures.

Standard traditional methods for the geo-mechanical characterization of rock masses are typically
time-consuming, with the measurements being confined to some sectors in the rock face, due to
difficulties in accessibility [24–27]. Such limitations result in providing only punctual information
about the geo-mechanical setting of the rock mass. The main relevant problem for analysis of rock
slopes is therefore logistics, and the possibility to directly approach the rock face: since instability
processes mostly affect near vertical to vertical slopes, the only opportunity for operators is making a
scanline at the base of the cliff, thus strongly limiting the assessment of the overall rock face. Changes
in the properties along the rock face, at different heights, are typically estimated through rough,
qualitative approaches. As an alternative, availability by rock-climber geologists allows to fill some
gaps, representing however a very difficult, expensive, and time-consuming phase of the survey, in any
case able to cover only a few vertical lines.

Stereo-photogrammetric techniques are nowadays frequently being used to measure the
orientations of discontinuities [28–30]. Adoption of the basic principles of photogrammetry can
in fact result extremely useful in rock mechanics and in the evaluation of rock stability as well. The first
attempts in this direction, however, were quite frustrating due to the long time required to precisely
outline the discontinuities, and the slowness in their elaboration [31–36]. Only during the recent
decades, thanks to availability of powerful computers, and advancement in the technologies, these
techniques have become widespread, and several approaches have been proposed to obtain 3D models
of rock faces by remote sensing data. Among these, terrestrial laser scanners (TLS) and unmanned
aerial vehicles (UAV) have undoubtedly proved to be among the most efficient and reliable tools, and
are being today used in many stability analyses worldwide [37–50].

In this paper, we present some considerations about the use of surveys from these techniques,
through production of dense point clouds and the related semi-automatic acquisition of discontinuity
data for stability analysis, based upon some experiences carried out in the last years. Advantages
and drawbacks of the single techniques, and of their integration as well, will be illustrated through
two significant case studies in southern Italy, concerning a cliff in pyroclastic rocks in Campania
and a natural karst cave in Apulia. Choice of the sites was dictated by two common situations in
southern Italy, that is instability problems along high sea cliffs and the possibility of failures from
natural or artificial sinkholes. This latter case, in detail, was selected to highlight the importance of
high-resolution analysis and studies in carbonate rock masses, and the need to include in the analysis
the role played by karst processes, which very often is underestimated or neglected. After introductory
sections describing the techniques and the instruments used, the two case studies are presented, before
reaching the conclusions where our considerations about pros and cons of the techniques are illustrated.
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2. Materials and Methods

2.1. Survey through Laser Scanner 3D

3D terrestrial laser scanner (TLS) is an innovative methodology to model and monitor rock cliffs
and underground environments. The method allows to survey and reproduce the measured surfaces
with an acquisition mesh at sub-centimeter resolution. The outcome is a snapshot of the observed
scene at the date of acquisition, expressed by millions of georeferenced points; it is easily navigable
and shareable through cloud-computing.

The first phase of the survey consists of a careful and detailed analysis of the area, and in the
selection of the scan positions, that is the sites where the instrument has to be located; further, based
upon the distance between the laser and the object, the resolution of the scan is defined, taking into
account the detail required in the output (in turn, depending upon the aim of the work). This activity
is mandatory to the survey design, aimed at locating the control points (targets). To reach the best
results in terms of final outcome, it is necessary that the scan positions are such that the laser beam is
always perpendicular to the main discontinuity sets. In this way, it is possible to have a complete and
homogeneous point cloud, without void spaces, and where all the planes of the scanned object could
be perfectly recognized when varying the orientation of the model in space.

The survey, carried out in the case studies of this work with a Laser Scanner RIEGL VZ400
(Figure 1), allows acquisition of a georeferenced point cloud of millions of points, each one of which is
described by the following information: geographical position in space (X, Y, Z), chromatic information
(RGB), and reflectance (i).Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 25 

 

 Class 1 Laser 

 Range greater than 500 mt 

 High definition camera (>6 Mpixel) 

 First and last impulse  

 Ability to reduce the shadow areas due to 

vegetation 

 Integrated inclinometer sensor and lead laser 

 Integrated GPS antenna 

 High velocity of acquisition: min. 122,000 pti/sec 

 Scan angles: 360° horizontal – 360° vertical 

 Precision: 3 mm 

 Integrated compass 

Figure 1. Main characteristics of the Laser Scanner Riegl VZ400. 

Once the scans have been merged, and a unique 3D georeferenced and colored model created 
[52,53], optimization of the point clouds proceeds by eliminating the untrue elements, the 
overlapping and redundant points, and the not relevant features (electric cables, etc.), and to reduce 
the noise [54–56]. The outcome, at this point of the elaboration, is a 3D model consisting of a highly 
detailed point cloud, able to represent with high accuracy the object geometry. 

To provide easier management of the successive phases of implementation, a spatial decimation 
around the points is carried out, to lighten the data and make them exportable to other software and 
in other formats. 

The final phase of processing the point clouds consists in the realization of the solid surface 
called mesh, through the software MeshLab, that represents, in an exhaustive manner, the 
poligonalization of the point cloud to create filled surfaces and volumes of easier visual and 
computational interpretation.  

All the survey products eventually end up in 2D and 3D graphic elaborates such as maps, 
drawings, profiles, mesh, DTM (digital terrain model), DSM (digital surface model), etc. 

2.2. UAV Photogrammetric Survey 

The technique of photogrammetric survey of rock faces by means of unmanned aerial vehicles 
(UAV) is used to: 

- solve the problems related to lack of stable points where to establish the laser scanner 
(for instance, at the base of a rock cliff); 

- integrate the point cloud from laser scanner in those sectors characterized by no data, 
due to the relative position between laser and rock cliff; 

- survey areas not accessible by land (sea cliffs with no or limited beach, islands, etc.).  
The photogrammetric survey was carried out for the case studies here presented by using the 

UAV ITALDRON 4HSEPRO (Figure 2).  

Figure 1. Main characteristics of the Laser Scanner Riegl VZ400.

During the survey, multiple scans are taken at each scan position, with variable resolution: initially,
an overall scan with wide mesh is obtained to get a file that is easy to manage, and to have an immediate
control of the wide surveyed area; then, several other scans are produced with progressively more
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accurate meshes. During the phase of setting the detailed scans, the data regarding photographs are
set too, that include the exposition time and the diaphragm aperture, so that the digital images to be
linked to the point cloud are properly calibrated, based upon the variable light conditions and the
closeness to the survey object.

At the end of each scan, before changing the scan position, a detailed scan of the targets is carried
out to allow the scanner to localize and record the installed reflectors, which will be used as tie points
and ground control points in merging and georeferencing the point cloud.

The data acquired with the laser scanner are elaborated with dedicated post-processing software,
to merge the scans at the different scan positions, and to clean the model from untrue elements to
eventually move toward the 2D and 3D elaborations [51]. The elaboration phase further includes
assignment of colors to the point cloud, linking to each X, Y, Z point also the coordinates R, G, B, derived
from the images acquired during the acquisition phase. This procedure occurs through alignment
techniques, both manual and automatic, between the photos and the scans.

At this point, it is possible to move to merging and roto-translation of the several acquired point
clouds. This operation is of crucial importance; aimed at obtaining minor errors, it is necessary
to merge the cloud points through high-reflectance targets, georeferenced by means of GPS and
high-precision total station. At the end of these operations, the error deriving from merging the scans
is evaluated. In case the error results to be unacceptable, “forced” alignment techniques, defined
multi-station-adjustment (MSA), are applied. During the adjustment phase, it is possible to bypass
the coordinates of targets, and to use the coordinates of the filtrated point clouds (polydata), properly
created for each scan. The alignment technique MSA is aimed at reducing the error when “common”
points belonging to the different polydata are joined.

Once the scans have been merged, and a unique 3D georeferenced and colored model
created [52,53], optimization of the point clouds proceeds by eliminating the untrue elements,
the overlapping and redundant points, and the not relevant features (electric cables, etc.), and
to reduce the noise [54–56]. The outcome, at this point of the elaboration, is a 3D model consisting of a
highly detailed point cloud, able to represent with high accuracy the object geometry.

To provide easier management of the successive phases of implementation, a spatial decimation
around the points is carried out, to lighten the data and make them exportable to other software and in
other formats.

The final phase of processing the point clouds consists in the realization of the solid surface called
mesh, through the software MeshLab, that represents, in an exhaustive manner, the poligonalization of
the point cloud to create filled surfaces and volumes of easier visual and computational interpretation.

All the survey products eventually end up in 2D and 3D graphic elaborates such as maps,
drawings, profiles, mesh, DTM (digital terrain model), DSM (digital surface model), etc.

2.2. UAV Photogrammetric Survey

The technique of photogrammetric survey of rock faces by means of unmanned aerial vehicles
(UAV) is used to:

- solve the problems related to lack of stable points where to establish the laser scanner (for instance,
at the base of a rock cliff);

- integrate the point cloud from laser scanner in those sectors characterized by no data, due to the
relative position between laser and rock cliff;

- survey areas not accessible by land (sea cliffs with no or limited beach, islands, etc.).

The photogrammetric survey was carried out for the case studies here presented by using the
UAV ITALDRON 4HSEPRO (Figure 2).
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Figure 2. Main features of the Italdron 4HSEPRO.

As a mandatory condition to properly use UAV, there is the need to geo-reference a number
of points (ground control points—GCPs) to treat in a metric system the images, and to correctly
roto-translate the point cloud. At this goal, we used a GPS (GPS LEICA GS14) and a Total Station
(TRIMBLE S6).

Choice of the GCPs must be carefully planned: preferentially, all selected points should be
materialized with well-visible targets located in proximity of areas with a chromatic variation,
at different elevations, in sectors well distributed over the whole area to be surveyed, far from the
shadow areas by trees and other objects.

To increase the quality of the survey, it is preferable to perform a single flight, or, at least, the flight
must be carried out in the same part of the day; further, the overlap among adjacent images must never
be below 80–85%.

Following the flight, the delicate stage of image elaboration starts, by checking a variety of
characteristics, namely:

(1) correct frame of each single snapshot (the optical axis must be perpendicular to the rock face
as much as possible);

(2) quality of the image (out of focus photographs must be deleted);
(3) exposure: over- or under-exposed photographs must be deleted, or treated with dedicated

software. At this aim, it is better to shoot in raw modality in order to be able to balance the exposure
during the post-processing phase;

(4) sequential order of the photograph strips.
Clear pictures with high depth of field are able to provide a good point cloud, whereas a good

selection of GCPs allows to reduce significantly the metric errors in the survey. After having properly
treated the pictures, the following steps follow (as already described in the previous section for laser
scanner surveys, to which readers are referred for details): photographs alignment, building of the
dense point cloud, realization of the mesh and of the texturized mesh. These elaborations require the
use of commercial software such as Agisoft, Pix4D, ContextCapture, etc.

3. Geo-Structural Analysis on Point Clouds

The geo-structural analysis is carried out through innovative methods that allow measurement
of the attitude directly on the point clouds. Specific software perform analyses of the point clouds,
measuring the values of the normals associated to the identified planes, and how these adapt to
aggregates of sets of adjacent points [57,58]. These normals define the orientation of the geometrical
bodies to which they belong in space, and are in turn expressed by three spatial coordinates. Thus,
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starting from the point cloud and its DSM (in the case of rock masses coinciding with the DTM), it
is necessary to estimate the analytic equations, in the form AX + BY + CZ + D = 0 (plane equation),
determining orientation and position in the space of the planes that better approximate locally the
point cloud.

The most used methods to define and measure these planes are the least squares and the geometric
segmentation of DSM [59]. The least squares method takes into account the whole set of available
data. However, it is possible that some of the identified planes might aggregate points belonging to
different planes, so that the results can be conditioned by gross errors, commonly present when dealing
with experimental data. This problem might result in invalidating the overall validity of the model;
in other words, there is the risk to have, within the set to interpolate, points belonging to another plane
(Figure 3).
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The algorithm RANSAC [60,61], on the other hand, allows to identify the different planes and
to evaluate the related characteristic equations, also in the presence of a significant percentage of
gross errors. The procedure followed by the algorithm is completely different by those in the usual
estimation methods: instead of using initially the highest possible number of data to obtain a starting
solution, from which to distinguish the invalid points, RANSAC uses the minor possible number of
initial data to generate the model, then trying to enlarge such set with data coherent to the model,
if possible.

To clarify the procedure, we recall here the bidimensional case of the line to find within a set of
experimental data containing a percentage, also significant, of gross errors [62]:

An adequate number of tests is carried out through:

- casual extraction of n = 2 data (minimum necessary to define the model);
- evaluation of the deviations, with respect to the model: the points that are located within a

predefined threshold (green points in Figure 4) are selected, and the others (red points in Figure 4)
are discarded.

- The set containing the highest number of data represents the model:
- the selected model is re-estimated at least squares by using all the points classified as inliers.
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Figure 4. Individuation of the interpolating line in the case of a single dataset (a), and of multiple
datasets (b).

Repeating the procedure for i times we will obtain i set of points, each one generated by a different
choice of the two initial points. Given a certain value of i, it can be stated that with a determined
probability p at least one of the couples of initial points does not include an outlier.

In the case more subsets of coherent data are present, the algorithm eliminates all those points
belonging to the line that has the highest consensus (in red) and repeats the procedure of researching
of the line which best approximates the remaining points (Figure 4; [62]).

At this aim, for each model, tests on different portions of DTM have been carried out to look for
a threshold value that is efficient, independently from the average size of portions, roughness and
undulation of the wall.

In detail, the present study was realized by using the algorithm Shape Detection of RANSAC
(RansacSD) in the form proposed by the University of Bonn [61], that allows to isolate forms, or a
set of forms, within the DSM (procedure carried out with the open source software Cloud Compare;
CloudCompare Version 2.9.1 User Manual, 2017) [57].

Thus, to extrapolate the planes interpolating aggregates of points with equal attitude, an analysis
of the perpendicular associated to the individual planes so determined is performed on the filtrated
point cloud; this allows to individuate portions of the space with similar orientation. A new attribute
is then assigned to the point cloud by associating the attitude (dip/dip direction) to the perpendicular
of each individual plane.

All the points having similar attitude within a defined variability range are selected along the
geological alignments of interest, aimed at interpolating the planes that better follow the distribution
of the points [41,63,64].

The parameters to be taken into account are [65]:
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imposition of threshold values, aimed at finalizing the iterative procedure to look for the most
suitable planes, without considering those with greater error. This method is semi-automatic,
with manual control and validation, since a process of manual selection of the entities to model
is at the origin of a mainly computational phase of recognition, computation and conversion of
the normals in geo-structural data, dictated by the experience of the operator who keeps a direct
control on the dataset of outcomes.

Eventually, the automatic creation of the discontinuity plane interpolating the selected and near
points, and the extraction of the attitude for each of them (computation of dip direction – dip) are
obtained. The planes thus individuated by the average parameters of dip and dip direction are
represented by means of stereographic projections. The discretization in discontinuity sets is operated
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by means of a selection of the poles of planes through windows within which the value of dip/dip
direction is averaged.

4. Case Studies

4.1. Santa Caterina

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 25 
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Due to presence of a small marina, and to beauty of the area, which attracts a wide number of
tourists during the summer season, the beach is highly frequented.

From a geological-structural standpoint the Sorrento Plain represents a tectonic graben, between
two limestone horsts of Cretaceous age. The graben was filled during Wurm with materials from an
explosive volcanic eruption, dated about 39,000 years ago [66], within the Phlegrean volcanic district.
The volcanic products were emplaced through huge, high temperature, pyroclastic surges and flows,
that entirely filled the pre-existing morphologies.

These pyroclastic products belong to the formation of the Campanian Grey Tuff (or Campanian
Ignimbrite), consisting of yellow-greyish ashes, associated to black scoriae and lava fragments. After the
emplacement, the formation of sanidine and zeolite crystals (zeolitization processes) caused lithification
of the pyroclastic material. Cooling processes in the pyroclastic mass generated the development of
sub-vertical and strongly inclined joints that, combined with the bedding, create the main discontinuity
planes, fragmenting the tuff rock mass. Concerning morphology, the slope is an approximately 50-m
high rock cliff, the terrace of pyroclastic aggradation of the Sorrento Plain bounding toward the sea.

The rock cliff shows a retrogressive evolution through rapid slope movements with different
failure mechanisms (falls, toppling, slides, wedges). The cliff is directly hit by sea waves, and this action
produces a further erosional action, involving both mechanical action and weathering processes [67,68],
thus contributing to degrade the rock mass. Eventually, other negative factors working toward
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instability of the cliff are represented by natural factors such as earthquakes, wind, rainfall, and the
alteration in the first meters of slope exerted by the tree roots.

Regarding the factors of anthropogenic origin, in the past the rock cliff was interested by quarrying
activity to extract the tuff. These activities are testified by presence of artificial cavities and passages,
where it is possible to observe a net decrease in the mechanical properties of the rock mass [69–73],
with development of release tension cracks and widening in the aperture of the fissures.

In general, the area is characterized by sub-vertical scarps in tuff deposits crossed by multiple
discontinuity sets, which intersections determine the formation of isolated, potentially unstable, slabs,
wedges, and blocks. Dimensions of the rock blocks are widely variable, from cubic decimeters to cubic
meters, in function of the spacing of the main discontinuity sets within the rock mass.

Due to the relevant socio-economical interest of the area and to site logistics, it was decided to
proceed with an evaluation of the stability conditions through a geo-structural analysis on point cloud
acquired with a combined approach through the use of both laser scanner and drone. Such integrated
approach was necessary in order to overcome the logistic and morphological problems present at the
site, since the tuff cliff is definitely active, and, as such, not accessible from below for long sectors.

First, a laser survey by means of RIEGL VZ400 was carried out, through acquisition of three scan
positions for a total number of 12 scans. Following the preliminary visits to the study area, useful to
check the site logistics and its features, including the presence of people and its frequency during the
different hours of the day, the survey was planned in order to schedule the best temporal windows,
with the aim at avoiding any possible interference. Further, the planning phase included the choice of
the precise locations for the control targets. In this specific case, three georeferenced flat targets (4 cm
diameter plates) and four cylinder targets (10 cm diameter) were used.

The laser survey consisted of two phases. The first was carried out during the early morning at
the pier located east of the cliff, by performing two scans at 80 m distance from the cliff, for a temporal
duration of 1 h and 45 min. This procedure allowed to acquire a 2000 pt/m2 point cloud. Then, a third
scan was acquired from the beach, 50 m far from the cliff. This second phase lasted 50 min, and resulted
in the acquisition of a point cloud with density of 2000 pt/m2. The two phases of survey allowed to
characterize the eastern side only of the cliff.

Then, to get a point cloud adequate to be worked on with geo-structural aims, it should had been
necessary to locate the scanner in frontal position with respect to the main discontinuity systems of
the rock mass, aimed at avoiding the presence of “dark points” within the point cloud. In the specific
case, however, it was not possible to have the scanner in the western sector of the cliff, due to logistic
conditions. For this reason, the laser scanner survey was then integrated with a photogrammetric survey
by SAPR, carried out by means of the UAV Italdron 4HSE PRO. For this survey, too, the acquisition
phase was preceded by inspection visits to investigate the best conditions of light exposition of the cliff,
and to establish the strategies to avoid interference with seagulls. The survey was carried out at noon,
since this time during the day was the best to guarantee direct light on the cliff, and absence of shadow
areas. It was performed in two flights, each one lasting 20 min, to take both frontal and zenithal views
of the cliff. The UAV survey, beside covering the western side of the study area (not acquired by the
LST survey), overlapped also part of the LST point cloud, eventually resulting in a detailed cloud with
density of about 3200 pt/m2.

Regarding this latter survey, to obtain a high-detailed pixel resolution at the ground, needed to
perform geo-structural analysis on point clouds, the flight was carried out at maximum distance of
40 m from the cliff. This allowed to obtain a ground resolution of 5.6 mm per pixel. During the survey,
both zenithal and oblique images were produced, with overlapping percentage always greater than
80–85%. Flight characteristics are as follows:

• Sensor size 35.8 × 23.9 mm
• Average distance from the cliff: 40 m
• Ground resolution: 5.6 mm/px
• Overlap H %: 80%
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• Overlap L %: 80%
• Photo height (m): 27.31 m
• Photo width (m): 40.91 m
• Photo spacing (m): 5 m
• Interval (m): 16 m

In order to obtain a high-definition, properly geo-referenced, point cloud (indispensable condition
to perform geo-structural analysis on discontinuity of the rock mass), the manual modality of flight
was chosen. This was because experience has demonstrated the higher reliability of this modality
against the automatic one. It was also decided to acquire photos with high depth of field; therefore,
the shoot of the camera was set with ISO priority, keeping blocked both aperture and time during the
flight. In addition, the flight direction was chosen according to attitude of the main discontinuities of
the rock cliff.

Georeference of real and fake waypoints was carried out. Fake waypoints are represented by
a multitude of points within the georeferenced laser-acquired cloud, well identifiable on the screen.
This allowed to operate sophisticated roto-translational alignment procedures with the software
3DReshaper, to obtain a cloud at very high resolution, well positioned in space.

In this case study, integrating the point cloud obtained by the laser scanner with that acquired
by drone was possible thanks to the very scarce presence of vegetation on the cliff. Actually, when
vegetation is present, the photogrammetry by drone is not able to identify the underlying surfaces,
differently than the laser scanner equipped with last and first impulse technology, that are capable to
partly filtrate the vegetation.

The 3D geometrical model obtained through the combined laser scanner-drone survey produced
a high-definition point cloud consisting of 55.6 million points (corresponding to a point density of
6950 pt/m2), 15.5 million (2000 pt/m2) out of which were from the laser scanner, and 40.1 million
(3160 pt/m2) from the drone (Figure 6). This cloud, properly georeferenced with GPS and Total Station,
allowed to measure the bedding and spacing of any plane in the rock mass, which is a crucial element
for the following phase of designing the stabilization works.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 25 

of flight was chosen. This was because experience has demonstrated the higher reliability of this 
modality against the automatic one. It was also decided to acquire photos with high depth of field; 
therefore, the shoot of the camera was set with ISO priority, keeping blocked both aperture and time 
during the flight. In addition, the flight direction was chosen according to attitude of the main 
discontinuities of the rock cliff. 

Georeference of real and fake waypoints was carried out. Fake waypoints are represented by a 
multitude of points within the georeferenced laser-acquired cloud, well identifiable on the screen. 
This allowed to operate sophisticated roto-translational alignment procedures with the software 
3DReshaper, to obtain a cloud at very high resolution, well positioned in space. 

In this case study, integrating the point cloud obtained by the laser scanner with that acquired 
by drone was possible thanks to the very scarce presence of vegetation on the cliff. Actually, when 
vegetation is present, the photogrammetry by drone is not able to identify the underlying surfaces, 
differently than the laser scanner equipped with last and first impulse technology, that are capable 
to partly filtrate the vegetation. 

The 3D geometrical model obtained through the combined laser scanner-drone survey produced 
a high-definition point cloud consisting of 55.6 million points (corresponding to a point density of 
6950 pt/m2), 15.5 million (2000 pt/m2) out of which were from the laser scanner, and 40.1 million (3160 
pt/m2) from the drone (Figure 6). This cloud, properly georeferenced with GPS and Total Station, 
allowed to measure the bedding and spacing of any plane in the rock mass, which is a crucial element 
for the following phase of designing the stabilization works.  

 

Figure 6. Texturized point cloud at the Santa Caterina cliff. The yellow vertical line provides the 
height of the cliff. 

The acquired point cloud underwent first a manual procedure of decimation and filtering to 
eliminate the spurious elements (vegetation, electric cables, trellis, etc.). The cleaned point cloud was 
then object of a second step of decimation, according to a grid defined in a way to maintain the 
sections representative of the rock mass. Then, the geo-structural analysis started on the point cloud 
by individuating portions of space with similar orientation, to extrapolate the value of attitude in 
terms of dip/dip direction by applying the algorithm RANSAC (Figure 7). 

The so identified planes were portrayed on stereonets, and at least five discontinuity sets were 
detected, summarized in Table 1 and shown in Figure 7. 

Figure 6. Texturized point cloud at the Santa Caterina cliff. The yellow vertical line provides the height
of the cliff.



Appl. Sci. 2020, 10, 2960 11 of 25

The acquired point cloud underwent first a manual procedure of decimation and filtering to
eliminate the spurious elements (vegetation, electric cables, trellis, etc.). The cleaned point cloud
was then object of a second step of decimation, according to a grid defined in a way to maintain the
sections representative of the rock mass. Then, the geo-structural analysis started on the point cloud by
individuating portions of space with similar orientation, to extrapolate the value of attitude in terms of
dip/dip direction by applying the algorithm RANSAC (Figure 7).
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Figure 7. RGB point cloud at Santa Caterina rock cliff. Above: mapping the dip direction value
attributed to the point cloud over the study area. Below: representation of the dip directions for
each individual discontinuity set, distinguished by different colors; in the inset, the steroplot shows
distribution of the sets.

The so identified planes were portrayed on stereonets, and at least five discontinuity sets were
detected, summarized in Table 1 and shown in Figure 7.
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Table 1. Average attitude of the discontinuity sets at Santa Caterina rock cliff, identified through
geo-structural analysis on point cloud.

Set Dip Direction Dip

K1 15 77
K2 308 76
K3 72 77
K4 165 75
K5 110 75

To verify the reliability of the attitudes acquired semi-automatically on the point cloud, some
discontinuities in the tuff rock mass were checked on site. In detail, the main discontinuity sets were
identified, and traditional measure stations were casually performed by means of the Clar compass.
Average attitudes of the main measured discontinuity systems thus obtained are reported in Table 2.

Table 2. Average attitudes of the discontinuity systems identified through geological measurements on
the rock mass.

Set Dip Direction Dip

K1 17 89
K2 128 88
K3 72 88
K4 345 86

The above described procedure allowed to compare the structural data obtained with the two
different survey techniques [8], which is the traditional, manual, geomechanical survey, and the
geo-structural survey from point cloud acquired with TLS and UAV techniques (Figure 8). Comparing
the datasets, it appears that the results obtained from geo-structural survey from point cloud fit well
those acquired directly on the rock face.
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Since the joints show mostly high dipping, variations in the discontinuity polarity are related to
the often undulated pattern, which results in opposite sectors within the stereoplot (sets K2 and K4 in
Figure 8).

As concerns the K5 set, this was only identified through geo-structural analysis on point cloud.
This is because such system is rarely shown in the rock mass, practically consisting of very few joints
with high spacing; therefore, the direct acquisitions in correspondence of a limited sector of the rock
face, accessible on the ground, did not allow to point out its presence.

4.2. Castellana Caves

The Castellana Caves are located in the SE Murge of Apulia (southern Italy; Figure 9), and are
one of the most famous Italian karst areas [74–76], with more than 300,000 tourists yearly, as the most
visited show cave in Italy. Apulia backbone consists of Jurassic-Cretaceous limestones and dolostones,
unconformably overlain Tertiary and Quaternary clastic carbonates, with stratigraphic successions
varying in different parts of the region, depending upon paleo-geography of the individual sectors.
Since the Lower Pleistocene, Apulia was subjected to a general uplifting, until reaching its present
configuration, that is a blocky structure fragmented by high dip faults [77–79]. An extensive network
of underground caves and karst conduits, and widespread karst landforms at the surface as well,
characterize the three main karst sub-regions (from north to south, Gargano, Murge, and Salento).
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As in other sectors of the Apulian karst, and in many other karst areas worldwide [14,80–88],
the development, elongation, and spatial distribution of karst landforms in the Castellana area, both at
the surface and underground, is strongly controlled by the main tectonic lineations [75,89].

First explored by Professor Franco Anelli in January 1938, the Castellana Caves were exploited
as show cave soon after [90–92], due to beauty of the underground passages and richness in the
speleothems decorating the karst systems, whilst in the decades later the explorations added further
passages to the overall development, that therefore reached a length greater than 3300 m, with maximum
depth of −122 m [93]. The karst system has a prevailingly sub-horizontal pattern, with wide caverns
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ranging in height from a few to some tens of meters, and intervening, structurally controlled corridors.
The karst system at Castellana opens in the Upper Cretaceous Altamura Limestone formation, showing
moderately spaced bedding planes [94]. The carbonate rock mass is fractured, with local arching and
deformations in the strata, and thick weathered zones at the contact with clastic sediments or where
the carbonates are wetted by trickling or condense water, and weathered material is protected against
mechanical erosion [95]. The contact with fine-grained sediments is particularly important, since it
contributes to provide the moisture required for dissolution. Corrosive moisture has been in fact
invoked as the main reason for limestone weathering in several cases, including the drenching of clay
pebble surfaces [96–98].

Besides bedding of strata, showing a sub-horizontal attitude, four main discontinuity systems can
be identified at Castellana, the prevailing system always being in the range N 130–150 [99].

The most spectacular view of the system is the 55 m deep Grave, a natural opening created by
a collapse sinkhole [18,100–103], through progressive falls from the vault. The name derives from
the pre-Latin term grava, meaning pit or hole, and is locally used to indicate deep entrance to cave
systems [104]. This type of feature, generally produced through collapse or cover-collapse sinkhole
processes, is very common in the Apulian karst [74,75,105–107]. At Castellana, given the relevance of
the Grave (the most iconic symbol of the Castellana Caves, with the typical picture showing the solar
ray entering the sinkhole at middle morning), its location above parts of the tourist path, and the need
to evaluate the stability conditions, this site was surveyed by means of the laser scanner RIEGL VZ400
(Figure 1).

During the survey, a high-density geo-referenced point cloud (430,000 million points,
with 21,500 pt/m2 density) was produced (Figure 10). The survey consisted of 42 scans from 20 scan
positions (eight located at the surface, 12 within the cavern). Several different resolution scans were
produced at each survey station, and the overall amount of data was processed through dedicated
software. In order to obtain frontal scans of the discontinuity sets, seven out of the 12 scans within
the Grave were taken with the laser inclined 90◦ with respect to the vertical axis, by means of the “Tilt
Mounting” tool.
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the cavern.

The resulting point cloud was of high definition, also thanks to presence in the cave of boardwalks
and ramps for the tourist visits, that made it possible to locate the scanner at many points. In this
way, all the scans were produced at distance not greater than 30–40 m from the rock walls. Further,
the opening of the Grave allowed natural lighting inside the cave, thus obtaining good chromatic
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pictures. At this regard, the survey was carried out during early morning and late afternoon, to avoid
the direct arrival of sun rays during the acquisition phase of the photographs.

Overall, the survey required two working days: on the first day, the 10 cylinder targets were
surveyed by GPS and total station, and the surface scans outside the cave were performed (16 scans
over eight scan-positions), for a total time of 6 h; on the second day, 26 scans within the cavern were
carried out in 8 h, also surveying by total station the 15 flat targets. The elaboration process, consisting
of linking and roto-translating the different point clouds, and in optimization by cleaning the dataset,
produced the high-detail solid surface (mesh) to represent the geometry of the Grave (Figure 11).Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 25 
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Figure 11. RGB point cloud of the Grave. To the right, height of the bust dedicated to Prof. Franco
Anelli (discoverer of the cave system in 1938) provides an indication of scale.

The geological-structural analysis of the Grave was performed by direct measurement of the
discontinuity sets in the point cloud through specific software (RiscanPro, Cyclone, Cyclone 3DR,
Cloud Compare) able to analyze its attributes, with particular regard to the values (described by three
spatial coordinates) of the normals associated to each point within the cloud. The semi-automatic
procedure started from identification of sectors showing similar orientation, through analysis of the
normals. The same procedure described in the Santa Caterina cliff case study was then followed,
assigning a new attribute to the point cloud, computed by associating the attitude (dip/dip direction)
to the value of the normal at each point. In this semi-automatic method, the phases of identification,
computation, and conversion of the normals in geological datum is preceded by a process of manual
selection (control and validation) of the elements to be modelled. This represents a very important
point, allowing the operator through his/her expertise to fully control the output.

The planes identified were portrayed in stereographic projections, by ranking the data in sets
of discontinuities. The great majority of the attitudes are high dipping; for this reason, variations in
discontinuity polarity, due to the possibility to encounter undulated planes, were considered. Three
main sets of discontinuities, plus the bedding, were identified from the 113 discontinuity measurements
(Table 3). The graphic representation of the main discontinuity planes identified directly from the
point cloud is shown in Figure 12. The most frequent and developed sets of tectonic origin (namely, K1
and K2) are well identified by the statistical analysis carried out on the point cloud, as shown by the
histogram presented in Figure 13.



Appl. Sci. 2020, 10, 2960 16 of 25

Table 3. Average attitude of the discontinuity sets at Castellana Caves, identified through geo-structural
analysis on point cloud.

Set Dip Direction Dip

K1 52 87
K2 151 85
K3 185 85
S’ 212 4
S” 35 3Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 25 
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Figure 13. Mapping the dip direction value attributed to the point cloud of the Grave at Castellana
Caves. In the inset, the histogram shows distribution of the discontinuity sets, with the most represented
clearly corresponding to peaks.

Data obtained through the above described semi-automatic procedure were checked
through traditional survey, by operating two scanlines along the vertical walls of the Grave,
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with geologist-climbers (Figure 14) to properly measure the discontinuity parameters. Adopting the
recommendations by the International Society for Rock Mechanics [108], all the relevant parameters to
describe each discontinuity were measured along the scanlines, in order to fully characterize the sets of
discontinuity within the rock mass. The data so acquired (about 50) were portrayed in polar equiareal
projection, and analyzed through a cluster analysis. The field data allowed to identify three main sets
beside the bedding, plus a few random discontinuities (Table 4).
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Figure 14. Acquisition phase of geo-mechanical data with standardized techniques (scanline by
geologist rock climbers).

Table 4. Average attitude of the discontinuity sets at the Grave entrance, identified by means of the
classical geomechanical survey in rock walls.

Set Dip Direction Dip

K1 231 86
K2 309 85
K3 24 87
K4 51 46
S’ 208 8
S” 333 6

The data from the traditional geo-mechanical survey were compared with those obtained from
the digital survey from cloud point acquired by TLS. The comparison resulted in a good agreement
between the different techniques (Figure 15), with slight differences probably related to the logistic
difficulties in performing the survey and taking geological measurements along the overhanging
sectors of the rock walls.
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As regards the K4 set, this is mostly highlighted by lineations at the roof, with scarce presence along
the rock mass (walls), and therefore it did not come out from the point cloud geo-structural analysis.

5. Discussion

The two case studies presented in this paper regard a very common situation in long stretches
of the Italian coastlines (high cliffs interested by rockfalls and slope failures, threatening tourist sites
below) and in wide areas of the country where underground voids are present, of both natural (karst
caves) or artificial (man-made cavities) origin. Rock failures and sinkholes are definitely among the
most significant geological hazards in a fragile territory as Italy. Very often, studying sites affected by
these processes has several difficulties related to logistics (overhanging walls, danger from detachment
of rocks, etc.) that make it more complicated to carry out a thorough analysis, aimed at defining the
kinematics of possible slope movements, at performing the most proper stability analysis, and at
designing the related stabilization works.

The traditional approaches to assess the quality of rock masses, as the main available geomechanical
classification, proposed since many decades in the international literature [109–117], still appear to be
important but present many problems when applied in logistically difficult situations. The fieldwork
campaign, necessary for implementation of these classifications, is expensive and time-consuming, and
typically does not allow to entirely cover the area under study. Further, it requires somewhat repetitive
actions, often resulting in the possibility of having incorrect data.

To effectively reach the goal to evaluate the stability conditions in these situations through detailed
analyses, based upon a sound amount of reliable data, the use of remote techniques may play a
crucial role in the identification of the discontinuity sets characterizing the rock mass, but need to be
carefully planned and always integrated by the necessary geo-structural and geomechanical checks on
site [12,118].

We described implementation and integration of techniques used for the above aims, and applied
them to study two sites where terrestrial laser scanner and unmanned aerial vehicles were used
individually or in combination to build a cloud point from which to develop a semi-automatic
extraction of discontinuity data to use for stability analyses. At Santa Caterina cliff, a combination
of the two techniques was necessary to ensure a complete coverage of the area under study, at the
same time obtaining high quality photographs of the cliff. In the case of Castellana, a variety of scan
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positions to occupy (thanks to the tourist pathways), and good light coming from the outside through
the natural opening, permitted to use TLS only.

Through implementation of the two techniques, further integrated by other experience from the
literature, and from many years of direct expertise from the authors, we were able to identify the main
advantages of these approaches, but also some drawbacks that are worthy of further investigation in
the future.

As regards the LST technique, a very positive feature is represented by the high accuracy of the
survey (in our case <5 mm, by using Riegl VZ400), together with the relative velocity in elaboration of
the point cloud. On the other hand, drawbacks are the chromatic outcome of photographs, due to the
technique used (spherical panchromatic pictures), and the common difficulty in moving around the
object to be surveyed, due to site logistics. This latter problem might potentially result in “loosing”
some discontinuity sets, depending upon the relative geometries among their attitudes and location of
the scan positions.

The two drawbacks above can be solved by using UAV techniques: orthophotos are in this case
of good chromatic quality, and there is no problem in moving around the object, which allows to
survey the discontinuity plans always with a frontal view. Other problems, however, do still exist,
the main one being the presence of “holes” in shadow areas; further, UAV do not typically go through
the vegetation, so that in forested areas the percentage of uncovered zones might become significant
(this latter drawback being in part common to laser scanner surveys as well). The first problem is
not easily solved [119]: even paying attention to the best time during the day for flying, depending
upon the light and cliff exposure conditions, there might be sectors of the areas always in the shade
(overhanging walls, etc.). A possibility, which however requires longer times, in both acquisition and
elaboration phases, is using data from two or more flights, taken at different hours and in different
light conditions.

Vegetated areas, on the other hand, can be a real obstacle when it is too dense to obtain an accurate
view of the ground. Using Lidar sensors is probably the best way to overcome such drawback.

Other negative aspects about UAV are the impossibility to use it in no-fly zones (densely urbanized
areas, landing corridors near airports, military areas, etc.); lower accuracy (1–2 to some cm, depending
upon technical features of the camera and distance from the object), also in function of the impossibility
to keep a constant distance from the cliff; survey heavily conditioned by the meteoric and climatic
conditions (wind, humidity, sun light, etc.); long elaboration times for post-processing, requiring robust
and highly performing hardware (most recent generation of i7 processor, 64 Gb RAM, 6 Gb dedicated
video card).

Given all the above considerations about individual LTS and UAV surveys, we are convinced that
integrating the point clouds acquired by UAV to that produced from TLS allows to get a complete 3D
cloud: this may eventually include also data difficult to be acquired from fixed measurement positions
(a feature typical of TLS acquisitions), such as horizontal terraces, flat roofs of buildings, and areas
hidden by obstacles. The integration is also extremely useful in those cases where it is not possible to
perform surveys from the land, or to reach the upper sectors of rock faces, and the top of mountains,
ridges, and hills, due to complex morphology and topography.

Based upon our experiences, we conclude that:

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 25 

 

Figure 4. Individuation of the interpolating line in the case of a single dataset (a), and of multiple 
datasets (b). 

At this aim, for each model, tests on different portions of DTM have been carried out to look for 
a threshold value that is efficient, independently from the average size of portions, roughness and 
undulation of the wall. 

In detail, the present study was realized by using the algorithm Shape Detection of RANSAC 
(RansacSD) in the form proposed by the University of Bonn [61], that allows to isolate forms, or a set 
of forms, within the DSM (procedure carried out with the open source software Cloud Compare; 
CloudCompare Version 2.9.1 User Manual, 2017) [57]. 

Thus, to extrapolate the planes interpolating aggregates of points with equal attitude, an analysis 
of the perpendicular associated to the individual planes so determined is performed on the filtrated 
point cloud; this allows to individuate portions of the space with similar orientation. A new attribute 
is then assigned to the point cloud by associating the attitude (dip/dip direction) to the perpendicular 
of each individual plane. 

All the points having similar attitude within a defined variability range are selected along the 
geological alignments of interest, aimed at interpolating the planes that better follow the distribution 
of the points [41,63,64].  

The parameters to be taken into account are [65]: 
 maximum number of points belonging to the same plane (function of the point density); 
 tolerance threshold of the distance between the selected plane and the other points 

(function of the point cloud accuracy); 
 maximum deviation of the vector normal to the selected plane; 
 imposition of threshold values, aimed at finalizing the iterative procedure to look for 

the most suitable planes, without considering those with greater error. This method is 
semi-automatic, with manual control and validation, since a process of manual selection 
of the entities to model is at the origin of a mainly computational phase of recognition, 
computation and conversion of the normals in geo-structural data, dictated by the 
experience of the operator who keeps a direct control on the dataset of outcomes. 

Eventually, the automatic creation of the discontinuity plane interpolating the selected and near 
points, and the extraction of the attitude for each of them (computation of dip direction – dip) are 
obtained. The planes thus individuated by the average parameters of dip and dip direction are 
represented by means of stereographic projections. The discretization in discontinuity sets is 
operated by means of a selection of the poles of planes through windows within which the value of 
dip/dip direction is averaged.  

4. Case studies 

4.1. Santa Caterina 

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello 
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).  

Discontinuity analysis by means of remote sensing techniques results in good outcomes through
the semi-automatic extraction of data, thus allowing to solve significant logistic problems
encountered by the classical survey methods;
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represented by means of stereographic projections. The discretization in discontinuity sets is 
operated by means of a selection of the poles of planes through windows within which the value of 
dip/dip direction is averaged.  

4. Case studies 

4.1. Santa Caterina 

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello 
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).  

It is possible to perform a geo-structural characterization of the whole area to study, rather
than proceeding site per site. This results in a relevant increase in number of data, useful for
probabilistic and statistical elaborations;
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4. Case studies 

4.1. Santa Caterina 

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello 
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).  

The combined procedure allows to provide a large amount of high-resolution data about a variety
of parameters that are fundamental for the proper design of stabilization works. Among these,
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in particular, spacing and persistence of the discontinuities are two main key features in the
estimation of the block volume;
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4. Case studies 

4.1. Santa Caterina 

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello 
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).  

Possibility to highlight the most significant sectors of the investigated areas, where to carry out
geomechanical scanlines by geologists/rock climbers, in order to directly acquire parameters such
as Joint Compressive Strength, filling materials, etc.;
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4. Case studies 

4.1. Santa Caterina 

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello 
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).  

The combined use of UAV and TLS is recommended wherever the logistics do not allow to
establish TLS scan positions at different locations, and, even more, for frontal views toward the
discontinuity planes;
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4. Case studies 

4.1. Santa Caterina 

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello 
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).  

Increase in the safety of the operators working in the field;
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4. Case studies 

4.1. Santa Caterina 

The rock cliff over the beach of Santa Caterina is located in the municipality of Sant’Agnello 
(Naples province, northern coast of the Sorrento Peninsula), in Campania region (Figure 5).  

Less time required for data acquisition (this is a very significant, if not strategic, point in settings
as tunnels and quarries);
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Significant reduction in the costs.

To effectively reach all the above goals it is crucial to develop a dedicated design of the scan
positions, aimed at avoiding as much as possible that some of the discontinuity sets might result
hidden from the observation points, and to have the possibility to validate the data by means of direct
survey in a limited number of accessible points.

Overall, it is particularly worth pointing out the significance of obtaining reliable geo-structural
parameters from remote techniques: in detail, the most robust parameters are represented by attitude,
persistence, spacing, and aperture (this latter depending upon the laser scanner used); roughness,
on the other hand, definitely represents a still uncertain feature. Further, advantages in reaching higher
levels of safety for operators, saving time and costs of work, and allowing coverage of the total area to
study represent definitely important goals, which encourage toward integrating different techniques
whenever this is possible.

Combination with other techniques, too, might be an option, especially in the case of low budget
research projects. For instance, the use of digital cameras at high resolution, or in specific cases of
thermal cameras, could add further precious information, especially to cover the aforementioned
“holes” from UAV surveys, and to get valuable data about thermal changes due to flowing of water
and/or dilation of the rock mass.
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