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Abstract: Prestressing force is induced in reinforced concrete (RC) structures to improve their load-
carrying capacity. Generally, the prestressing strand of an RC structure is tensioned using a hydraulic
jack, which decreases its workability. In this study, we evaluate the application of prestressing force by
using a shape memory alloy (SMA), as has been actively studied in civil engineering. Experiments
were conducted to measure the multi-stepwise prestressing force introduced in a hybrid SMA wire
composed of two different types of SMA wires. The experimental parameters were determined based
on the combinations of the SMA wires and the heating temperatures. The results of the experiments
show that the prestressing force was induced in a sequence. The magnitude of the prestressing force
generated by the hybrid SMA wire was equal to the sum of the prestressing forces generated by the
NiTi50 and NiTi90 SMA wires. In conclusion, this study verified the applicability of the proposed
concept of multi-stepwise prestressing by using hybrid SMA wires. Further research is required to
measure the effect of prestressing by locally heating the center of a girder with the aim of expanding
the applicability of this concept.
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1. Introduction

Concrete is strong in compression and weak in tension. In prestressed concrete girders, compressive
force is applied in the tension area to compensate for the disadvantages of concrete. This prestressing
force is induced in a girder during its construction, which helps reduce the tensile stress generated
during service. Prestressing is divided into two types: post-tension and pre-tension.

In the pre-tensioning method tendons are tensioned before concrete is poured and the tension is
retained until completing hardening of the concrete. Thereafter, the tendons are gradually released to
introduce prestress into the concrete. In the post-tension method, prestress is introduced by tensioning
tendons and fixing one of their ends to a concrete girder after the concrete hardens. In this method,
the tendons and the concrete should not be attached at the time of tensioning the tendons, which means
that the duct for arranging the tendon should be installed in advance. After the introduction of tension,
grouting should be performed with cementitious grout to prevent corrosion of the tendons and to
ensure that the tendons adhere to the concrete. After the tendons are grouted this way, re-tensioning
is impossible. To overcome these disadvantages of conventional prestressing, many researchers are
exploring prestressing techniques that employ shape memory alloys (SMAs).

SMAs have several unique properties. The two most important properties are the shape memory
effect (SME) and superelasticity. SME refers to the phenomenon that if an SMA is deformed, it regains
its former shape upon heating [1–3]. Superelasticity refers to the phenomenon of an SMA undergoing
a large amount of inelastic deformation and recovering its shape after unloading automatically without
heating [4,5]. The SME of an SMA strip/bar can be used to prestress concrete. For example, in principle,
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if a straight SMA bar is deformed by pulling and then heated above a certain temperature, it will shrink
to its original length. However, if the deformation recovery is restrained by embedding the SMA in
concrete structures, a mechanical stress is induced in the SMA when it is heated and cooled subsequently.
This stress is called “recovery stress,” and it can be used to introduce prestressing forces in concrete
structures to improve their serviceability. One of the advantages of such a prestressing technique
compared to conventional prestressing is the lack of frictional losses due to the development of uniform
bond stress along the length of the embedded SMA tendon. In comparison to the conventional
prestressing techniques, SMA tendons can be used for prestressing thin concrete members without
having to use anchor heads, oil hydraulic cylinders, ducts, or grout injection [6].

Maji and Negret [7] studied a smart prestressing method using SMA wires. The method uses
the SME of prestrained SMA wires. Therefore, it does not require tensioning of the wires by using
a hydraulic jack. Prestressing techniques that employ SMA wires or strands are relatively simple
compared to mechanical prestressing, and they can be used to introduce prestressing force whenever
necessary. Krstulovic-Opara and Naamann [8] used SMA wires in cement composites to demonstrate
their self-stressing capacity and compared SMA prestressing with mechanical and chemical prestressing.
Soroushian et al. [9] showed that externally installed SMA bars closed cracks in concrete structures
because of the post-tensioning force generated by the SME. However, this method is associated with
the problem of drilling holes and anchorage on concrete members. Li et al. [10] and Lee et al. [11,12]
showed the crack-closing capacity of SMA wires in concrete beams by using the closing force generated
because of the recovery stress of SMA wires. There are many more studies related to crack closure by
using SMA wires [13–18]. Moreover, there are several types of SMA wires. Most researchers have used
NiTi SMA, which is considerably more expensive than steel. Czaderski et al. [19] developed band strips
with ribs by using an Fe-based SMA for prestressing concrete. Fe-based SMAs are relatively cheap
and have higher strength and elastic modulus than NiTi SMAs. Cladera et al. [20] and Lee et al. [21]
studied the applications of Fe-based SMAs. The highly developed SME, high stiffness, high strength,
and low production cost of Fe-SMAs have prompted international research on their application in
such civil engineering fields as damping, active control, and pre- or post-stressing tensioning of
structures [22,23]. Shahverdi et al. [6] proposed near-surface mounted (NSM) strengthening techniques
that significantly reduce the probability of harm resulting from the corrosion of prestressing members.
They aimed to estimate the applicability of Fe-SMA to NSM strengthening techniques. Zheng and
Dawood [24] analyzed fatigue crack growth in steel elements reinforced with SMA and fiber-reinforced
polymer composite patches. Gholampour and Ozbakkaloglu [25] studied the compressive behavior of
high-strength concrete columns confined by SMA spirals. Moreover, an attempt has been made to
enhance the compressive behavior of concrete by using a SMA [26]. The pullout resistance of SMAs
have been evaluated to compare the difference of the pullout resistance caused by SME and wire
shape [27,28].

In this study, we conceptualize a prestressing method that considers hybrid SMA wires.
This concept facilitates multi-step application of prestressing force to reinforced concrete (RC) members.
“Hybrid” means that two types of SMA wires are mechanically combined. If an SMA tendon has
two different austenite temperatures, its SME can be controlled in steps, which helps optimize the
prestressing operation. As a preliminary study, experiments are conducted in two stages to observe the
multi-step behavior of the RC member after it is prestressed using hybrid SMA wires. The first set of
experiments involves multi-step shape recovery tests to evaluate the ranges of austenite temperatures
of the SMA wires and to confirm the multi-step shape recovery behavior of the hybrid SMA wires.
The second stage involves multi-step prestressing tests to confirm whether shape recovery is feasible
under multi-step prestressing. The experimental parameters are determined by combinations of the
SMA wires and heating temperatures.
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2. Prestressing with Hybrid SMA Wires

For applying prestress with hybrid SMA wires, we used two different types of prestrained SMA
wires as prestressing members instead of conventional tendons. The prestrained hybrid SMA wires
were used to apply prestressing force rather than direct tensioning by using hydraulic jacks. When
subjected to temporary heating, the prestrained hybrid SMA wires undergo recovery, and the recovery
stress in the hybrid SMA wires is converted into a prestressing force as the temperature reaches the
austenite temperature of one of the several materials constituting the hybrid SMA wires. In particular,
heating is performed by dividing the hybrid SMA wire into multiple sections and heating each section
to a different temperature range.

Figure 1 shows the general procedure of prestressing with hybrid SMA wires. The arrangement of
the SMA wire and the manner in which prestressing force is transmitted to the structure are the same
as those in the conventional pre-tensioning method. Figure 1a shows an RC structure prestressed using
SMA1 and SMA2, which have different austenite temperatures. If the austenite temperature of SMA2
is higher than that of SMA1, SMA2 will not exhibit the SME when heated to the austenite temperature
of SMA1, T1. As illustrated in Figure 1b,c, the hybrid SMA wires are heated to different temperatures.
After the temperature reaches the austenite temperature, the SMA wires in the heated sections induces
prestress in the RC beam. Upon differentiating the composition of the hybrid SMA wires and heated
sections, the prestress induced by the SMEs shows a multi-step distribution, as illustrated in Figure 1d.
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Figure 1. General application procedure of prestressing method using hybrid shape memory alloy
(SMA) wires: (a) prestressed concrete girder with hybrid SMA wires; (b) heating of hybrid SMA wire to
temperature 1; (c) heating of hybrid SMA wire to temperature 2; (d) final prestressing force distribution
and multi-step prestressing force in section A.
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Figure 2 shows the general stress distribution diagram at the bottom of a simply supported beam
due to prestressing with hybrid SMA wires. Curve (1) in Figure 2 represents the stress distribution
without prestressing and curve (2) represents the stress distribution when the beam is prestressed with
SMA1 only. Curve (3) represents the final stress distribution when the beam is prestressed with SMA2.
These figures show that the stress is distributed uniformly over the length of the beam when it is
prestressed with hybrid SMA wires. The proposed method offers the following advantages compared
to the prestressing method that employs conventional tendons.

(1) If a member has two or more types of austenite temperatures, the SME can be controlled in steps,
where the number of steps is equal to the number of austenite temperatures. Efficient prestressing
is possible if it can be performed in several stages as needed during the construction phase or
during the service phase according to the additionally required load-carrying capacity.

(2) The conventional pre-tensioning method introduces prestress through the elimination of tendon
restraints after the design strength of the structure is attained. Therefore, re-tensioning is impossible.
However, with the proposed prestressing technique, the timing of prestressing can be selected by
adjusting the stage of SME expression. In addition, strains occurring in the SMA wires during
service can be used for further re-tensioning.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 19 

Figure 2 shows the general stress distribution diagram at the bottom of a simply supported beam due 
to prestressing with hybrid SMA wires. Curve (1) in Figure 2 represents the stress distribution 
without prestressing and curve (2) represents the stress distribution when the beam is prestressed 
with SMA1 only. Curve (3) represents the final stress distribution when the beam is prestressed with 
SMA2. These figures show that the stress is distributed uniformly over the length of the beam when 
it is prestressed with hybrid SMA wires. The proposed method offers the following advantages 
compared to the prestressing method that employs conventional tendons. 

(1) If a member has two or more types of austenite temperatures, the SME can be controlled in 
steps, where the number of steps is equal to the number of austenite temperatures. Efficient 
prestressing is possible if it can be performed in several stages as needed during the 
construction phase or during the service phase according to the additionally required load-
carrying capacity. 

(2) The conventional pre-tensioning method introduces prestress through the elimination of 
tendon restraints after the design strength of the structure is attained. Therefore, re-
tensioning is impossible. However, with the proposed prestressing technique, the timing of 
prestressing can be selected by adjusting the stage of SME expression. In addition, strains 
occurring in the SMA wires during service can be used for further re-tensioning. 

 

Figure 2. Stress distribution due to the prestressing method with hybrid SMA wires. 

3. Multi-Step Shape Recovery Test 

3.1. Test Vasriabe and Specimens 

Before conducting prestressing experiments using the hybrid SMA wires, the behaviors of the 
materials constituting the hybrid SMA wires should be identified. To this end, a multi-stepwise shape 
recovery test observes the deformation behavior of the SMA wire according to the SME caused by 
the heat applied in the chamber. To evaluate ranges of austenite temperature of SMA wires and to 
confirm the behavior of multi-stepwise shape recovery, three specimens for each of four types of 
wires were fabricated; two types of SMA wires and two types of hybrid SMA wires. The comparative 
test for each type of SMA is an experiment to confirm the austenite temperature of individual SMA. 
Hybrid SMA wires are tested to compare the behaviors of different SMA combinations. Two types of 
NiTi SMA wires were used. The material properties of the wires used in this study are shown in Table 
1 and Figure 3. The stress–strain relationship of SMA wires is different from that of conventional 
structural steel, in that the yield behavior appears twice in case of the SMA wires. It may appear 
differently depending on the manufacturing method and chemical composition of the SMA wire. The 
SMA wire used in this study has a primary yield point at approximately 150 MPa and a secondary 

Figure 2. Stress distribution due to the prestressing method with hybrid SMA wires.

3. Multi-Step Shape Recovery Test

3.1. Test Vasriabe and Specimens

Before conducting prestressing experiments using the hybrid SMA wires, the behaviors of the
materials constituting the hybrid SMA wires should be identified. To this end, a multi-stepwise shape
recovery test observes the deformation behavior of the SMA wire according to the SME caused by the
heat applied in the chamber. To evaluate ranges of austenite temperature of SMA wires and to confirm
the behavior of multi-stepwise shape recovery, three specimens for each of four types of wires were
fabricated; two types of SMA wires and two types of hybrid SMA wires. The comparative test for
each type of SMA is an experiment to confirm the austenite temperature of individual SMA. Hybrid
SMA wires are tested to compare the behaviors of different SMA combinations. Two types of NiTi
SMA wires were used. The material properties of the wires used in this study are shown in Table 1 and
Figure 3. The stress–strain relationship of SMA wires is different from that of conventional structural
steel, in that the yield behavior appears twice in case of the SMA wires. It may appear differently
depending on the manufacturing method and chemical composition of the SMA wire. The SMA wire
used in this study has a primary yield point at approximately 150 MPa and a secondary yield point at
approximately 800 MPa. The estimated tensile strength of this wire was approximately 1000 MPa.
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Table 1. Material properties of the SMA wire, as provided by the manufacturer.

Type Austenite
Temperature

Chemical Composition (%)
Ti Ni Co Cu Fe Nb C Others

NiTi50 50 ◦C ± 5 ◦C
Bal. 55.89 0.050 0.010 0.050 0.025 0.046 Each < 0.10NiTi90 90 ◦C ± 5 ◦C
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Figure 3. Stress-strain curves of SMA wires.

The two major test variables in this study were single wire and hybrid wire. Single-wire specimens
were used to check the austenite temperature required to activate the SME of individual SMA wires.
Although the manufacturer had provided these values, to double check and prevent any error,
we confirmed the austenite temperature experimentally by using a heating chamber. In addition,
we conducted experiments to compare SMA wire behavior in the single-wire state with that in a hybrid
wire state. As shown in Figure 4a,b, a hybrid wire is a mechanical combination of three wires.
Hybrid-wire experiments were performed to verify whether the behaviors of the individual constituent
wires were combined. Here, combined behavior implies that the SME effect is expressed in a stepped
manner as to the heating temperature reaches the austenite temperatures of the individual constituent.
Three specimens were prepared for each variable to ensure the validity of the experimental results.
Table 2 summarizes the types of specimens.
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Table 2. Types of specimens.

Specimen Type Number of Wires Quantity

NiTi50 Single NiTi50: 1ea 3
NiTi90 Single NiTi90: 1ea 3

NiTi50-90-50 Hybrid NiTi50: 2ea, NiTi90: 1ea 3
NiTi90-50-90 Hybrid NiTi50: 1ea, NiTi90: 2ea 3

3.2. Test Set-Up and Vision System Instrumentation

Figure 5 shows the installation of the test specimen for the heating test. The specimens were
bent into an L-shape before heating and the lower end of the sample was fixed inside the chamber.
A colored target was attached to the specimen, to facilitate easy observation of deformation of the
specimen heated in the chamber by using an image processing method. If only one specimen is heated
at a time, errors may occur in the results owing to differences in temperature control. Therefore, all four
types of specimens, which composed one set, were heated simultaneously. The prestressing technique
proposed in this study employs a hybrid SMA consisting of two or more types of SMAs. Any change in
the behavior of a specific SMA at temperatures other than its austenite temperature it can be ascribed to
errors in the prestressing process. Therefore, we increased the chamber temperature from approximately
25 to 105 ◦C to examine SMA behavior over a wide temperature range. Then, we decreased chamber
temperature to 80 ◦C. Figure 6 shows the variation in chamber temperature. Figure 7a,b show the
notation of the characteristic values in the heating temperature-displacement curves.
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3.3. Test Result

In this experiment, we attempted to examine the shape recovery behavior under heat of the SMA
wires used in this study. Specifically, we examined the temperature-displacement relationship and
compared the temperatures at which SME occurred across the different combinations of SMA wires.
Figure 8a,b show the shape recovery of the NiTi50 and 90-50-90 specimens with increasing temperature.
When the material reached the austenite temperature, all deformations started to recover. Especially,
in case of the 90-50-90 hybrid wire, shape recovery occurred not only below 60 ◦C but also above 70 ◦C.
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Table 3 summarizes the shape recovery temperatures and the displacements that occurred with
recovery. Shape recovery start temperature (TS) and shape recovery end temperature (TE) are listed
for individual wires. For the hybrid wire, the temperatures of the two-stage shape recovery behavior
are denoted TS1, TS2, TE1, and TE2. Figures 9 and 10 show the heating temperature-displacement
relationship of the test specimen. The displacement at the end of the test specimen was measured
using an image processing method.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 19 
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In the results obtained for the single wire, both NiTi50 and NiTi90 showed noticeable deformation
recovery in a specific temperature range. Both specimens exhibited a certain level of displacement
before the shape recovery began, probably because thermal expansion was triggered as soon as the
specimen was heated. Therefore, the displacement generated before the start of shape recovery for
NiTi90 is greater than that for NiTi50. The austenite temperature measured in the experiment was
different from the austenite temperature provided by the manufacturer. The austenite temperature
specification of NiTi50 was 50 ◦C, but the experimental results showed that on average, shape recovery
started and ended at 45.8 ◦C (91.7% of specification) and 67.9 ◦C (135.8% of specification), respectively.
The austenite temperature specification for NiTi90 was 90 ◦C, but the experimental results showed that
on average shape recovery started and ended at 77.5 ◦C (86.1% of specification) and 102.4 ◦C (113.8%
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of specification), respectively. Because the austenite temperature values provided by the manufacturer
represent the average values of the experimentally determined start and end temperatures of shape
recovery, they may be useful when designing structural applications with the hybrid wire configuration.
However, an inaccurate shape recovery temperature may lead to an error in the amount of prestress
introduced. Therefore, it is necessary to confirm the shape recovery temperature when prestress
a structure by using SMA wires.

Table 3. Comparisons of results of shape recovery tests.

Specimen
Temperature (◦C) Displacement (mm)

TS1 TE1 TS2 TE2 DS1 DE1 DS2 DE2

NiTi50

1 46.8 68.8 - - 1.71 86.07 - -
2 45.1 69.5 - - 1.62 85.95 - -
3 45.6 65.4 - - 1.82 87.35 - -

Avg. 45.8 67.9 - - 1.72 86.46 - -

NiTi90

1 77.4 103.5 - - 4.17 88.20 - -
2 77.8 102.5 - - 4.20 86.50 - -
3 77.2 101.3 - - 3.41 85.60 - -

Avg. 77.5 102.4 - - 3.93 86.77 - -

50-90-50

1 45.3 72.0 80.5 105.5 2.13 77.64 78.32 87.47
2 42.5 65.5 78.6 101.3 2.25 78.50 78.73 85.46
3 42.5 66.3 80.1 98.7 2.65 80.47 80.49 88.59

Avg. 43.4 67.9 79.7 101.8 2.34 78.87 79.18 87.17

90-50-90

1 46.2 67.7 77.2 103.7 3.01 40.52 40.66 88.82
2 45.7 68.9 76.8 103.7 3.38 42.01 42.04 90.36
3 44.3 69.1 78.6 103.0 2.98 39.26 40.35 86.09

Avg. 45.4 68.6 77.5 103.5 3.10 40.60 41.00 88.40

In the results obtained using the hybrid wires, the 50-90-50 and 90-50-90 specimens exhibited the
multi-step shape recovery behavior, as was intended in this study. Depending on the proportion of
NiTi90 in the hybrid wire, the first shape recovery step tended to restrain the shape recovery of NiTi50.
The difference in displacements generated in the first shape recovery step between the single wire and
the hybrid wire confirmed this constraint. The results in Table 3 show that as the proportion of NiTi90
increases, the displacement generated in the first shape recovery step decreases. After the first shape
recovery step, no shape recovery was seen at 68–78 ◦C. Therefore, this temperature interval can be used
to distinguish the first and second steps of the multi-step shape recovery behavior. The second shape
recovery step can be ascribed to NiTi90, the shape recovery temperature range of which similar to that
of single-wire NiTi90. However, similar to the first shape recovery step, the second shape recovery
step tended to restrain the shape recovery of NiTi90 depending on the proportion of NiTi50. Despite
this restraining behavior, the final extent of recovery from deformation was the same for the single and
hybrid wires. The shape recovery test verified the shape recovery behavior of the single SMA wires
and the hybrid SMA wire. Depending on the temperature, the SME of the hybrid SMA wire could be
partially controlled. Therefore, the applicability of the multi-step prestressing method to be evaluated
in this study was confirmed. In the next section, we will perform a multi-step prestressing test based
on the experiments performed in this section.

4. Multi-Step Prestressing Test

4.1. Test Variables and Specimens

In this section, we describe a multi-step prestressing test that was conducted with a prestrained
hybrid SMA wire to confirm the applicability of the multi-step recovery behavior obtained in the
previous section. The multi-step prestressing test was performed by measuring the amount of prestress
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introduced according to the SME triggered by heating in the chamber. Heating the specimen causes
the concrete to thermally expand before SME starts to appear. Then, when the SMA wire reaches the
shape recovery temperature, prestress is introduced into the test specimen. If the thermal expansion
of concrete is not distinguished from the measurement result, our analysis of the experimental data
will be compromised. Therefore, in this experiment, the main specimen including the SMA wire and
a dummy specimen excluding the SMA wire were fabricated to help us distinguish the strain generated
by the thermal expansion of concrete from the measured data. The hybrid SMA wire used in the
experiment consisted of two types of SMA wires (NiTi50 and NiTi90), as described in the previous
section. The specifications of the test specimens used in this experiment are listed in Table 4 and
Figure 11. Three specimens were fabricated to check the repeatability of the results.

Table 4. Types of specimens.

Specimen
Number of SMA Wires

Quantity
NiTi50 NiTi90

SMA 2 4 3
Dummy - - 1
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Before fabrication of the SMA wire specimens, the individual SMA wires were tensioned with
a universal testing machine to induce residual strain in the SMA wires. This residual strain was used
to introduce prestress. The diameter of the SMA wire used in this study was 1 mm. Because the wire
was too thin, it was difficult to measure the strain induced in the wire with an extensometer. Therefore,
we measured strain by using the image processing method. A tension force of 250 N was applied to
the wire was 250 N. Figure 12a,b show the experimental set-up and the load-strain curves measured at
the time of introducing residual strain. Residual strains of 0.059 and 0.049 were induced in NiTi50 and
NiTi90 wires, respectively.

If an SMA wire embedded in a concrete girder has anchorage parts, it will be possible to effectively
introduce prestress. Therefore, in this study, both ends of the SMA wire were bent in J-shape, as shown
in Figure 13, to act as anchorages. Jung et al. [28] evaluated the pull-out resistance of SMA wire
anchorages with J-shaped ends. They derived Equation (1) to calculate the anchorage pull-out
resistance. Equation (1) consists of three parts. The first part represents the effect of the embedded
shape, the second part the SME, and the last part the effect of the adhesive force.

R = n j·J + ns·π·d·L·S + na·π·d·l·A (1)

where, R denotes the pull-out resistance, n j the number of J-shaped ends, ns the number of SMA wires,
L the length of the wire in anchorage, na the number of wires that have adhesive force, and l the bond
length. J, S, and A are constants of the effect that improve the pull-out resistance [28]. According
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to Equation (1), the pull-out resistance of the anchorage of the specimen is 901.8 N. Table 5 lists the
separated pull-out resistance values calculated using Equation (1).Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 19 
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Table 5. Separated pull-out resistance values according to mechanical behavior.

Embedded Shape SME Adhesive Force Total

77.58 N 336.29 N 487.96 901.83 N

4.2. Test Set-Up and Measurement

Figure 14 shows the specimen set-up for the multi-step prestressing test. The specimens were
equipped with a thermocouple and strain gauge. The experimental set-up consisted of a dummy
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specimen and a main specimen in one set, which were heated simultaneously in the heating chamber.
The thermocouples were installed at the center of the specimens. Strain gauges were attached on
the sides of the specimens. The gauge factor of the strain gauge varied depending on the room
temperature. A dummy strain gauge was placed next to the main specimen to calibrate the strain
noise at high temperatures. As in case of the shape recovery test in the previous section, the purpose of
this experiment is to identify the multi-step shape recovery behavior. In this experiment, we aim to
introduce the multi-step prestress into a concrete girder. Therefore, in the multi-step prestressing test,
heating experiments were performed in two steps as shown in Figure 15. In each step, the amount of
prestress was measured after heating and cooling the specimens. In the first step, the specimens were
heated from 25 to 65 ◦C and then cooled to 25 ◦C. In the experiments described in the previous Section,
the austenite temperature of NiTi50 was 43–68 ◦C. However, the maximum heating temperature in
the first step was set to 65 ◦C to prevent any SME in NiTi90 due to overheating. In the second step,
the maximum heating temperature was set to 105 ◦C considering the austenite temperature range
of NiTi90.
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4.3. Test Result

Figure 16 and Table 6 show and summarize the strain-temperature relationships observed in the
experiment. The experimental results were divided into step 1 and step 2 based on the heating step.
As shown in Figure 16, thermal expansion occurs in the specimen as the heating temperature increases,
and thus, the strain gauge shows tensile strain. After the heating temperature peaks, the tensile
strain decreases as cooling commences. In case of the dummy specimens, most of the tensile strain
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generated by heating was negated as the specimen cooled completely. Even the SMA specimens
stretched when they were heated. In steps 1 and 2, the SMA specimens showed 5%–10% lower strain
than the dummy specimen at the maximum heating temperature. Because the SME of SMA is active at
the maximum heating temperature, compressive force is applied to the SMA specimen. Therefore,
the maximum tensile stress of the SMA specimens is smaller than that of the dummy specimen, because
the compressive force is generated by the SMA and acts against thermal expansion of the concrete
sample. The compression strain remained as the SMA specimen cooled. In step 1, a residual strain of
−80µε was generated, and in step 2, a residual strain of −252µε was generated. These residual strains
were generated because the SME was activated in the heating step. When compared with the behavior
of the dummy specimen, it was confirmed that the residual strain in the SMA specimen was generated
as the thermal expansion strain generated in the heating step disappeared under cooling.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 19 
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Table 6. Results of multi-step prestressing tests.

Specimen Step 1 Step 2
Max Strain Residual Strain Max Strain Residual Strain

SMA-1 358 −76 748 −258
SMA-2 339 −83 747 −225
SMA-3 346 −80 714 −272

Dummy 387 −1 784 −17

Figure 17 integrates the prestress records in steps 1 and 2. The final prestress introduced over
the two steps averaged −331µε. On average, 24% of the total residual strain was generated in step 1.
The SME of NiTi50 was observed in Step 1. NiTi50 accounted for 33% of the total wire quantity.
Therefore, the ratio of prestress in step 1 to the total prestress is similar to the ratio of NiTi50 in the
hybrid SMA wire. However, there is a difference of about 9%, which means that NiTi90 resisted
compressive forces as well as concrete sections when compressive force was generated in step 1.
Therefore, sample stiffness may increase slightly owing to the restraint on NiTi90. As a result, the ratio
of the prestress in Step 1 is smaller than the ratio of NiTi50 in the hybrid SMA wire. Steps 1 and 2
obtained in this small simulation can be considered as representing the situation of each construction
stage in the actual structure. In addition, steps 1 and 2 are the results confirming that the prestress
to be introduced can be adjusted in stages depending on the desired member or location. Therefore,
the applicability of multi-step prestressing with hybrid SMA wires to be evaluated in this study was
confirmed through the multi-step prestressing test performed in this section.
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5. Conclusions

To improve the conventional prestressing technique, we conceptualized a multi-step prestressing
technique with a hybrid SMA wire. The applicability of the proposed technique was verified through
multi-step shape recovery behavior evaluation and multi-step prestressing tests. In the multi-step
shape recovery tests, hybrid SMA wires were fabricated by combining two types of SMA wires: NiTi50
and NiTi90. Shape recovery behaviors that accompanied changes in temperature were evaluated using
an image processing method. In the multi-step prestressing tests, the hybrid SMA wire specimens
and the dummy specimen were heated simultaneously to ensure that the prestress was introduced
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in multiple steps according to the SME of the hybrid SMA wire. The conclusions of this study are
as follows.

The shape recovery test verified the shape recovery behavior of the single SMA wires and the
hybrid SMA wire. In the single-wire experiment, we evaluated the austenite temperature range in
which the SMEs of the NiTi 50 wire and NiTi 90 wires were activated. The hybrid SMA wire, which
was constituted of NiTi50 and NiTi90 wires joined using mechanical connectors, showed no shape
recovery at 68–78 ◦C. This range represents the interval between the austenite temperatures of NiTi50
and NiTi90. Therefore, we could distinguish between the first and the second shape recovery steps
based on the temperature range.

The multi-step prestressing test showed that the SMEs of NiTi50 and NiTi90 appeared in each
of the two stages—step 1 corresponding to 25–65 ◦C and step 2 corresponding to 25–105 ◦C—thus
indicating that the prestress was introduced in each step. When compared with the dummy specimens
without any embedded SMA wires, the thermal expansion of the test specimen was similar during
the initial heating phase. However, unlike the dummy specimens, residual compressive strain was
observed in the specimens with embedded SMA wires after the specimens were cooled. Therefore,
the applicability of the proposed multi-step prestressing with hybrid SMA wire was verified.

This study aimed to explore the basic concept of hybrid SMA wires. Therefore, we conducted
small-scale experiments with limited variables and limited number of specimens. Future studies
should explore diverse SMA wire materials and wire diameters, building upon the specimen sizes
examined in this study. Furthermore, costs of SMA wires should be considered from the viewpoint of
their use in practical applications. In this study, NiTi SMA, which can be supplied relatively easily, was
used because it was a small-scale experiment. However, NiTi SMA is not suitable for actual application
to realized structures because of its high material cost. Therefore, future studies should compare more
economical SMA wires, such as Fe-based SMA wires. From these future studies, it will be possible to
get a better understanding of the practical applications.
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