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Abstract: Most vehicle controllers are developed and verified with V-model. There are several
traditional methods in the automotive industry called “X-in-the-Loop (XIL)”. However, the validation
of advanced driver assistance system (ADAS) controllers is more complicated and needs more
environmental resources because the controller interacts with the external environment of the vehicle.
Vehicle-in-the-Loop (VIL) is a recently being developed approach for simulating ADAS vehicles that
ensures the safety of critical test scenarios in real-world testing using virtual environments. This new
test method needs both properties of traditional computer simulations and real-world vehicle tests.
This paper presents a Vehicle-in-the-Loop topology for execution in global Coordinates system. Also,
it has a modular structure with four parts: synchronization module, virtual environment, sensor
emulator and visualizer, so each part can be developed and modified separately in combination with
other parts. This structure of VIL is expected to save maintenance time and cost. This paper shows its
acceptability by testing ADAS on both a real and the VIL system.

Keywords: advanced driver assistance system; autonomous driving; model-based development;
vehicle in the loop; vehicle validation

1. Introduction

Recently, Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) have been
actively developed to increase the convenience and safety of the driver and passengers. The systems
that are closely linked to the safety of the driver and the occupant will need to be developed more
cautiously [1,2]. There are effective development tools for each development stage of the vehicle
controller. Model-in-the-Loop (MIL) is very useful for quickly verifying and developing algorithms
by implementing a controller as a computer simulation model. Software-in-the-Loop (SIL) is usually
verified for pseudo-code in a form that can be embedded in an actual automotive controller. Both tests
can be simulated faster than real-time, so many scenarios can be verified in a short time. Next,
Hardware-in-the-Loop (HIL) validates the actual ECU design and operating characteristics at the
hardware level in a laboratory environment. Finally, the verification of the completed system is
performed at the actual vehicle stage. In the actual vehicle phase, the most reliable verification is
possible, including vehicle dynamic characteristics. For each step, the time required for verification
and reliability are regarded as a trade-off relationship, as in Figure 1 [2–6].
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Figure 1. MIL vs. SIL vs. HIL vs. VIL vs. Test Drive. 

Normally, stand-alone vehicle testing after the MIL–SIL–HIL process is acceptable for 
conventional vehicle controllers—headlamps, wipers and smart keys in a body control system, and 
Anti-lock Brake System (ABS), Electronic Stabilization Control (ESC) and Electric Power Steering 
(MDPS) in a chassis control system. 

In the case of ADAS, however, external environments such as surrounding vehicles, pedestrians, 
and lanes should be accompanied as a factor in the verification. To overcome these limitations, new 
approaches have been proposed to validate ADAS. For driver acceptance in the ADAS vehicle, 
Driver-in-the-Loop (DIL) and Human-and-Hardware-In-the-Loop (H2IL) are suggested as cyber-
physical systems [7,8]. DIL has conducted a fixed-base driving simulator with TNO PreScan software 
and is used for testing the human–automation interaction design of the lane-keeping assistance 
system (LKAS) and adaptive cruise control (ACC). H2IL has components to generate, operate and 
communicate with the virtual environment as a driving simulator. It is designed to analyze driving 
performance and safety affected by V2X communication support. The Vehicle-Hardware-in-the-Loop 
(VEHIL) is operated on the chassis dynamometer and simulates the surrounding environment with 
a moving base and a front display device each for a radar and vision sensor [9–11]. Additionally, the 
Vehicle-Traffic-Hardware-in-the-Loop (VTHIL) robots validated a radar sensor using a moving base 
and a commercial vision sensor using a front display device [12]. These can verify the sensor 
effectiveness, but there is a limit to reflect the own vehicle dynamic characteristics. In addition, the 
cost of construction and maintenance is high, and it is difficult to reuse and modify the built system 
when verification is not in accordance with the initial system. Alternatively, building a proving 
ground for ADAS is suitable for the recognition and judgment of the sensor and the dynamic 
characteristics of the own, and it can be verified very similarly to the real environment. The proving 
ground needs a test road dedicated to ADAS and to simulate objects with a robot or a dummy [13,14]. 
However, the test road construction and the individual test costs are very high. There is also a high 
risk of collision by surrounding objects during testing. 

In order to solve these problems, the Vehicle-in-the-Loop (VIL) technique is emerging to 
construct and utilize a virtual environment. VIL is a fusion environment of a real testing vehicle in 
the real-world and a virtual environment, as shown in Figure 2a. It can reflect vehicle dynamics at 
the same level as the real-world and save the cost of constructing an external environment for system 
verification. At the same time, the risk of collision with external objects that may occur during testing 
can be eliminated. Thomas Bock proposed a hardware configuration that links augmented reality to 
existing vehicle simulators [15,16]. Laschinsky has shown that it can be applied in the development 
of active safety lights to conduct tests in the daytime [17]. VIL is used for driver reaction of critical 
situations [18–21]. Additionally, Miquet and Schwab suggested VIL with a head-mounted display 
(HMD) device for the parking assistance system. [22,23]. Griggs validated a speed advisory system 

Figure 1. MIL vs. SIL vs. HIL vs. VIL vs. Test Drive.

Normally, stand-alone vehicle testing after the MIL–SIL–HIL process is acceptable for conventional
vehicle controllers—headlamps, wipers and smart keys in a body control system, and Anti-lock Brake
System (ABS), Electronic Stabilization Control (ESC) and Electric Power Steering (MDPS) in a chassis
control system.

In the case of ADAS, however, external environments such as surrounding vehicles, pedestrians,
and lanes should be accompanied as a factor in the verification. To overcome these limitations,
new approaches have been proposed to validate ADAS. For driver acceptance in the ADAS
vehicle, Driver-in-the-Loop (DIL) and Human-and-Hardware-In-the-Loop (H2IL) are suggested
as cyber-physical systems [7,8]. DIL has conducted a fixed-base driving simulator with TNO PreScan
software and is used for testing the human–automation interaction design of the lane-keeping assistance
system (LKAS) and adaptive cruise control (ACC). H2IL has components to generate, operate and
communicate with the virtual environment as a driving simulator. It is designed to analyze driving
performance and safety affected by V2X communication support. The Vehicle-Hardware-in-the-Loop
(VEHIL) is operated on the chassis dynamometer and simulates the surrounding environment with
a moving base and a front display device each for a radar and vision sensor [9–11]. Additionally,
the Vehicle-Traffic-Hardware-in-the-Loop (VTHIL) robots validated a radar sensor using a moving
base and a commercial vision sensor using a front display device [12]. These can verify the sensor
effectiveness, but there is a limit to reflect the own vehicle dynamic characteristics. In addition, the cost
of construction and maintenance is high, and it is difficult to reuse and modify the built system when
verification is not in accordance with the initial system. Alternatively, building a proving ground for
ADAS is suitable for the recognition and judgment of the sensor and the dynamic characteristics of the
own, and it can be verified very similarly to the real environment. The proving ground needs a test
road dedicated to ADAS and to simulate objects with a robot or a dummy [13,14]. However, the test
road construction and the individual test costs are very high. There is also a high risk of collision by
surrounding objects during testing.

In order to solve these problems, the Vehicle-in-the-Loop (VIL) technique is emerging to construct
and utilize a virtual environment. VIL is a fusion environment of a real testing vehicle in the real-world
and a virtual environment, as shown in Figure 2a. It can reflect vehicle dynamics at the same level as
the real-world and save the cost of constructing an external environment for system verification. At the
same time, the risk of collision with external objects that may occur during testing can be eliminated.
Thomas Bock proposed a hardware configuration that links augmented reality to existing vehicle
simulators [15,16]. Laschinsky has shown that it can be applied in the development of active safety
lights to conduct tests in the daytime [17]. VIL is used for driver reaction of critical situations [18–21].
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Additionally, Miquet and Schwab suggested VIL with a head-mounted display (HMD) device for the
parking assistance system. [22,23]. Griggs validated a speed advisory system via VIL [6,24]. Fayazi
developed a VIL program for simulation of intersection controller [25,26]. Tettamanti and Rastogi
showed a VIL simulation environment that validates ADAS controllers with virtually preceding
vehicles [27,28]. Horváth used VIL as a traffic controller simulator and Che suggested a VIL with the
control center and connectivity [29,30].
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Previous studies have suggested the composition and application of VIL. However, the working
algorithm of VIL for ADAS simulation was not published and only showed the environment in which
the study was conducted. The studies in [17–21,31] use VIRES’s Virtual Test Drive (VTD) without
revealing the algorithm. [22,23] and [28] also constructed their VIL system with commercial simulation
tools, CarMaker and CarSim. [6,24,27,29] verified their target system based on SUMO as an opensource
tool, but this tool does not cover ADAS with buildings, pedestrians and road lines as targets. VIL in
the research [25,26] seems to have its own tools, however, the VIL is programmed for intersection
controller simulation and provides only limited information, not available to the ADAS controller.

There is no research suggesting an effective development algorithm for VIL. In this paper,
we propose a VIL topology that can be developed and modified independently by separating each
module. Although the ADAS controller is considered a vehicle-based local coordinates system,
the VIL has been developed as a global coordinates system for connectivity with virtual environments.
In Section 2, we present the basic structure of VIL and the essential parameters of each module.
In Section 3, we compare the method of integrating each module and the similarity test between the
actual ADAS vehicle and VIL to confirm whether the proposed system meets the VIL purpose. Finally,
Section 4 describes the module variability of the proposed VIL system.

2. Vehicle in the Loop

The VIL topology in this paper consists of four modules, depending on their characteristics,
and defines the elements required for each module to work organically, as shown in Figure 2b.
One of the components is a virtual environment module that contains information of the surrounding
vehicles, pedestrians, and road lines. VIL also requires a synchronization module for synchronizing
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the real environment with the virtual driving environment and a sensor emulation module for
transmitting virtual environment information to the ADAS controller in the real world. Finally,
the driver visualization module provides the driver with a visual virtual driving environment.
Each module is described in Section 2.1 to Section 2.4. Individual modules can be replaced with
commercial tools or used flexibly to meet the needs of the researcher.

2.1. Virtual Environment

The virtual environment module is the configuration of elements for VIL testing. For example,
the advanced emergency brake (AEB) and adaptive cruise control (ACC) controllers relate to
surrounding vehicles and pedestrians. For the lane keeping-assist system (LKAS) controllers, the road
lines are closely related. In addition, high-level autonomous vehicles are subject to additional elements
such as traffic lights, signs and buildings. For optimal classification, we divide these objects into
time-invariant (TI) and time-varying (TV) objects. Time-varying objects are further divided into
time-varying-pose (TVP) and time-varying-attribute (TVA), depending on what information changes.
Table 1 shows each object type and the stored data. Below are examples of each object:

• TI Object: buildings, signs, roads (lines);
• TVP: vehicles, bicycles, pedestrians;
• TVA: traffic lights.

Table 1. Data of object type.

Object Time Invariant Data Time Varying Data

T.I. Object Attribute, Pose -
T.V. Pose-Object Attribute Pose

T.V. Attribute-Object Pose Attribute

All types of objects have object attribute and pose data. Attribute data have the type, nodes of
shape, and additional information of the object. It can be configured differently depending on the
characteristics of each object. The pose data contain position and orientation information such as x, y,
and yaw. Additionally, z, pitch, and roll can be included, but in this paper, the virtual environment is
designed based on the 2D plane. The variables in Tables 2–5 are superscripted with object type and
subscripted with variable order.

Table 2. Example of a building as the time-invariant object.

Type Data

Attribute Building/
(
nxB

1 , nyB
1

)
,
(
nxB

2 , nyB
2

)
, . . . ,

(
nxB

k , nyB
k

)
Pose xB

0 , yB
0 ,ψB

0

Table 3. Example of a road line as the time-invariant object.

Type Data

Attribute White-Dot-Line/
(
nxL

1 , nyL
1 ,θL

1 , CL
1 , DL

1

)
, . . . ,

(
nxL

k , nyL
k ,θL

k , CL
k , DL

k

)
Pose xL

0 , yL
0 ,ψL

0

Table 4. Example of a vehicle as the time-varying pose object.

Type Data

Attribute passenger car/
(
nxV

1 , nyV
1

)
,
(
nxV

2 , nyV
2

)
, . . . ,

(
nxV

k , nyV
k

)
Pose xL

0(0), yL
0(0),ψ

L
0(0) xL

0(1), yL
0(1),ψ

L
0(1) . . . xL

0(n), yL
0(n),ψ

L
0(n)

Time t(0) t(1) . . . t(n)
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Table 5. Example of a traffic light as the time-varying attribute object.

Type Data

Pose xT
0 , yT

0 ,ψT
0

Attribute color(0) color(1) . . . color(n)
Time t(0) t(1) . . . t(n)

Table 2 indicates that this object is a building. It also has sets of node distances from the object
center and the pose (position and orientation) of the object. The shape nodes, where k (xB

k , yB
k ) of the

building, can be represented in the following general equation. The object shape node (xk,yk) can be
obtained by using (1), where the center position and the yaw angle of the object are x0, y0 and ψ0,
and the set of node distance is (nxk,nyk), as shown in Figure 3.[

xk
yk

]
=

[
x0

y0

]
+

[
cos(−ψ0) −sin(−ψ0)

sin(−ψ0) cos(−ψ0)

][
nxk
nyk

]
(1)Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 15 
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The road line object in Table 3 contains not only line style and node distances but also the angles
(θL

k ) from the original angle, curvature (CL
k ) and curvature derivative (DL

k ) of each point k of line.
This object can be represented as a continuous line.

The time-varying pose object in Table 4 has its attribute information as static, and the pose data as
time series. In many cases, TVP objects are vehicles driving around. For simple test scenarios, these
can use predefined scenarios. However, the interaction of each vehicle, including the ego vehicle,
may be required for a more advanced test environment. To implement this advanced environment,
there needs to be a vehicle and driver model in a closed-loop system. In our case, the models can be
designed simple enough for the specificity of scenario creation and optimization of computation time.
For the simple vehicle motion, the bicycle kinematic model and the slip angle β are below.

.
x
.
y
.
ψ

 =


cos(ψ+ β) 0
sin(ψ+ β) 0

0 vcos(β)tan(δ)
L


[

v
δ

]
(2)
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β = tan−1
(

lrtan(β)
L

)
(3)

v and δ are the longitudinal velocity and the steering wheel angle. Additionally, lr and L are
the distance from the rear wheel to the center of gravity (CG) and the wheelbase. To generate the
velocity and steering wheel angle, a driver model is still needed. It is acceptable to choose any driver
model by previous studies. One of the representative driver models for traffic is Gipps car-following
model and lane-changing decision model [32,33]. The car-following model generates speed in response
to situations caused by other vehicles. The lane-changing model considers physical possibilities,
necessary and desirable to change lane. If Gipps lane-changing model determines the lane change,
then it can be controlled using a simple sinusoid or polynomial input.

Lastly, there is a time-varying attribute object that changed its attribute like traffic signal light
sequence as in Table 5. Each object’s information in the virtual environment is updated every step time
so that the dynamics of the objects can be used in another module.

2.2. Sync

This synchronization module allows the movement of a real vehicle in a virtual environment.
For this purpose, the Global Positioning System (GPS) and Inertial Navigation System (INS) devices
are mounted onto the test vehicle. The position measured by the GPS device is usually in the
form of a spherical coordinate system, which is a coordinate system of longitude and latitude.
However, the conversion to the Cartesian coordinate system is useful for intuitive system development,
user acceptance and improving system connectivity. The algorithm is included in the synchronization
module. In this paper, WGS84 (World Geodetic System 1984) coordinates obtained from GPS are
converted to Transverse Mercator (TM) using the following method.

xEGO = (RN + h)(φ−φ0) + ∆X (4)

yEGO = (RE + h)(λ− λ0) + ∆Y (5){
φ0, λ0

}
is the central origin constant for longitude and latitude, and φ, λ, h are the longitude,

latitude, and altitude of the vehicle’s position as measured by GPS. {∆X, ∆Y} is the origin added
values, (e.g., 2,000,000 and 6,000,000 set by the National Geographic Information Service in Korea).
However, in this study, it is aimed to test a vehicle which is carried out in a narrow area, so that the
added values of the origin can be modified to match the test location. The radius of curvature in the
north/east direction is calculated using the major axis (Rmajor) and eccentricity (e) of the earth ellipse.

RN =
Rmajor(1− e)2(
1− e2sin2φ

)3/2
(6)

RE =
Rmajor(

1− e2sin2φ
)1/2

(7)

The relationship between eccentricity (e) and flatness ( f ) is as follows. The major axis (Rmajor) and
minor axis (Rminor) of the earth are used for the calculation.

e =

√
1− (1− f )2 =

√
1−

(
1−

Rmajor −Rminor

Rmajor

)2

(8)

The yaw of the vehicle (ψEGO) can directly use the data measured by the INS device.
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2.3. Sensor Emulation

ADAS controllers receive information on objects that have been recognized and judged from
the radar or vision sensors via Control Area Network (CAN). However, in the VIL environment,
there are no real objects that real sensors can recognize. Thus, the sensor emulation module uses the
information of the virtual object and the location of the actual synchronized test vehicle to process
it. For example, radar sensor emulators are used to calculate relative distance, speed, and azimuth
values for synchronized test vehicles and vehicles or pedestrians. The vision sensor emulator processes
left and right road lines, and these values are sent to the real controller. The radar sensor emulator
generates the signal processed through the shape points

{
xV

k , yV
k

}
of the virtual object and the sensor

pose
{
xEGO

S , yEGO
S ,ψEGO

S

}
on the real test vehicle. These points and this pose can be obtained by using

(1). The relative distances and azimuth angles of the objects are determined by Euclidean geometry
using the xV

k , yV
k , xEGO

S , yEGO
S , and ψEGO

S . We can define nodes positions N1 and N2 on the object, sensor
position S, and the position H on the object located at the shortest distance between the sensor and the
object. Additionally, T is a temporary point to obtain H. These are shown in Figure 4a.

N1 =

[
xV

1
yV

1

]
, N2 =

[
xV

2
yV

2

]
, S =

[
xEGO

s
yEGO

s

]
, H =

[
xV

h
xV

h

]
, T =

[
xN

t
yN

t

]
(9)

The shortest distance between the sensor position and a line that includes two nodes can be
obtained through the norm as shown in (10), and the position is calculated by (11).

‖
−→
SH ‖=

−−−−→
N1N2

‖
−−−−→
N1N2 ‖

·
−−→
N1S (10)

T = N1+ ‖
−→
ST ‖ ×

−−−−→
N1N2

‖
−−−−→
N1N2 ‖

(11)

The position H must exist between the two nodes N1 and N2. Therefore, it can be selected
as follows.

Nk =

 N1, ‖
−−→
N1S ‖<‖

−−→
N2S ‖

N2, else
(12)

H =

T, xN
t ∈

[
xV

1 , xV
2

]
∧ yN

t ∈
[
yV

1 , yV
2

]
Nk, else

(13)

Finally, the shortest distance and the recognized azimuth angle of the object is:

dSH =‖
−→
SH ‖ (14)

θSH = tan−1

 xV
h − xEGO

s

yV
h − yEGO

s

− θEGO
s (15)

The dSH and θSH are idle results from the geometric model and cannot represent perception in real
environment. For the more realistic, it can be added that some noise caused by component tolerances,
temperature drifts and quantization, as shown in (16):[

dnoisy
θnoisy

]
=

[
dSH
θSH

]
+

[
N
(
0, σ2

d

)
N
(
0, σ2

θ

) ]T
(16)
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N
(
0, σ2

d

)
and N

(
0, σ2

θ

)
represent random numbers with a mean of 0 and standard deviations of σd

and σθ. The standard deviations are linearly dependent on the distance and angle from the sensor,
and more detail is given in [34].

The vision sensor emulator transmits information from the virtual environment as images. In this
paper, however, only line recognition is considered for a lateral control system. This information can
be generally defined by the distance AL, incidence angle BL, the curvature of the lane CL, and the rate
of curvature changing DL. The distances between the line and the ego vehicle and the incidence angle
can be calculated using (17) and (18). The position

{
xEGO

FW , yEGO
FW

}
is generally defined as the center axis

of the front wheel in the ego vehicle to obtain the relative distance.

AL =

√(
xL − xEGO

FW

)2
+

(
yL − yEGO

FW

)2
(17)

BL = ψEGO
−ψL (18)

In addition, the curvature and curvature derivatives, which are line-specific information,
can directly use the information defined in Table 3. These can be derived in advance through
polynomial curve fitting, as shown in Figure 4b.
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Figure 4. (a) Calculation of radar detected object information; (b) Calculation of road line information
by the vision sensor.

In the real world, the road line information is calculated with a certain section of the line that is
ahead of the ego vehicle and there are environmental impact areas such as shadows, light, occlusions
and standing water, as shown in Figure 5 [35,36]. When some of the interesting line points exist in the
area, the perception rate of the vision sensor can be reduced. To extract the affected line points, some
algorithms, called the point in polygon (PIP), are given in the previous studies. Two of the well-known
ones are the ray casting algorithm and the winding number algorithm [37–40]. A set of perceptible
Pout that exists outside is extracted from the interesting points using the algorithm in (19).

Pout = PIPout(P, A) (19)
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P and A represent each set of interesting line points and area node points. Detail of this algorithm
is discussed in Appendix A. The derivable conditions for the road line information can be substituted
with experimental values.

The recognition and judgment information generated by the radar and vision sensor emulation
module can replace the real sensor for objects that do not actually exist.

2.4. Visualization

Real-time information of the virtual environment needs to be provided to the driver so that the
convenience of test execution and the driving sensibility can be evaluated. This requires a module
to visualize the virtual driving environment and this module provides a live view from the driver’s
perspective. The visualization module uses the attributes and poses of all objects, including the test
vehicle. Recently, various tools for developing such a visualization program exist and can be easily
implemented. An example of this is discussed in detail in Appendix B.

3. Field Test

Except for the visualization module, we implemented the VIL system based on MATLAB/Simulink.
This program is a widely used tool for vehicle controller development and has a low barrier to entry.
The 3D visualization module is programmed with Unreal Engine 4, developed by Epic Games, which
allows the development of games efficiently. In recent years, it has been widely used outside of gaming,
especially for visualization of computer simulation [41–43]. Unreal Engine 4 also has a programming
language called Blueprint, similar to MATLAB/Simulink. Therefore, the same benefits exist with
development accessibility.

The following hardware is equipped to configure for the VIL evaluation environment:

• GPS/INS: RT3100 by OxTS
• RCP: MicroAutoBoxII by dSPACE
• Laptop: ALIENWARE by Dell
• HMD: Oculus Rift by Oculus

VIL must ensure real-time stability. For this purpose, modules programmed with MATLAB/

Simulink (virtual environment, synchronization, and sensor emulation) work on a Rapid Control
Prototyping (RCP) device. RCP is highly integrated with MATLAB/Simulink, which helps to reduce
development costs. It also uses high-resolution GPS/INS to synchronize the test vehicle to the virtual
environment. To increase driver realism, we use high-performance gaming laptops and head-mounted
display (HMD) devices. As can be seen in Figure 2b, each hardware device is connected in several
ways. The pose information of the test vehicle, measured by GPS/INS, is transmitted to the RCP via
CAN messages The RCP synchronizes the test vehicle with the virtual environment, emulates sensor
data and sends the results to the real-world ADAS controller every 10 to 20 ms depending on the
requirements. At the same time, the visualization program receives the pose information of all objects
via ethernet every 10 ms. The data contain each position x and y in 0.01 m resolution with more than
thousands of km coverage, and yaw angle ψ in 0.01◦ resolution with 360◦ coverage. Scheme 1 shows
the VIL hardware configuration and the VIL test scene.
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Scheme 1. The test vehicle, RCP, GPS/INS, HMD as VIL equipment and the testing scene.

In order to verify the proposed VIL in the global coordinates system, tests were performed on
AEB and LKAS controllers. The Hyundai Genesis DH model equipped with the ADAS controllers was
used as the test vehicle. First, the AEB test was repeated five times for each real and VIL environment
in the same scenario. The scenario is selected as Car-to-Car Rear Stationary (CCR) according to the
Euro (European New Car Assessment Programme) NCAP protocol. The ego vehicle travels at a speed
of 10 m/s to the stationary target vehicle. As a result of the test, after the vehicle was stopped by
AEB, the average distance to the target vehicle was measured. As Figure 6a shows, it is 2.46 m in the
real target testing and 2.38 m in the testing with VIL. The difference in the results between the two
environments is about 0.08 m, which is very reliable. In particular, it is shown that the maximum
error occurs in 1.24 m and 0.63 m respectively in five tests performed in each test environment. If the
sensor emulator is very ideal, the two maximum errors are considered due to the vehicle’s dynamics
uncertainty. In other words, the difference in results can be acceptable. The LKAS test was performed
at a speed of about 20 m/s and a width of 3.65 m in a straight lane approaching the left line with a
lateral speed of 0.4 m/s. At this time, the distances between the vehicle and the left and right lines
measured by the real vision sensor and vision sensor emulator were compared. The distance between
the left and right lines recognized in Figure 6b is very similar; the maximum distance error is 0.05 m
where the ground truth is about 1.22 m. This is about a 4% error, which is lower than the error of the
actual vision sensor, so it does not affect the whole system.

It is necessary to confirm driver heterogeneity according to the latency of the visualization module.
However, it is difficult to verify directly from the structure of the HMD worn by the driver. As an
alternative, we analyzed image changes on a laptop display connected to the HMD with a 60 FPS
camera to delay data transfer. As a result, the difference in 1 frame is about 1/60 s. The driver who
participated in the actual test did not recognize the delay.
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4. Discussion

In this paper, we define the modular topology of the proposed VIL and show its connectivity
with the virtual environment, synchronization, sensor emulation, and driver visualization modules.
This module can be reused, even if certain modules are changed as needed. For example, to simulate the
behavior of a virtual object, the method of real-time application of own vehicle models can be considered.
In addition, sensor emulation modules can be complex depending on the physical characteristics of
each sensor. It is also possible to replace the software model to a HIL system [2]. For driver visualization
modules, they can be changed to another platform such as Direct X or Unity [28]. As mentioned above,
the development and modification of each module can be carried out independently of the different
modules, whereby the maintenance costs of the system are expected to be reduced.

In Section 3, we performed VIL tests on the AEB and LKAS scenarios and showed similarities in
practice. However, due to the limitations of the research environment, only some ADAS scenarios are
considered. In the future, it is necessary to acquire various advanced scenarios to verify the stability of
the system.
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Appendix A

The ray casting algorithm is one of the most popular methods that distinguishes whether a point
is inside or outside a polygon. It is also known as the crossing number algorithm or the even–odd
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rule algorithm. It can be determined by infinitely drawing the ray from the point in any direction and
counting the number of path segments the ray crossing. The point is outside if the counting number is
even and inside if the number is odd. The example in Figure A1 shows the ray from the outside point
Pm has two crossing points on A3A4 and A14A15 as even numbers. On the other hand, the ray from Pn

intersects three path segments A5A6, A6A7 and A7A8. It means that the point Pn is inside the area.
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Another is the winding number algorithm. First, it needs to find all the path segments that
crossed the ray from the point like the previous algorithm. Next, 1 is assigned to each path segment
if its direction as viewed from the point is clockwise, and −1 is assigned where the direction is
counterclockwise. Finally, the winding number is the accumulated sum of these. If the winding
number is zero, the point is outside the polygon. Otherwise, the point exists inside. The winding

number of Pm is zero because
−−−→
A3A4 is assigned −1 and

−−−→
A3A4 is assigned 1. So, this point is outside the

area. The winding number of Pm is 1 as nonzero and it exists inside.
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Appendix B

The visualization module receives the pose data of all objects in the virtual and the actual test
vehicle in the real-world. These data were used to visualize and were provided to the driver as a video.
The information is shared based on Ethernet communication to benefit the programs running in a PC
environment. In particular, fast data transmission through UDP and the scalability of simultaneously
acquiring information from multiple devices through broadcast are expected. The packet loss of the
UDP communication was neglected because this module needed only the latest data to update the
virtual scene and the transfer rate was about 1.5 times more than the requirement of the visualization
module. Applying the real-time pose information of the objects received from the virtual driving
environment with a high frequency to the object can demonstrate the effect of continuous movement.
At this time, there is a virtual camera that depends on the test vehicle objects, so it can create an image
from the driver’s perspective. This module allows the driver to recognize real-time information of the
virtual driving environment through a display device, such as a monitor or HMD. Figure A3 shows
the structure of the driver visualization module through Unreal Engine 4.



Appl. Sci. 2020, 10, 2645 13 of 15Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 15 

 
Figure A3. Visualization module structure. 

References 

1. Maurer, M.; Gerdes, J.C.; Lenz, B.; Winner, H. Autonomous Driving: Technical, Legal and Social Aspects; 
Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2016; ISBN 3-662-48845-0. 

2. Feilhauer, M.; Haering, J.; Wyatt, S. Current Approaches in HiL-Based ADAS Testing. Sae Int. J. Commer. 
Veh. 2016, 9, 63–69. 

3. Hakuli, S.; Krug, M. Virtual Integration in the Development Process of ADAS. In Handbook of Driver 
Assistance Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 159–176. 

4. Wachenfeld, W.; Winner, H. The Release of Autonomous Vehicles. In Autonomous Driving: Technical, 
Legal and Social Aspects; Maurer, M., Gerdes, J.C., Lenz, B., Winner, H., Eds.; Springer: Berlin/Heidelberg, 
Germany, 2016; pp. 425–449, ISBN 978-3-662-48847-8. 

5. von Neumann-Cosel, K.; Dupuis, M.; Weiss, C. Virtual test drive-provision of a consistent tool-set for 
[d, h, s, v]-in-the-loop. In Proceedings of the Proceedings of the Driving Simulation Conference, Monte 
Carlo, Monaco, 4-6 February 2009. 

6. Griggs, W.; Ordóñez-Hurtado, R.; Russo, G.; Shorten, R. A Vehicle-in-the-Loop Emulation Platform for 
Demonstrating Intelligent Transportation Systems. In Control Strategies for Advanced Driver Assistance 
Systems and Autonomous Driving Functions : Development, Testing and Verification; Waschl, H., 
Kolmanovsky, I., Willems, F., Eds.; Lecture Notes in Control and Information Sciences; Springer 
International Publishing: Cham, Switzerland, 2019; pp. 133–154, ISBN 978-3-319-91569-2. 

7. Eom, H.; Lee, S.H. Human-Automation Interaction Design for Adaptive Cruise Control Systems of 
Ground Vehicles. Sensors 2015, 15, 13916–13944. 

8. Jeong, S.; Baek, Y.; Son, S.H. Component-Based Interactive Framework for Intelligent Transportation 
Cyber-Physical Systems. Sensors 2020, 20, 264. 

9. Verburg, D.J.; van der Knaap, A.C.M.; Ploeg, J. VEHIL: Developing and testing intelligent vehicles. In 
Proceedings of the IEEE Intelligent Vehicle Symposium, Versailles, France, 17–21 June 2002; Volume 2, 
pp. 537–544. 

10. Gietelink, O.; Ploeg, J.; Schutter, B.D.; Verhaegen, M. Testing advanced driver assistance systems for 
fault management with the VEHIL test facility. In Proceedings of the Proceedings of the 7th 
International Symposium on Advanced Vehicle Control, Arnhem, The Netherlands, 23–27 August 
2004; pp. 579–584. 

Figure A3. Visualization module structure.

References

1. Maurer, M.; Gerdes, J.C.; Lenz, B.; Winner, H. Autonomous Driving: Technical, Legal and Social Aspects; Springer
Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2016; ISBN 3-662-48845-0.

2. Feilhauer, M.; Haering, J.; Wyatt, S. Current Approaches in HiL-Based ADAS Testing. Sae Int. J. Commer. Veh.
2016, 9, 63–69. [CrossRef]

3. Hakuli, S.; Krug, M. Virtual Integration in the Development Process of ADAS. In Handbook of Driver Assistance
Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 159–176.

4. Wachenfeld, W.; Winner, H. The Release of Autonomous Vehicles. In Autonomous Driving: Technical, Legal and
Social Aspects; Maurer, M., Gerdes, J.C., Lenz, B., Winner, H., Eds.; Springer: Berlin/Heidelberg, Germany,
2016; pp. 425–449. ISBN 978-3-662-48847-8.

5. Von Neumann-Cosel, K.; Dupuis, M.; Weiss, C. Virtual test drive-provision of a consistent tool-set for [d, h, s,
v]-in-the-loop. In Proceedings of the Driving Simulation Conference, Monte Carlo, Monaco, 4–6 February
2009.

6. Griggs, W.; Ordóñez-Hurtado, R.; Russo, G.; Shorten, R. A Vehicle-in-the-Loop Emulation Platform for
Demonstrating Intelligent Transportation Systems. In Control Strategies for Advanced Driver Assistance
Systems and Autonomous Driving Functions: Development, Testing and Verification; Waschl, H., Kolmanovsky, I.,
Willems, F., Eds.; Lecture Notes in Control and Information Sciences; Springer International Publishing:
Cham, Switzerland, 2019; pp. 133–154. ISBN 978-3-319-91569-2.

7. Eom, H.; Lee, S.H. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground
Vehicles. Sensors 2015, 15, 13916–13944. [CrossRef] [PubMed]

8. Jeong, S.; Baek, Y.; Son, S.H. Component-Based Interactive Framework for Intelligent Transportation
Cyber-Physical Systems. Sensors 2020, 20, 264. [CrossRef] [PubMed]

9. Verburg, D.J.; van der Knaap, A.C.M.; Ploeg, J. VEHIL: Developing and testing intelligent vehicles.
In Proceedings of the IEEE Intelligent Vehicle Symposium, Versailles, France, 17–21 June 2002; Volume 2,
pp. 537–544.

10. Gietelink, O.; Ploeg, J.; Schutter, B.D.; Verhaegen, M. Testing advanced driver assistance systems for fault
management with the VEHIL test facility. In Proceedings of the 7th International Symposium on Advanced
Vehicle Control, Arnhem, The Netherlands, 23–27 August 2004; pp. 579–584.

http://dx.doi.org/10.4271/2016-01-8013
http://dx.doi.org/10.3390/s150613916
http://www.ncbi.nlm.nih.gov/pubmed/26076406
http://dx.doi.org/10.3390/s20010264
http://www.ncbi.nlm.nih.gov/pubmed/31906463


Appl. Sci. 2020, 10, 2645 14 of 15

11. Galko, C.; Rossi, R.; Savatier, X. Vehicle-Hardware-In-The-Loop system for ADAS prototyping and validation.
In Proceedings of the 2014 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV), Proceedings of the 2014 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), Samos Island, Greece, 14–17
July 2014; pp. 329–334.

12. Hwang, Y.; Shin, S.; Yang, I. Evaluation of Advanced Driver Assistance Systems with Vehicle-Traffic
Hardware-in-the-Loop Simulations. In Proceedings of the KSAE 2013 Annual Conference and Exhibition,
Goyang, South Korea, 20–23 November 2013; pp. 1338–1339.

13. Steinmetz, E.; Emardson, R.; Eriksson, H.; Hérard, J.; Jacobson, J. High Precision Control of Active Safety Test
Scenarios; RISE: Göteborg, Sweden, 2011.

14. Park, M.-K.; Lee, S.-Y.; Kwon, C.-K.; Kim, S.-W. Design of Pedestrian Target Selection With Funnel Map for
Pedestrian AEB System. Ieee Trans. Veh. Technol. 2017, 66, 3597–3609. [CrossRef]

15. Bock, T.; Siedersberger, K.-H.; Maurer, M. Vehicle in the loop-Augmented reality application for collision
mitigation systems. In Proceedings of the Fourth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’05), Vienna, Austria, 5–8 October 2005.

16. Bock, T.; Maurer, M.; Farber, G. Vehicle in the Loop (VIL)—A New Simulator Set-Up for Testing Advanced
Driving Assistance Systems. In Proceedings of the Driving Simulation Conference, North America 2007
(DSC-NA 2007), Iowa City, IA, USA, 12–14 September 2007.

17. Laschinsky, Y.; von Neumann-Cosel, K.; Gonter, M.; Wegwerth, C.; Dubitzky, R.; Knoll, A. Evaluation of
an active safety light using virtual test drive within vehicle in the loop. In Proceedings of the 2010 IEEE
International Conference on Industrial Technology, Vina del Mar, Chile, 14–17 March 2010; pp. 1112–1119.

18. Sieber, M.; Berg, G.; Karl, I.; Siedersberger, K.; Siegel, A.; Färber, B. Validation of driving behavior in the
Vehicle in the Loop: Steering responses in critical situations. In Proceedings of the 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October
2013; pp. 1101–1106.

19. Weber, S.; Blum, K.; Ernstberger, A.; Färber, B. Standard Reactions—Driver Reactions in Critical Driving
Situations. Procedia Manuf. 2015, 3, 2489–2496. [CrossRef]

20. Weber, S.; Färber, B. Driver Reactions in Critical Crossing Situations. In Proceedings of the 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015;
pp. 444–449.

21. Rüger, F.; Nitsch, V.; Färber, B. Automatic Evasion Seen from the Opposing Traffic—An Investigation with
the Vehicle in the Loop. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 1041–1048.

22. Schwab, S.; Leichsenring, T.; Zofka, M.R.; Bär, T. Consistent Test Method for Assistance Systems. ATZ Worldw.
2014, 116, 38–43. [CrossRef]

23. Miquet, C.; Sebastian, S.; Raphael, P. New test method for reproducible real-time tests of ADAS
ECUs:“Vehicle-in-the-Loop” connects real-world vehicles with the virtual world. In Proceedings of the
5th International Munich Chassis Symposium 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 575–589.

24. Griggs, W.M.; Ordóñez-Hurtado, R.H.; Crisostomi, E.; Häusler, F.; Massow, K.; Shorten, R.N. A Large-Scale
SUMO-Based Emulation Platform. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3050–3059. [CrossRef]

25. Fayazi, S.A.; Vahidi, A. Vehicle-in-the-loop (VIL) verification of a smart city intersection control scheme for
autonomous vehicles. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications
(CCTA), Kohala Coast, HI, USA, 27–30 August 2017; pp. 1575–1580.

26. Fayazi, S.A.; Vahidi, A.; Luckow, A. A Vehicle-in-the-Loop (VIL) verification of an all-autonomous intersection
control scheme. Transp. Res. Part C Emerg. Technol. 2019, 107, 193–210. [CrossRef]

27. Tettamanti, T.; Szalai, M.; Vass, S.; Tihanyi, V. Vehicle-In-the-Loop Test Environment for Autonomous Driving
with Microscopic Traffic Simulation. In Proceedings of the 2018 IEEE International Conference on Vehicular
Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–6.

28. Rastogi, V.; Merco, R.; Kaur, M.; Rayamajhi, A.; Gavelli, M.; Papa, G.; Pisu, P.; Babu, S.; Robb, A.; Martin, J.
An Immersive Vehicle-in-the-Loop VR Platform for Evaluating Human-to-Autonomous Vehicle Interactions; SAE
International: New York, NY, USA, 2019; p. 2019-01–0143.

http://dx.doi.org/10.1109/TVT.2016.2604420
http://dx.doi.org/10.1016/j.promfg.2015.07.510
http://dx.doi.org/10.1007/s38311-014-0216-x
http://dx.doi.org/10.1109/TITS.2015.2426056
http://dx.doi.org/10.1016/j.trc.2019.07.027


Appl. Sci. 2020, 10, 2645 15 of 15

29. Horváth, M.T.; Lu, Q.; Tettamanti, T.; Török, Á.; Szalay, Z. Vehicle-In-The-Loop (VIL) and
Scenario-In-The-Loop (SCIL) Automotive Simulation Concepts from the Perspectives of Traffic Simulation
and Traffic Control. Transp. Telecommun. J. 2019, 20, 153–161. [CrossRef]

30. Che, X.; Li, C.; Zhang, Z. An Open Vehicle-in-the-Loop Test Method for Autonomous Vehicle; EasyChair: Manchester,
UK, 2019.

31. Bock, T.; Maurer, M.; Farber, G. Validation of the Vehicle in the Loop (VIL); A milestone for the simulation of
driver assistance systems. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey,
13–15 June 2007; pp. 612–617.

32. Gipps, P.G. Behavioral car-following model for computer simulation. Transp. Res. 1981, 15, 105–111.
[CrossRef]

33. Gipps, P.G. A model for the structure of lane-changing decisions. Transp. Res. Part B Methodol. 1986, 20,
403–414. [CrossRef]

34. Bernsteiner, S.; Magosi, Z.; Lindvai-Soos, D.; Eichberger, A. Radar Sensor Model for the Virtual Development
Process. ATZ Elektron. Worldw. 2015, 10, 46–52. [CrossRef]

35. Kluge, K. Extracting road curvature and orientation from image edge points without perceptual grouping
into features. In Proceedings of the Intelligent Vehicles ’94 Symposium, Paris, France, 24–26 October 1994;
pp. 109–114.

36. Muad, A.M.; Hussain, A.; Samad, S.A.; Mustaffa, M.M.; Majlis, B.Y. Implementation of inverse perspective
mapping algorithm for the development of an automatic lane tracking system. In Proceedings of the
2004 IEEE Region 10 Conference TENCON 2004, Chiang Mai, Thailand, 21–24 November 2004; Volume A,
pp. 207–210.

37. Shimrat, M. Algorithm 112: Position of point relative to polygon. Commun. Acm 1962, 5, 434. [CrossRef]
38. Hacker, R. Certification of algorithm 112: Position of point relative to polygon. Commun. Acm 1962, 5, 606.

[CrossRef]
39. Haines, E. Point in polygon strategies. Graph. Gems IV 1994, 994, 24–26.
40. Hormann, K.; Agathos, A. The point in polygon problem for arbitrary polygons. Comput. Geom. 2001, 20,

131–144. [CrossRef]
41. Jayaraman, A.; Micks, A.; Gross, E. Creating 3D Virtual Driving Environments for Simulation-Aided Development

of Autonomous Driving and Active Safety; SAE International: New York, NY, USA, 2017; p. 2017-01–0107.
42. Li, C.; Fahmy, A.; Sienz, J. An Augmented Reality Based Human-Robot Interaction Interface Using Kalman

Filter Sensor Fusion. Sensors 2019, 19, 4586. [CrossRef] [PubMed]
43. Noonan, J.; Rotstein, H.; Geva, A.; Rivlin, E. Global Monocular Indoor Positioning of a Robotic Vehicle with

a Floorplan. Sensors 2019, 19, 634. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2478/ttj-2019-0014
http://dx.doi.org/10.1016/0191-2615(81)90037-0
http://dx.doi.org/10.1016/0191-2615(86)90012-3
http://dx.doi.org/10.1007/s38314-015-0521-1
http://dx.doi.org/10.1145/368637.368653
http://dx.doi.org/10.1145/355580.369118
http://dx.doi.org/10.1016/S0925-7721(01)00012-8
http://dx.doi.org/10.3390/s19204586
http://www.ncbi.nlm.nih.gov/pubmed/31652544
http://dx.doi.org/10.3390/s19030634
http://www.ncbi.nlm.nih.gov/pubmed/30717361
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Vehicle in the Loop 
	Virtual Environment 
	Sync 
	Sensor Emulation 
	Visualization 

	Field Test 
	Discussion 
	
	
	References

