Quinazolin-4(3*H*)-ones: a Tangible Synthesis Protocol *via* an Oxidative Olefin Bond Cleavage Using Metalcatalyst Free Conditions

Muhammad Sharif *

* Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

* Correspondence: msharif@kfupm.edu.sa; Tel.: +966. 13 860 8725 (M.S.)

Received: 31 March 2020; Accepted: 15 April 2020; Published: date

Synthesis of Quinazolinones

General Preparation

All chemicals and the reagents used for the execution of the current report were commercially available and procured from Sigma Aldrich, Alfa Aeser, TCI Europe, Acros and used without further purifications unless otherwise reported. All reactions were performed under air in pressure tubes and monitored by thin layer chromatography (TLC) analysis. The synthesized products were characterized by different spectroscopic techniques, which includes ¹H- and ¹³C-NMR, GCMS, HRMS as well as IR spectroscopy. Nuclear magnetic resonance (NMR) spectroscopic analysis were performed on Bruker AV-300 and AV-400 spectrometers using deuterated solvents CDCl₃ as well as DMSO-d₆. Gas chromatography (GC) and GC-MS were performed on FTIR ALPHA with Platinum ATR (Bruker).

2. -(4-(tert-butyl)phenyl)quinazolin-4(3H)-one (3b)[66]

yield: (180 mg, 65%); ¹HNMR (300 MHz, DMSO-*d*₆): δ = 1.35 (s, 9H), 7.51-7.62 (m, 3H), 7.73-7.89 (m, 2H), 8.14-8.20 (m, 2H), 8.47 (s, 1H, NH); ¹³CNMR (DMSO-*d*₆): δ = 31.8 (3CH₃), 35.5 (C), 121.7 (C), 126.2 (2CH), 126.7 (CH), 127.3 (CH), 128.2 (CH), 128.5 (2CH), 130.8 (C), 135.4 (CH), 149.5 (C), 153.1 (C), 155.1 (C), 163.2 (CO); GCMS (EI, 70 eV): *m*/*z* (%) [M⁺] 278 (84), 263 (100).

2. -(4-nitrophenyl)quinazolin-4(3H)-one (3c)[66]

yield: (172 mg, 64%); ¹HNMR (300 MHz, DMSO-*d*₆): δ = 6.74 (t, *J* = 7.65 Hz, 1H), 6.82 (d, *J* = 8.55 Hz, 1H), 7.26-7.33 (m, 1H), 7.37 (s, 1H), 7.64-7.65 (m, 1H), 7.79 (dt, *J* = 8.60 Hz, 1H), 8.30 (dt, *J* = 8.60 Hz, 2H), 8.57 (s, 1H, NH). ¹³CNMR (DMSO-*d*₆): δ = 115.5, 115.9, 118.4, 124.6, 128.4, 129.0, 134.5, 148.2, 148.4, 150.3, 164.2 (CO); GC-MS (EI, 70 eV): *m*/*z* (%) [M⁺] 267 (100), 221 (34), 192 (11), 119 (30), 92 (12), 90 (13).

2-(4-methoxyphenyl)quinazolin-4(3H)-one (3d)^[66]

yield: (126 mg, 50%); ¹HNMR (300 MHz, DMSO-*d*₆): δ = 3.39 (s, OCH₃), 7.14 (d, *J* = 8.75 Hz, 2H);7.52 (t, *J* = 8.14 Hz, 1H), 7.73-7.75 (m, 1H), 7.82-7.88 (m, 1H), 8.16 (t, *J* = 8.14 Hz, 1H), 8.23 (d, *J* = 8.75 Hz, 2H), 12.5 (s, 1H, NH); GCMS (EI, 70 eV): *m*/*z* (%) [M⁺] 252 (100), 119 (75), 92 (14), 90 (14). HRMS (ESI): Calc. for C₁₅H₁₂N₂O₂: 252.08933; found: 252.08948.

2. -(4-fluorophenyl)quinazolin-4(3H)-one (3e) [66]

yield: (130 mg, 54%); ¹HNMR (300 MHz, DMSO- d_6): δ = 7.04-7.91 (m, 6H), 8.12-8.40 (m, 2H), 12.6 (s, 1H, NH); ¹³CNMR (DMSO- d_6): δ = 115.8, 116.3, 116.7, 121.8, 126.8, 127.5, 128.4, 131.2, 135.5, 163.3 (CO); GCMS (EI, 70 eV): m/z (%) [M⁺] 240 (100), 122 (11), 120 (14), 119 (90), 95 (16), 92 (14), 90 (11).

2. -(4-chlorophenyl)quinazolin-4(3H)-one (3f) [66]

yield: (143 mg, 56%); ¹HNMR (300 MHz, DMSO-*d*₆): δ = 7.35-7.42 (m, 1H), 7.55-7.64 (m, 1H), 7.67-7.79 (m, 2H), 8.17-8.28 (m, 2H), 12.7 (s, 1H, NH); ¹³CNMR (DMSO-*d*₆): δ = 115.2 (C), 116.2 (CH), 123.4 (CH), 128.5 (CH), 129.7 (2CH), 132.0 (2CH), 133.6 (C), 135.5 (C), 136.2 (CH), 140.7 (C), 150.9 (C), 163.0 (CO); GCMS (EI, 70 eV): *m*/*z* (%) [M⁺] 256 (71), 119 (100), 111 (12), 92 (11), 90 (15), 75 (12); HRMS (ESI): Calc. for C₁₅H₉N₂OCl: 256.03979; found: 256.03928.

2. -(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (3g)^[66]

yield: (160 mg, 55%); ¹HNMR (300 MHz, DMSO-*d*_δ): δ = 7.57-7.64 (m, 1H), 7.80-7.99 (m, 4H), 8.20-8.23 (m, 1H), 8.40-8.43 (m, 2H), 12.8 (s, 1H, NH); ¹³CNMR (DMSO-*d*_δ): δ = 122.2 (C), 123.1 (C), 126.4 (2CH), 126.8 (CH), 128.1 (CH), 128.6 (CH), 129.7 (2CH), 131.9, 132.2 (C), 135.8 (CH), 137.6 (C), 149.4 (C), 152.2 (C), 163.0 (CO); GCMS (EI, 70 eV): *m/z* (%) [M⁺] 290 (100), 145 (21), 119 (98), 92 (15), 90 (14); HRMS (ESI): Calc. for C15H₉N₂OF₃: 290.06615; found: 290.06587.

2. -(naphthalen-2-yl)quinazolin-4(3H)-one (3h)^[66]

yield: (190 mg, 70%); ¹HNMR (300 MHz, DMSO-*d*₆): δ = 7.59-7.76 (m, 4H), 7.82-7.95 (m, 3H), 8.15-8.28 (m, 4H), 12.7 (s, 1H, NH); ¹³CNMR (DMSO-*d*₆): δ = 122.1 (C), 126.0 (CH), 126.1 (CH), 126.7 (CH), 127.3 (CH), 127.7 (CH), 127.9 (CH), 128.4 (CH), 128.6 (CH), 129.2 (CH), 131.2 (CH), 132.6 (CH), 134.01 (C), 135.4 (C), 149.6 (C), 162.8 (CO); GCMS (EI, 70 eV): *m*/*z* (%) [M⁺] 272 (55), 272 (100).

2. -(pyridin-3-yl)quinazolin-4(3H)-one (3i)[66]

yield: (138 mg, 62%); ¹HNMR (300 MHz, DMSO-*d*₆): δ = 7.59-7.73 (m, 2H), 7.83-8.09 (m, 2H), 8.12-8.22 (m, 1H), 8.19-8.24 (m, 1H), 8.49-8.79 (m, 1H), 8.81 (d, *J* = 4.95 Hz, 1H), 10.7 (s, 1H, NH); ¹³CNMR (DMSO-*d*₆): δ = 122.9 (C), 123.0 (CH), 127.0 (CH), 127.5 (CH), 128.1 (C), 128.4 (C), 135.6 (CH), 138.9 (CH), 149.6 (CH), 150.1 (CH), 152.5 (C), 161.9 (CO); GCMS (EI, 70 eV): *m/z* (%) [M⁺] 223 (91), 119 (100), 92 (13), 90 (15), 78 (10); HRMS (ESI): Calc. for C₁₃H₉N₃O: 223.07401; found: 223.07411.

3. -(m-tolyl)-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5b) [66]

yield: (160 mg, 59%); ¹HNMR (300 MHz, DMSO-*d*₆): δ = 2.45 (s, 3H, CH₃), 7.47-7.56 (m, 3H), 7.60-7.67 (m, 1H), 7.72-7.80 (m, 1H), 7.82-7.89 (m, 3H), 12.2 (s, 1H, NH); ¹³CNMR (DMSO-*d*₆): δ = 21.8 (CH₃), 119.3, 122.3, 124.2, 126.3, 127.5, 129.5, 129.7, 132.7, 134.0, 134.4, 136.4, 139.3, 155.8; GCMS (EI, 70 eV): *m*/*z* (%) [M⁺] 262 (60), 208 (13), 155 (100), 91 (55), 64 (15); HRMS (ESI): Calc. for C₁₄H₁₂N₂O₂S: 272.06195; found: 272.06189. NMR spectra for synthesized quinazolinones'

Figure S 2. ¹³CNMR of (3).

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 ppm

Figure S 9. ¹³CNMR of (3e).

Figure S 18. ¹HNMR of (5).

