
applied  
sciences

Article

An Approach to Knowledge Base Completion
by a Committee-Based Knowledge Graph Embedding

Su Jeong Choi 1 , Hyun-Je Song 2 and Seong-Bae Park 3,*
1 Institute of Convergence Technology, KT, 151 Taebong-ro, Seocho-gu, Seoul 06763, Korea;

sujeong.choi@kt.com
2 Department of Information Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu,

Jeonju-si 54896, Jeollabuk-do, Korea; hyunje.song@jbnu.ac.kr
3 Department of Computer Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero,

Yongin-si 17104, Gyeonggi-do, Korea
* Correspondence: sbpark71@khu.ac.kr

Received: 15 March 2020; Accepted: 8 April 2020; Published: 11 April 2020
����������
�������

Abstract: Knowledge bases such as Freebase, YAGO, DBPedia, and Nell contain a number of facts with
various entities and relations. Since they store many facts, they are regarded as core resources for many
natural language processing tasks. Nevertheless, they are not normally complete and have many
missing facts. Such missing facts keep them from being used in diverse applications in spite of their
usefulness. Therefore, it is significant to complete knowledge bases. Knowledge graph embedding
is one of the promising approaches to completing a knowledge base and thus many variants of
knowledge graph embedding have been proposed. It maps all entities and relations in knowledge
base onto a low dimensional vector space. Then, candidate facts that are plausible in the space
are determined as missing facts. However, any single knowledge graph embedding is insufficient
to complete a knowledge base. As a solution to this problem, this paper defines knowledge base
completion as a ranking task and proposes a committee-based knowledge graph embedding model for
improving the performance of knowledge base completion. Since each knowledge graph embedding
has its own idiosyncrasy, we make up a committee of various knowledge graph embeddings to reflect
various perspectives. After ranking all candidate facts according to their plausibility computed by
the committee, the top-k facts are chosen as missing facts. Our experimental results on two data
sets show that the proposed model achieves higher performance than any single knowledge graph
embedding and shows robust performances regardless of k. These results prove that the proposed
model considers various perspectives in measuring the plausibility of candidate facts.

Keywords: knowledge base completion; knowledge graph construction; knowledge graph embedding;
committee machine

1. Introduction

Large-scale knowledge bases such as Freebase [1], DBPdia [2], and NELL [3] are now publicly
available, and they contain massive volumes of facts involving diverse entities and relations. Due to their
huge size, they are used as an essential resource in many language-related tasks such as information
retrieval, question-answering, and text mining. However, no matter how large the knowledge bases are,
they are not yet complete since they are constructed manually. For instance, Freebase has three million
entities for the ‘Person’ concept, but only 25% of them have nationality information [4]. In addition, the
entities with parent information occupy just 6% of the ‘Person’ entities, while it is natural that every
person has a nationality or parent(s) in the real world. Such missing information appears for nearly
every relation, and then is piled up. As a result, these cumulative missing facts limit the effective use of
knowledge bases. Therefore, it is significant to fill in missing facts of a knowledge base automatically.
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There have been many previous studies that attempted to fill in missing facts. One promising
approach to this task is to use knowledge graph embedding [5–9], which represents all entities and
relations of a knowledge base as vectors in a low-dimensional space. The candidates for missing
facts are also represented as vectors in the low-dimensional space and their plausibility is measured
by vector similarity to the existing facts in the space. Then, the candidates with high plausibility
are discovered as possible facts for the knowledge base. According to the experimental results of
previous studies [10], this approach achieves over 70% in Hits@10 (Hits@k is the rate of correct entities
appearing at top-k ranked entities. That is, Hits@10 is the proportion of correct entities ranked in the
top 10) in knowledge base completion. However, its Hits@1 is lower than 30%. This implies that it is
still difficult to find correct missing facts using knowledge graph embedding alone.

A couple of methods have been proposed to improve Hits@1 performance in discovering missing
facts. Wang et al. conducted knowledge base completion using both knowledge graph embedding and
rules derived from knowledge base schema [11]. Their experimental results show that adopting the
rules helps improve Hits@1 performance. However, their method still does not cover n-to-n relations,
since it is based on knowledge graph embedding which utilizes the characteristics of 1-to-1 relations.
On the other hand, Choi et al. proposed a re-ranking model that uses both internal and external
information of a knowledge graph for more accurate knowledge base completion [12]. Their model
first extracts top-k candidates according to the plausibility computed by knowledge graph embedding.
Then, the candidates are re-ranked by considering two kinds of additional information: knowledge
base schema information and web search results. This is a good approach in that it is the first attempt
to exploit such additional information, but it has still some problems. The main problem of the model
is that it depends severely on the first top-k results. If a correct fact is excluded in the first step, there is
no chance to include it in the second step. Note that, in this model, the top-k candidates are determined
by a single knowledge graph embedding while no knowledge graph embedding is yet perfect. As a
result, many correct facts are missed by this model.

This paper proposes a sole ranking model that adopts a committee of knowledge graph embeddings
for accurate knowledge base completion. Unlike previous work that represents knowledge base completion
as a re-ranking task [12], we formulate it as a ranking task. Given a knowledge base, the proposed model
generates candidate facts, and then the plausibility of each candidate is determined by a committee of
knowledge graph embeddings, not by a single knowledge graph embedding. After that, the candidates
are sorted according to their plausibility. Since the proposed model evaluates all candidates, the
probability of missing correct facts gets reduced. Another advantage of the proposed model is that it
can reflect various perspectives of a knowledge graph for measuring candidate plausibility, since it
is a kind of committee machine. That is, the diversity of the committee members allows the model
to have less variance error. According to our experiments on two standard data sets, the proposed
committee-based model outperforms every single knowledge graph embedding. In addition, it shows
higher Hits@k performance as k decreases, which implies it predicts missing facts more accurately.

The rest of this paper is organized as follows. Section 2 describes related work on knowledge
graph embedding for knowledge base completion. Section 3 proposes the overall idea of the proposed
model and Section 4 explains how the proposed model works as a committee machine. Section 5
describes how to measure the plausibility of each candidate using the proposed model and Section 6
shows the experimental results. Finally, Section 7 draws our conclusions.

2. Related Work

There have been a number of previous studies on knowledge base completion. One promising
approach in the studies is to use knowledge graph embedding [13–16]. Knowledge graph embedding
represents all entities and relations of knowledge facts as low-dimensional vectors. These vectors
of entities and relations are trained by preserving the inherent structure of a knowledge base. Thus,
the plausibility of a knowledge fact can be measured using the vectors, and then knowledge base
completion is done by filling up the facts with a high plausibility.
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Knowledge graph embeddings are clustered into two kinds of approach [17,18]. One is a translation-based
model and the other is a latent semantics-based model. In the translation-based model, the entities
are translated according to their relation and the plausibility of facts is measured by a distance-based
plausibility function. The best-known representative translation-based model is TransE [6]. TransE
represents entities and relations as vectors in the same space assuming that the sum of a head entity
vector and a relation vector is equal to a tail entity vector. Therefore, the plausibility function of
TransE considers the distance between the sum vector and tail entity vector. It is simple and effective,
especially for one-to-one relations.

There have been many extensions of TransE since its first appearance [19–22]. TransH [23], TransR [24],
and TransD [25] are the extensions, but they all adopt relation-specific entity embedding. Since TransH
projects entities onto relation-specific hyperplanes, it can represent an entity as a different vector
according to its relation. Similarly, TransR adopts a relation-specific space rather than hyperplanes.
It embeds entities into relation-specific spaces with a projection matrix. TransD simplifies TransR by
decomposing the projection matrix into a product of two vectors, where the two vectors are mapping
matrices of a head and a tail. Since entities are projected according to their role, it can represent one-to-n,
n-to-n, and m-to-n relations.

Latent semantics-based models capture the latent semantics of entities and relations using a
similarity-based plausibility function [5,26,27]. In RESCAL [7], entities are represented as vectors, and
relations are matrices derived from pairwise interactions between entities. It works well for all relation
types from one-to-one to n-to-m. However, it suffers from high complexity [28]. DistMult solves this
problem by simplifying the relation matrices of RESCAL [29]. It represents a relation as diagonal
matrices instead of matrices of relations. HolE combines RESCAL and DistMult effectively [30].
The entities and relations are all represented as vectors, and the plausibility function adopts a circular
correlation operation [31] to compress the pairwise interactions. By this operation, HolE is able to
model asymmetric relations that DistMult cannot. ComplEX is another method that extends DistMult
to model asymmetric relations [32]. Since it embeds entities and relations into a complex vector space,
its plausibility function is based on a Hermitian dot product. As a result, it is scalable to manage a
large data set.

Table 1 summarizes the knowledge graph embeddings explained above. For a given triple ⟨h, r, t⟩,
all methods but ComplEx embeds h, r, and t into a space Rd, where d is a space dimension. ComplEx
embeds them into a complex space Cd. Then, h and t are represented as vectors h and t, and r is as a
vector r or as projection matrices w and M. In order to train these embedding vectors, each embedding
has its own plausibility function fr(h, t). In Table 1, diag(⋅) implies a diagonal matrix, ⊛ is the circular
correlation operation [31], and Re(⋅) is the real part of a complex value.

Table 1. Entity and relation embeddings of knowledge graph embeddings.

Entity Embedding Relation Embedding Plausibility Function

TransE h, t ∈ Rd r ∈ Rd
∥h + r − t∥22

TransH h, t ∈ Rd r, wr ∈ Rd
∥(h −w⊺

r hwr)+ r − (t −w⊺

r twr)∥
2
2

TransR h, t ∈ Rd r ∈ Rk, Mr ∈ Rk×d
∥Mrh + r −Mrt∥22

TransD h, wh, t, wt ∈ Rd r, wr ∈ Rk
∥(wrw⊺

h + I)h + r − (wrw⊺

t + I)t∥22
RESCAL h, t ∈ Rd Mr ∈ Rd×d h⊺Mrt
DistMult h, t ∈ Rd r ∈ Rd h⊺diag(r)t

HolE h, t ∈ Rd r ∈ Rd r⊺(h⊛ t)
ComplEx h, t ∈ Cd r ∈ Cd Re(h⊺diag(r)t̄)
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There have been a few studies in which the advantages of various embeddings are combined.
Krompaß et al. proposed an ensemble of knowledge graph embeddings for knowledge base completion [33].
Their method combines three knowledge graph embeddings of TransE, RESCAL, and the embedding
proposed by Xin et al. [34]. They applied a logistic regression to each embedding to normalize the
plausibility by each embedding. As a result, as the number of knowledge graph embeddings increases,
the number of logistic regressions to train also increases. Another problem of their method is that it
ignores the relative importance of each embedding.

3. Knowledge Base Completion

In general, a knowledge base stores a number of entities and relations, but it is usually incomplete
in that it has many missing facts that exist in the real world. The applications of knowledge bases are
limited due to this incompleteness. Therefore, it is important to solve knowledge base incompleteness.

The knowledge base completion is to find a set of facts missing from a knowledge base. Assume
that a knowledge base S with a great number of facts is given. Each fact in S is represented as a
triple ⟨h, r, t⟩, where h is a head entity, t is a tail entity, and r is their relation, respectively. The head
entity h and the tail entity t belong to E, a set of entities, while the relation r is a member of R, a set
of relations. Then, the knowledge base completion completes S by finding a set of missing triples
T = {⟨hc, rc, tc⟩ ∣hc ∈ E, rc ∈ R, tc ∈ E, ⟨hc, rc, tc⟩ ∉ S}.

On difficult problem in finding T is that not all possible candidates for the missing triples
generated from S belong to T. For instance, a triple ⟨Donald Trump, nationality, China⟩ should not
be a member of T, even if a knowledge base S has ‘Donald Trump’ and ‘China’ as its entities and
nationality as its relation. Therefore, it is critical to measure the plausibility of every candidate missing
triple. If a candidate triple is plausible enough with respect to a knowledge base S, it should be a
member of T. Otherwise, it should be discarded.

4. Committee-Based Knowledge Base Completion

This paper proposes committee-based knowledge base completion that adopts a committee of
knowledge graph embeddings to measure the plausibility of candidate missing triples. Figure 1 shows
how the set of missing triples, T, is found systematically by the proposed committee-based knowledge
base completion method. The proposed method first generates Ccand, a set of candidate missing triples
from S as in the work of Bordes et al. [35]. Let Ch be a concept of h, Ct be that of t, Hh be a set of
all entities belonging to Ch, and Tt be a set of all entities belonging to Ct. Then, from every triple
⟨h, r, t⟩ ∈ S, the candidate triples are generated by replacing h with one of the elements in Hh except h
or replacing t with one of the elements in Tt but t. Thus, (∣Hh∣− 1) ⋅ (∣Tt∣− 1) candidates are prepared
from each triple in S.

Once Ccand is prepared, all its members are sorted according to their plausibility. There could be a
number of ways to compute the plausibility of candidate triples, but knowledge graph embeddings are
adopted to compute the plausibility in this paper. A knowledge graph embedding represents all entities
and relations in S as low-dimensional vectors thereby preserving the inherent structure of S. Since the
embedding is trained to preserve the structure of its knowledge graph, it can be used to measure how
plausible the embedded vectors are in the space spanned by the knowledge graph embedding.

Even if any knowledge graph embedding can be used to compute the plausibility of triples, every
embedding has its own idiosyncrasy. Table 2 proves this. This table shows the top-10 candidate tail
entities suggested by four famous knowledge graph embeddings when a head entity yogurt and a
relation hypernym are known. The knowledge graph embeddings used in this table are TransE, TransR,
DistMult, and ComplEx, and the entities are the synsets in the WordNet knowledge base. The bold
entities are correct tail entities for yogurt and hypernym (Multiple entities can be correct since the
relation hypernym is transitive), and the shaded entities are those shared at least by two embeddings.
As shown in this table, different knowledge graph embeddings suggest different entities. TransE
shares three entities dairy product, solid food, and foodstuff out of ten with TransR, and two entities of



Appl. Sci. 2020, 10, 2651 5 of 12

dairy product and solid food with DistMult and ComplEx. Moreover, even the shared entities are ranked
differently. For instance, dairy product is ranked first by TransE, fifth by TransR, ninth by DistMult, and
second by ComplEx, while solid food is ranked second, third, sixth, and first by them.

The ranking differences according to different embedding can be shown numerically by Spearman’s
rank correlation coefficient, which is a widely-used metric to evaluate rank correlation. Table 3 shows
the Spearman’s rank correlation coefficient between different knowledge graph embeddings. These
coefficients are obtained using 500 triples sampled from the development set of WN18 dataset [6].
The average coefficient among the embeddings is 0.5158. The coefficient between TransE and TranR is
highest as 0.5904, and that between TransR and DistMult is lowest as 0.4916. These values prove that
the embeddings are positively related, but not that strongly related. DistMult, in particular, shows
lower coefficients against other embeddings, which implies that it ranks entities differently from
the others.

In order to reflect the idiosyncrasies of knowledge graph embeddings in knowledge base completion
while maximizing their effectiveness, the proposed method computes the plausibility of triples by a
committee of knowledge graph embeddings rather than by a single knowledge graph embedding.
That is, the plausibility of a candidate triple in Ccand is determined by the committee of knowledge
graph embeddings. Then, all the members of Ccand are sorted by their plausibility, and the sorted set is
Crank. Finally, the top-k candidate triples from Crank are selected as new facts to form T, a final set of
missing triples.

Knowledge
base 

Candidate 
generation

Committee-based Model

Selection

KBE 1

KBE 2

KBE 

…

Combine

Figure 1. Overall process of knowledge base completion by knowledge graph embedding committee.

Table 2. Top-10 candidate triples for a head entity yogurt and a relation hypernym. Different embeddings
suggest different entities as a tail for yogurt and hypernym.

Rank TransE TransR DistMult ComplEx
1 dairy product leave cheddar cheese solid food
2 solid food convertor chalcidfly dairy product
3 lover solid food tear down degrade
4 free-reed instrument internal secretion immovableness financial aid
5 fish dairy product fire mixture
6 travel wrong solid food tug
7 meat foodstuff pelargonium peltatum copper-base alloy
8 preserves baked goods tyrant flycatcher swamp plant
9 foodstuff hair dairy product terabit

10 pull together disposition feather palm previous question
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Table 3. Spearman’s rank correlation coefficients among the knowledge graph embeddings.

TransE TransR DistMult ComplEx

TransE - 0.5904 0.4940 0.4946
TransR 0.5904 - 0.4916 0.4926

DistMulti 0.4940 0.4916 - 0.5317
ComplEx 0.4946 0.4926 0.5317 -

5. Measuring Plausibility by Embedding Committee

The product of experts (PoE) proposed by Garcıa-Durán et al. [36] is adopted as a committee
machine to combine knowledge graph embeddings. When all experts are probabilistic models, PoE
models their overall probability distribution by combining their outputs. While each expert considers
a particular aspect of a target task, PoE manages the task comprehensively. As a result, it produces a
better distribution than individual experts.

In this paper, the plausibility of a triple x is represented as its probability, where P(x), the probability
of x, is estimated by

P(x∣θ1, ..., θn) =
∏m fm(x∣θm)

∑a∈A∏m fm(a∣θm)
. (1)

Here, θm is the parameter of the m-th individual embedding, fm(x∣θm) is the score of x by the m-th
embedding, and A is all possible candidate triples. P(x) is basically a product of all outputs by individual
embeddings. Thus, the more plausible x is, the higher P(x) it has.

Four knowledge graph embeddings of TransE [6], TransR [24], DistMult [29], and ComplEx [32] are
adopted as members of a committee to determine the final plausibility of candidate triples. As shown
in Table 3, these four embeddings have diverse tendencies for ranking triples. These embeddings
output a real value as a score for a triple, but each expert should be a probabilistic model in PoE. Thus,
the sigmoid function σ is used to covert the score to a probability. That is, the score functions of the
embeddings are

ftransE = σ(−∥h + r − t∥22), (2)

ftransR = σ(−∥Mrh + r −Mrt∥22), (3)

fdistMult = σ(h⊺diag(r)t), (4)

fcomplEx = σ(Re(h⊺diag(r)t̄)). (5)

TransE and TransR have a distance-based score function, which implies that the smaller the score of a triple
is, the more plausible the triple is. Thus, in Equation (2) and (3), a negative score is used in the sigmoid.

Note that the parameter θm of an embedding in Equation (1) is determined to maximize the
performance the embedding without considering other committee members. Therefore, in order to
rank the candidate triples optimally by the committee, all θm’s should be fine-tuned by considering
neighboring embeddings. To fine-tune the parameters, the negative log-likelihood loss is used, which
is defined as

L(x) = − log P(x∣θ1, ..., θn). (6)

The derivative of L(x)with respect to θm is

∂L
∂θm

= ∂ log P(x∣θ1, ..., θn)
∂θm

= ∂ log fm(x∣θm)
∂θm

− ∂ log∑c∈C∏m fm(c∣θm)
∂θm

. (7)
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Since the second term of Equation (7) is intractable, it is approximated through a negative sampling [37].
In this paper, negative samples are generated by swapping the head or tail entity of training triples.
When a training triple x = ⟨h, r, t⟩ is given, the negative triples ⟨h, r, t′⟩ are made by random-sampling
t′ from E, and replacing it with t in x. Another negative triples ⟨h′, r, t⟩ are generated in the same way.
Then, Equation (7) becomes

∂L
∂θm

= ∂ log P(x∣θ1, ..., θn)
∂θm

= ∂ log fm(x∣θm)
∂θm

−
∂ log∑g∈G∏m fm(g∣θm)

∂θm
, (8)

where G is a set of negative samples.

6. Experiments

6.1. Experimental Settings

Two benchmark data sets of FB15K and WN18 are used to evaluate the proposed model, where
FB15K is a subset of Freebase [1] that contains general facts about the world and WN18 is originated
from WordNet [38] which provides the semantic relations among words. Table 4 gives simple statistics
on these data sets. In this table, ‘# of Entitties’ and ‘# of Relations’ denote the number of entities and
relation, respectively. ‘# of Training Triples’, ‘# of Validation Triples’, and ‘# of Test Triples’ are the
number of triples in the training, validation, and test set. FB15K has 592,213 triples while WN18 has
151,441 triples. The total number of triples in FB15K is larger than that in WN18, but the number of
entities in FB15K is smaller than that in WN18. In addition, the number of relations in FB15K is about
ten times larger than that of WN18.

Table 4. Simple statistics on data sets.

Data Set FB15K WN18

# of Entities 14,951 40,943
# of Relations 1345 18

# of Training Triples 483,142 141,441
# of Validation Triples 50,000 5000

# of Test Triples 59,071 5000
# of Total Triples 592,213 151,441

Four different knowledge graph embeddings: TransE [6], TransR [24], DistMult [29] and ComplEx [32]
are adopted as members of the proposed embedding committee. Each member embedding is pre-trained
with a training set from the data sets to initialize the committee. In TransE and TransR, entities and
relation are embedded into a 50-dimensional space with 512 batch size. On the other hand, DistMult
and ComplEx represent them as 100-dimensional vectors with 32 batch size. Margin and learning rate
are set to 1 and 0.1 for all member embeddings.

In training the committee, 512 and 0.001 are used for batch size and learning rate, respectively,
for WN18. The size of negative samples is double of the batch size. For FB15K, 1024 batch size is used,
and the learning rate is equal to that for WN18. Adam [39] is adopted as an optimizer.

Hits@k, a commonly-used evaluation metric for knowledge base completion task is used to measure
the performance of the models. This metric returns the proportion of correct triples in the top-k ranked
triples. In all experiments, we report Hits@k’s following raw settings [6].

6.2. Experimental Results

Table 5 shows the results of the proposed model for WN18 data set. ‘Head’ implies candidate
triples are generated by swapping head entities. Thus, it is the problem of finding correct head entities.
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Similarly, ‘Tail’ is the problem of finding correct tail entities. As noted above, all values in this table are
measured by Hits@k. Thus, ‘Average’ implies the average of Hits@k of ‘Head’ and that of ‘Tail’.

Overall, the performance of all models gets worse as k gets smaller. That is, the values of Hits@10’s
are higher than those of Hits@3’s and Hits@1’s, and Hits@3’s are higher than Hits@1’s. This is natural
because the smaller k gets, the less probable it is that a candidate triple becomes an actual fact. In
addition, ComplEx always achieves the highest performance among the baseline models, and TransR
achieves the lowest, on average. When k = 10, ComplEx achieves the highest Hits@10 of 0.8, while
TransR does the lowest Hits@10 of 0.579. The Hits@3 of ComplEx is 0.647 which is nearly double of
that of TransR. Specifically, it achieves 0.455 in Hits@1, and is around 10 times higher than that of
TransE. The proposed model noted as ‘committee-based model’ outperforms all these baseline models.
Its Hits@10 is 0.824, Hits@3 is 0.691, and Hits@1 is 0.495.

The experimental results for FB15K data set are shown in Table 6. The performance for FB15K
data set is lower than that for WN18 data set. This is because that the size of FB15K is larger than that
of WN18 despite the smaller number of entities. The performances of TransE and TransR in Hits@10
are 0.467 and 0.377, respectively. Their Hits@3’s are 0.228 and 0.187, while Hits@1’s are 0.030 and 0.052.
Although both DistMult and ComplEx achieve higher results for all Hits@10, Hits@3, and Hits@1,
DistMult outperforms ComplEx for this data set. That is, DistMult is the best baseline model for
this data set. However, the proposed committee-based model is superior to DistMult even in FB15K.
Hits@10 of the proposed model is 0.532, its Hits@3 is 0.305, and its Hits@1 is 0.162. All these values are
much higher than those of the baseline models regardless of k.

Table 5. Experimental results for WN18 data set.

TransE TransR DistMult ComplEx Committee-Based Model

H
it

s@
10 Head 0.721 0.575 0.787 0.794 0.813

Tail 0.733 0.584 0.805 0.807 0.835
Average 0.727 0.579 0.796 0.800 0.824

H
it

s@
3 Head 0.474 0.330 0.600 0.630 0.673

Tail 0.474 0.314 0.626 0.664 0.709
Average 0.474 0.322 0.613 0.647 0.691

H
it

s@
1 Head 0.057 0.080 0.340 0.441 0.477

Tail 0.034 0.054 0.368 0.469 0.514
Average 0.045 0.067 0.354 0.455 0.495

Table 6. Experimental results for FB15K data set.

TransE TransR DistMult ComplEx Committee-Based Model

H
it

s@
10 Head 0.434 0.344 0.483 0.465 0.501

Tail 0.501 0.410 0.551 0.526 0.564
Average 0.467 0.377 0.517 0.495 0.532

H
it

s@
3 Head 0.213 0.167 0.272 0.260 0.281

Tail 0.244 0.207 0.327 0.305 0.330
Average 0.228 0.187 0.299 0.282 0.305

H
it

s@
1 Head 0.054 0.059 0.129 0.128 0.145

Tail 0.007 0.046 0.170 0.160 0.180
Average 0.030 0.052 0.149 0.144 0.162

These experimental results prove the effectiveness of the proposed committee model. Since the
proposed model can reflect various aspects of a knowledge graph by combining various knowledge
graph embeddings, it outperforms the baseline models. Figure 2 proves this fact. This figure depicts
how Hits@k changes as k decreases from ten to one. Figure 2a shows the change of Hits@k for WN18
data set, and Figure 2b is about FB15K data set. The performance of all models naturally decreases as k
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decreases, since the task gets more difficult with smaller k. However, the proposed model outperforms
all its competitors consistently for all k’s in both figures. One thing to note here is that the performances
of the translation-based models (TransE and TransR) decrease rapidly as k gets smaller. Especifically,
the performance of TransE becomes worst when k = 1, even though its performance is much higher
than that of TransR for k > 1 and similar to those of DistMult and ComplEx for large k’s. However, the
proposed model consistently shows the best performance even for small k’s, which implies that the
weaknesses of the translation-based models are compensated by DistMult or ComplEx. In addition,
the fact that the proposed model outperforms both DistMult and ComplEx for all k’s proves that
the shortcomings of DistMult or ComplEx vanish in the proposed model due to the influence of the
translation-based models. Therefore, the proposed model reflects the synergistic advantages of the
various knowledge graph embeddings, and achieves the best performance.00.10.20.30.40.50.60.70.80.91 10 9 8 7 6 5 4 3 2 1TransETransRDistMultComplExCommittee-based model

(a) WN18

00.10.20.30.40.50.6 10 9 8 7 6 5 4 3 2 1TransETransRDistMultComplExCommittee-based model
(b) FB15K

Figure 2. Change of Hits@k as k decreases.

7. Conclusions

This paper has proposed a committee model of knowledge graph embeddings for knowledge
base completion, where knowledge base completion is a problem of discovering missing triples in a
knowledge base. The previous research on this task has used a single knowledge graph embedding.
Since every embedding has its own idiosyncrasy, no single knowledge graph embedding is fully
effective in solving the task. Thus, we address the knowledge base completion task by organizing a
committee that reflects the synergistic advantages of various knowledge graph embeddings. When a
knowledge base is given, candidate triples are first generated from the knowledge base to discover
missing triples and then their plausibilities are computed by the committee. The candidates with a
high plausibility are selected as missing facts of the knowledge base. This paper incorporates TransE,
TransR, DistMult, and ComplEx into the embedding committee. According to our experimental
results, the proposed committee-based model shows higher performance than any single knowledge
graph embedding. In addition, it is robust even when the model accepts only a small partition of
candidate triples. This is because the proposed model can combine these knowledge graph embeddings
effectively. For future work, we are going to combine another knowledge graph embeddings into
the committee. In addition, the performance of knowledge base completion depends much on the
negative sampling method. Thus, we are going to study better negative sampling methods to improve
the committee machine.
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