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Featured Application: The fault feature extraction method can be applied in health monitoring
of rolling bearings.

Abstract: In mechanical equipment, rolling bearings analyze and monitor their fault based on their
vibration signals. Vibration signals obtained are usually weak because the machine works in a noisy
background that makes it very difficult to extract its feature. To address this problem, a second-order
coupled step-varying stochastic resonance (SCSSR) system is proposed. The system couples two
second-order stochastic resonance (SR) systems into a multistable system, one of which is a controlled
system and the other of which is a controlling system that uses the output of one system to adjust
the output of the other system to enhance the weak signal. In this method, we apply the seeker
optimization algorithm (SOA), which uses the output signal-to-noise ratio (SNR) as the estimating
function and combines the twice-sampling technology to adaptively select the parameters of the
coupled SR system to achieve feature enhancement and collection of the weak periodic signal.
The simulation and real fault data of a bearing prove that this method has better results in detecting
weak signals, and the system output SNR is higher than the traditional SR method.
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1. Introduction

Rolling bearings are widely used in the field of engineering machinery. It is one of the parts with
the highest failure rate, and causing problems in regard to quality and safety [1]. The fault monitoring
and analysis of bearings usually deals with the vibration signals collected by sensors [2–4]. When the
background noise of the vibration data is high and the signal-to-noise ratio (SNR) is low, it is very
challenging to obtain the bearings’ fault features. In the context of loud noise, the traditional bearing
fault analysis methods usually start with noise reduction [5–10]. Although these methods can reduce
the noise, they also can weaken the effective characteristic signal [10–18].

Benzi et al. [19] proposed the theory of stochastic resonance (SR), which can pass noise to weak
signals and strengthen the weak characteristic signals submerged in them [20]. This feature has
aroused great interest as more and more scholars have begun to study the impact of SR on machine
fault diagnosis [21–30] and its application in other fields [31–41]. In order to quantitatively describe
the phenomenon of SR and have a standard for judging the effect of SR, a measurement index is
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required. In this paper, SNR is used as a measure of SR [42]. When the SNR is larger, it means that
the signal has less noise interference and is more pure. In an SR system, the input signal frequency is
limited to far less than 1 Hz due to its adiabatic approximation condition [43]. However, in practical
engineering application, the bearing has a fault characteristic frequency that is far more than 1 Hz.
Lu et al. [44] proposed a standardized scale conversion non-stress test (NST) SR. Leng et al. [45]
presented a variable scale SR method to satisfy the small parameter condition of SR, which compresses
large frequency signals to small frequency signals (frequency less than 1 Hz) according to a certain
scale. Tan et al. [46] studied a method of frequency-shifted and re-scaling SR (FRSR) to achieve small
parameter conditions. Large frequency signals are first processed by a high-pass filter, and then
combined with frequency-shifted and re-scaling technology. The above two methods play an important
role in practical engineering application. In addressing the problem of system parameters selection,
Zhang et al. [47] found that the selection of classical SR (CSR) system parameters can be achieved
under the condition of particle swarm optimization (PSO), which can be easily interfered with by
low-frequency information. Lei et al. [48] introduced a method of ant colony optimization algorithm to
analyze the signal after FRSR to determine the system parameters, but the operation of this method
with the help of a high-pass filter is complex. Lu et al. [49] analyzed the underdamped step-varying
second-order SR (USSSR) method. Compared with the first-order SR system, the second-order filtering
performance is better, and the dependence on the filter is eliminated. Luo [50] gave specific steps to
solve the USSSR parameters by ant colony optimization algorithm. Lei et al. [51] further analyzed the
advantages of a second-order multistable SR system. However, the coupling model studies the SR
system from another point of view. There is little research on the SR coupling model. Zhang et al. [52]
studied the coupling bistable system and used it for fault signal detection. Li et al. [53] further studied
a novel adaptive SR method based on coupled bistable systems and its application in rolling bearing
fault diagnosis. Although the output of SNR has been improved, its effect is not good.

Based on the above analysis, we proposed a second-order coupled step-varying stochastic
resonance (SCSSR) model, which is a further evolution of the coupled SR model. Compared with the
existing first-order SR, second-order tristable SR, and coupled stochastic resonance systems, there are
not many studies on second-order coupled SR systems. We used the seeker optimization algorithm
(SOA) to determine the model parameters with the output SNR as its fitness function. This article
provides the steps and processes to select system parameters based on SOA. The results of simulation
and engineering data show that the system can enhance and extract the weak characteristic signals and
that the system has better performance in weak signal extraction and filtering; the output SNR is also
higher than that of traditional SR systems.

2. Fundamental Theory

2.1. Second-Order Coupled Stochastic Resonance System Model

The SCSSR model composed of two second-order bistable SR system models is as follows:

••
x = −k

•
x− dV1(x)

dx + r(y− x) + s(t) + n(t)
••
y = −k

•
y− dV2(y)

dy + r(y− x)
(1)

In the above formula:
V1(x) = − 1

2 a0x2 + 1
4 b0x4

V2(y) = − 1
2 ay2 + 1

4 by4 (2)

where r is the coupling coefficient, k is the damping coefficient, and a0 and b0 are fixed values. In this
paper, a0 = 1, b0 = 1, a and b are parameter variables, and the input signal is s(t) + n(t). The coupled
bistable system consists of control system y and controlled system x; x(t) and y(t) are the output
variables of two second-order SR systems. Because the noise and signal act on the controlled system,
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x(t) is the final output for the coupled SR system. Formula (1) can be solved with the fourth-order
Runge–Kutta equation [54].

When r = 0, it can be seen from Formula (1) that the coupled SR system is two independent
second-order SR systems, its output is still x(t), and the final SR system is changed to an USSSR system.

When the coupling system interacts with the signal and noise to produce an SR phenomenon,
it can be expressed as the following equation:

U(x, y) = −
1
2

a0x2 +
1
4

b0x4
−

1
2

ay2 +
1
4

by4
−

r
2
(y2
− x2) (3)

Take a0 = 1, b0 = 1, a = 1, b = 1, r = −0.06; Figure 1 shows the coupling system potential function
U(x, y). This potential well function is more complex and comprehensive than the traditional bistable
potential well function, the dynamic performance of the potential function is better, the particle motion
is accelerated, and the SR state is better.
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2.2. Measure Index

The SNR is often used as a measure of the SR model, however, in this paper the output SNR is
different from the traditional output SNR [55]. The specific calculation of the output SNR is as follows:

For a group of discrete signals x = {x1, x2, · · · xN} (N means the signal length), in the frequency
domain, we can acquire X(k) by FFT and amplitude sequence Y(k) by the following expression:

X(k) =
N∑

n=1
x(n)e− jπ(k−1)(n−1)/N, 1 ≤ k ≤ N

Y(k) = 2 |X(k)|
N , 1 ≤ N

2

(4)

Let the peak number of the spectrum at the signal frequency f0 be K0, which can be gained from
the following formula:

K0 =
f0 ×N

fs
+ 1 (5)

The sampling frequency of the signal is fs, from which the output SNR can be expressed below:

SNR = 10 log
Y(K0)

N
2∑

K=1
Y(K) −Y(K0)

(6)
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2.3. SCSSR Algorithm Flow

Based on the small parameter condition of the input of the SR system, the frequency compression
ratio (R) is introduced here to make the actual vibration large frequency signal meet it. For the
selection of system parameters, this paper uses SOA [56,57] to optimize the parameters a, b, r, k, and R
synchronously, with the output SNR as its fitness function. Figure 2 shows the system flow chart.
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Figure 2. Flowchart of stochastic resonance (SR) based on the seeker optimization algorithm (SOA).

The specific implementation steps are given below:

• Signal preprocessing: The obtained vibration signal is preprocessed; The resonance band of the
vibration signal is found through power spectrum analysis; And band-pass filtering and Hilbert
transform (HT) are carried out; Finally we can get the envelope signal S1, S2 = S1 −mean(S1),
S3 = max(abs(S2)), and S4 = S2/(2 ∗ (S3)); S4 is the input signal. The above operations ensure
that S4 is the signal with amplitude less than 1.

• System parameters initialization: Determine the maximum number of iterations and population
size of SOA. Set the optimization range of five parameters.

• Take the output SNR as the fitness function of SOA.
• Record the number of iterations. If it reaches the maximum number of iterations, proceed to the

next step; if it does not, return to the previous step.
• Record the maximum output SNR and get the values of the five parameters at this time.
• Weak signal detection: The preprocessed signal is introduced into the determined parameter

SCSSR system to get the output. Recombine the frequency and amplitude to complete the detection
of a weak signal.

3. Simulation Data Analysis

In order to obtain a simulated sine signal with a low SNR, the periodicity and characteristic
frequency of the signal cannot be seen in the time-domain waveform and amplitude spectrum.
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Set s(t) = A0 sin(2π f0t) + n(t) as the input of the SCSSR system, where n(t) is Gaussian white
noise,A0 = 0.2, f0 = 50 Hz, the intensity is 2.4, the sampling number is 5000, and the sampling
frequency and frequency resolution are 5 kHz and 1 Hz, respectively. Figure 3a shows the time-domain
waveform and amplitude spectrum of signal. It is hard to discover the frequency component of 50 Hz
from the amplitude spectrum; the SNR of the input signal obtained from Formula (6) is −29.82 dB,
which is very low.
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The output result of data processed by the CSR system is shown in Figure 3b. Simultaneously,
R = 464, a = 19.7, b = 7217.3, and SNR is −20.53 dB. Although the high frequency components are
suppressed, the SNR is improved, but at the same time of the scale transformation of the low frequency
components, which also enhances the noise energy. The output result of data processed by the USSSR
system is shown in Figure 3c. From the figure, we find that the amplitude of characteristic frequency is
significantly increased. The system parameters are shown below: a = 2.343, b = 10431.666, k = 0.13,
r = 131.44, and the output SNR = −11.49 dB. The simulation signal shows that when contrasted with
the first-order SR system, the second-order SR system has better filtering characteristics. We inputted
the signal to the SCSSR and the optimal parameters are gained: a = −5.5, b = 12.43, k = 0.54, r = 2.85,
R = 147.2, and the output SNR is −2.684 dB. By observing Figure 3d, for this signal we find that the
time-domain waveform shows its periodicity, the frequency component of 50 Hz is also clearly reflected
in the amplitude spectrum, and there are almost no other frequencies. This fully demonstrates the
reliability of the SCSSR method. To analyze the effect of the selected parameters on the results, we
changed the parameters obtained by the SCSSR method and changed a = −5.5 to a = −100. The results
are shown in Figure 3e. As can be seen from the Figure 3d,e, the system parameters greatly influence
the results.

4. Engineering Applications

By analyzing the bearing experimental data of Case Western Reserve University [58], we further
confirmed the feasibility of the SCSSR method. The experiment uses a deep groove ball bearing, whose
type is 6205-2RS JEM SKF (SKY FU (SHANGHAI) RESPONSIBILITY LIMITED, Shanghai, China).
Table 1 shows the dimensional parameters of the bearing. In comparison, since the FRSR needs to set
the filter, the operation is cumbersome. This paper only analyzes the data with CSR and USSSR.

Table 1. Size parameters of 6205-2RS.

Inner Diameter Outer Ring
Diameter Number of Rollers Rolling Element

Diameter Pitch Distance

2.5001 cm 5.1999 cm 9 0.794 cm 3.904 cm

The acceleration sensor is used to gather a vibration signal; the sampling number is 4096, the
sampling frequency is 12 kHz, and 1730 r/min is the motor speed. The inner ring theory fault
characteristic frequency is 156.14 Hz. The time-domain waveform and power spectrum of the bearing
inner ring fault signal collected by the experiment are shown in Figure 4a. We are not able to discover
the periodic component in the time-domain waveform, and from the power spectrum, we are not able
to observe the inner ring fault characteristic frequency fBPFI. By bandpass-filtering the original signal,
the filtered signal is subjected to the HT transform to acquire an envelope signal and an envelope
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amplitude spectrum, as displayed in Figure 4b. We can see the inner ring fault characteristic frequency
fBPFI, from the envelope amplitude spectrum, but it is difficult to judge the fault due to the interference
of the surrounding noise and the frequency conversion fr. The SNR is −17.53 dB from Equation (6).
Figure 4c is the result of using the CSR system to process the envelope signal. In this figure, the energy
of high frequency is lower, and the feature of the inner ring fault frequency fBPFI and the frequency
conversion fr is amplified. The system parameters are shown below: a is 0.0015; b is 5235.68; R is
672.536; the output SNR is −15.511 dB. After the data are processed by the USSSR system, the system
parameters are a = 0.908, b = 12476.8, R = 304.395, k = 0.222; the output results are shown in Figure 4d,
the SNR is reduced to −10.42 dB, and fBPFI can be clearly found in the amplitude spectrum. Meanwhile,
the output SNR comparison CSR system is further enhanced. If the SCSSR algorithm is used to process
the envelope, the outputs are shown in Figure 4e. The optimal parameters are a = 4.5, b = 1.6, k = 0.9,
r = −4.3, R = 556.51, and the output SNR is −2.636 dB. The output signal of the y channel effectively
enhances the x channel output, and the frequency fBPFI is clearly visible. Once again, the bearing fault
data analysis results demonstrate the feasibility and superiority of the SCSSR method.
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Figure 4. Analysis results for the bearing signals with inner race: (a) original signal; (b) envelope signal;
(c) CSR output signal; (d) USSSR output signal; (e) SCSSR output signal.

5. Conclusions

The SCSSR system proposed in this paper can enhance and extract bearing fault characteristics
under a strong noise background. The main conclusions are as follows:

1. For large-parameter signals, combined with the variable-scale method, the SCSSR system can
detect weak signals.

2. SOA is used to determine model parameters of the SCSSR system with the output SNR as its
fitness function.

3. Simulation and engineering data show that the SCSSR has better filtering performance and higher
output SNR than the traditional SR method.

Although this article makes the characteristic frequency of the useful signal obvious, it still relies
on the output SNR as a measure of SR. Future work should focus on how to identify the detection of
unknown characteristic frequency signals.
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