
applied  
sciences

Article

Health State Classification of a Spherical Tank Using
a Hybrid Bag of Features and K-Nearest Neighbor

Md Junayed Hasan 1 , Jaeyoung Kim 1 , Cheol Hong Kim 2 and Jong-Myon Kim 1,*
1 Department of Electrical, Electronics & Computer Engineering, University of Ulsan, Ulsan 44610, Korea;

junhasan@gmail.com (M.J.H.); kjy7097@gmail.com (J.K.)
2 Department of Computer Engineering, Chonnam National University, Gwangju 61186, Korea;

chkim22@chonnam.ac.kr
* Correspondence: jmkim07@ulsan.ac.kr; Tel.: +82-52-259-2217

Received: 2 March 2020; Accepted: 2 April 2020; Published: 6 April 2020
����������
�������

Abstract: Feature analysis puts a great impact in determining the various health conditions of
mechanical vessels. To achieve balance between traditional feature extraction and the automated
feature selection process, a hybrid bag of features (HBoF) is designed for multiclass health state
classification of spherical tanks in this paper. The proposed HBoF is composed of (a) the acoustic
emission (AE) features and (b) the time and frequency based statistical features. A wrapper-based
feature chooser algorithm, Boruta, is utilized to extract the most intrinsic feature set from HBoF.
The selective feature matrix is passed to the multi-class k-nearest neighbor (k-NN) algorithm to
differentiate among normal condition (NC) and two faulty conditions (FC1 and FC2). Experimental
results demonstrate that the proposed methodology generates an average 99.7% accuracy for all
working conditions. Moreover, it outperforms the existing state-of-art works by achieving at
least 19.4%.
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1. Introduction

Mechanical vessels play a very important role in day-to-day life with widespread applications [1].
Specifically, in the oil and gas industry, the use of spherical tanks is required due to the cost effectiveness
of building a sphere. With the increasing use of these types of spherical tanks for different industries,
the number of accidents related to leakage from the bottoms of these tanks is also increasing [2]. As a
result, improved safety precautions and maintenance are required [3,4]. Moreover, the finding of the
crack in its initial stages facilitates required actions to be commenced in a timely manner and reduces
the incidence of industrial accidents. Therefore, identifying the health condition (normal or faulty
state) through signals at an early stage will make it easier to establish the necessary precautions for
condition monitoring purposes. The present crack detection procedures for spherical tanks comprise
of observing inbound signals. However, there is still a lack of automated multiclass identification
methods for achieving this objective.

In this study, the central focus is to categorize the health states of a spherical tank, assessed
through acoustic emission (AE) signals. Compared with traditional methods, AE is a cost-effective
and useful for fault detection applications [5]. Additionally, AE signals can provide underlying
evidence for signals with low energy and is suitable to establish a more substantial data-driven fault
identification approach.

Conventional data-driven health state classification procedures count on two vital techniques:
(1) feature extraction by applying domain proficiency and (2) identifying those health states by utilizing
those extracted sets of features. Among different approaches, the popular AE-based diagnosis methods
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mostly rely on analyzing the peak of characteristic frequencies in the frequency spectrums of signals [6].
Nevertheless, to obtain intrinsic information from the signals, the selection of this signal analysis
procedure has a significant effect on the final performance [6]. In recent studies, several effective feature
extraction methods with conventional feature selection algorithms have been proposed. Sohaib et al. [7]
analyzed the statistical characteristics from time, and frequency domain to classify between normal and
faulty health conditions of the tank by using support vector machine (SVM). Similarly, Islam et al. [8]
developed a heterogeneous time-frequency feature fusion with a genetic algorithm (GA) based feature
selector to identify the most distinctive feature information from the data. However, these methods
are made for binary class-classification. Moreover, due to sensitive nature of the crack sizes under
various faulty conditions, these feature selector algorithms failed to distinguish between multiple crack
sizes. Therefore, in this research paper, the main emphasis is on multiclass health state categorization
by analyzing the AE signals obtained from a spherical tank. Consequently, pattern generation from
acquired signal domains using several signal-imaging techniques can also differentiate between health
conditions for further classification [7]. Besides, several automated feature learning processes driven
by deep learning-based algorithms have been studied to ease the inevitability of domain knowledge
proficiency [9,10]. However, due to limited amount of data, these deep learning-based approaches are
not capable of extracting meaningful features.

In this study, a hybrid feature pool-denoted as hybrid bag of features (HBoF) is designed by fusing
the statistical properties from AE domain. Additionally, time and frequency domain-based analysis are
added to increase the robustness of the proposed feature extractor mechanism. However, to select the
most distinctive feature set from the proposed HBoF, it is logical to determine the underlying cause for
multiple health conditions. Unlike the popular feature selector algorithms (i.e., GA), Boruta can select
all the appropriate features from the feature set instead of selecting only the non-redundant ones [11].
Therefore, in this study, a wrapper-based feature selector algorithm-Boruta is utilized as the feature
selector. Lastly, the chosen features are forwarded to the k-nearest neighborhood (k-NN) for multiclass
classification. With the limited observations of the data, k-NN check historical database each time a
prediction is required. The main impacts of this research can be encapsulated as follows:

1. An HBoF extraction method is designed by combining two types of analysis: (a) analysis of
the properties of the AE domain from signals and (b) analysis of the statistical properties from
time-domain and frequency-domain of the signal,

2. A non-redundant feature selection method based on wrapper principle, Boruta, is utilized to
analyze the HBoF to capture the final features,

3. Finally, by using those features by Boruta selection as and input, the k-NN is applied for final
multi-class classification.

The rest of the article is arranged as follows. The details of the acquisition testbed with the
details of the proposed methodology are discussed into Section 2. The experimental result analysis
with comparative discussions are presented into Section 3. Therefore, with all the findings, Section 4
represents the conclusion of the paper.

2. Methodology

The proposed methodology is designed into four steps: (1) the AE data acquisition from a
multisensory testbed, (2) feature extraction from AE, time, and frequency domain to create the HBoF,
(3) feature selection by Boruta, and (4) k-NN-based multiclass-classification. Figure 1 demonstrates the
total proposed approach.
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C) spherical tank is used. To record the signals, a PCI 2 based data acquisition device [7] was utilized. 
The original testbed with the full schematic diagram of the tank architecture, and the channel (sensor) 
plan of the acquisition system are demonstrated in Figure 2. 

 
Figure 2. The original setup for collecting acoustic emission (AE) signals from the carbon made tank 
with the with the detailed schematic diagram and the channel sensor set up. 

Figure 1. The overview of the proposed approach with the designed steps.

2.1. Data Acquisition Set-Up

To authenticate the competence of the proposed health state classification of the tank, tests were
achieved by using a data acquisition mechanism on the basis of code of ASME BPVC.Version-2015 [12,13].
For collecting the AE signal from the testbed, a carbon steel made (specification: A283 grade C) spherical
tank is used. To record the signals, a PCI 2 based data acquisition device [7] was utilized. The original
testbed with the full schematic diagram of the tank architecture, and the channel (sensor) plan of the
acquisition system are demonstrated in Figure 2.
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2.2. Hybrid Bag of Features (HBoF)

To generate the health state-based feature matrix, two different sets of features are considered.
For the characteristics of the AE domain, the amplitude (F1), rise time (F2), and duration (F3) of the
signals are computed. For the threshold value, the rms of the signal is considered. The specifics of the
AE features are demonstrated in Figure 3.
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For statistical analysis, from the frequency domain, the numerical features obtained are root mean
square (F4), kurtosis (F5), skewness (F6), shape factor (F7), impulse factor (F8), root mean square (F9),
kurtosis (F10), and skewness (F11). Thus, in total, 11 features are extracted to create the designed HBoF.
In Table 1, the numerical details of these statistical features (F4 to F11) are described.

Table 1. Numerical explanation of statistical features.
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In Table 1, for the mentioned equations (from F4 to F11), denotes the time-domain signal, denotes the frequency
domain, and denotes the total number of signals presented in the dataset.

2.3. Feature Selection by Boruta

Feature selection keeps a great effect on the performance of machine learning algorithms. In the
supervised algorithms, the identity of the labels is identified, and different feature extraction algorithms
are applied to obtain the intrinsic set of features from the given data. In a practical scenario, while dealing
with data, it is very common to have redundant and less information into the data. The main purpose
of selecting set of features is to get rid of that redundant information and reducing the data-dimension.
Generally, feature selection algorithms do this part. However, there are dimensionality reduction
approaches also, by which the dimension of the data can be reduced. While both types of algorithms are
applied for lessening the number of features, there is a critical difference. Feature selection algorithms
just pick and ignore given features without transforming them. Therefore, dimensionality reduction
algorithms changes feature into a lower dimension by both linear and non-linear data analysis. For the
studies related to feature analysis, the feature selection algorithms mainly serve two purposes, i.e.,
(a) dimensionality reduction of the data and (b) finding out the important non-redundant attributes
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from the data. For these reasons, in this study, the feature selection algorithm is considered over
dimensionality reduction techniques.

Feature selection algorithms have the nature to select only the non-redundant attributes from
the data. If from a dataset, the analysis demands to find out all the relevant attributes rather than
the non-relevant ones, feature selector algorithms cannot do that. These algorithms can pick only the
non-redundant ones but miss those redundant attributes which are relevant and important. To solve
this problem, the necessity of wrapper method arises [14,15]. To solve this purpose, a wrapper-based
approach is considered in this research [16].

Boruta first clones the given set of features to extend the provided information. These clones of
features are identified as shadow features. After that, it rearranges the elements of the cloned shadow
features to eliminate the correlations. Then, to validate the significance of features by the mean decrease
impurity (MDI), it trains the shadow features with random forest (RF) classifier. MDI determines the
significance of each cloned feature. The shadow feature containing the highest score of MDI is counted
as the best. Now, to determine the importance of the provided feature attributes, the algorithm make a
test with only the provided real features (excluding the cloned shadow features). For this objective,
the Z score is considered. The algorithm evaluates whether the provided feature has a higher Z score
than the maximum of its shadow feature. If the score is high, it is recorded in a vector known as hits.
Thus, the iteration is continued until reaching the predefined set of iteration numbers and, at the end,
a hit table is generated. With every iteration, the algorithm determines the feature with the best Z
score and marks it as important. From the hit vector, the final setoff features are acquired. The whole
of the techniques from the start till this part are echoed until the importance is designated for all the
provided set of feature attributes [11,14]. The steps of this algorithm are demonstrated in Figure 4.
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2.4. K-Nearest Neighbor Algorithm Based Classification

With the help of k-NN algorithm, the final classification is performed with the provided final set
of features by Boruta. The benefits of this algorithm is the easiness in developing construction and less
computational complexity [17,18]. This algorithm works on three main principles: (1) determine the
space among the neighbors, (2) find the k closest neighbors, and (3) vote for labels. Figure 5 illustrates
the details of the k-NN algorithm [11,13].
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In this study, the considered dataset is allocated with a 70:30-train: test ratio. After that, a cross-
validation of eight-fold is achieved by using a spawned list of odd k’s varying from 1 to 15.

3. Result Analysis and Comparative Discussions

3.1. Dataset Description

The standard AE dataset of spherical tanks is used to conduct a test. A 0.1 s velocity signal with
1 MHz sampling frequency is used for consideration of each health state. The particulars of the dataset
are provided in Table 2.

Table 2. Details of the considered dataset.

Health Condition
Crack Size (mm)

Channels Number of Samples
Length (mm) Width (mm) Depth (mm)

Normal Condition (NC) N/A N/A N/A 4 400
Faulty Condition 01 (FC1) 3 0.5 0.4 4 400
Faulty Condition 02 (FC2) 6 0.7 0.5 4 400

3.2. Performance Analysis of the Feature Selector Boruta

Raw AE signals have no intrinsic information to reveal different health conditions. Therefore,
the HBoF is designed and Boruta is applied to get the most intrinsic feature information. From Boruta,
the six most important features are calculated (i.e., F1, F3, F4, F5, F10, and F11). These six features
are collected from AE analysis, time domain, and frequency domain. Figure 6demonstrates the
Boruta-features in a 2D feature space. For the explanatory purpose, the selected six features are first
constricted into two-dimensional space by principle component analysis (PCA) and then mapped into
Figure 6.
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3.3. Diagnostic Performance Analysis

The best possible feature subset captured by Boruta is given to the k-NN for multiclass-classification
in a supervised manner. With the help of Equation (1), the class-based accuracy is calculated.
The Equation (1) is counted as the precision (positive predictive value) for machine learning based
algorithms for classwise accuracy. Therefore, in this study, the precision score is considered as the main
performance parameter to determine the best performance. In this equation, the term “true positive”
refers to the correctly classified samples from the provided test data to the algorithm. Similarly, the term
“false positive” refers to the negatively classified samples.

Class_based_accuracy =
True_positive

True_positive + False_positive
(1)

Therefore, with the help of Equation (2), the average of classification accuracy is computed.

Avg._accuracy =
True_positive + True_negetive

Total_number_o f _samples
(2)

To obtain the final classification accuracy, eight-fold cross-validation is used. The final accuracy
is obtained after eight-fold cross-validation. The proposed approach achieves 99.7% classification
accuracy when the optimal value of k is eight in k-NN algorithm (illustrated into Figure 7). Moreover,
in Table 3, the performance analysis of the proposed approach is depicted in a very detailed manner.
To verify the robustness of the suggested method, besides Equation (1) and (2), the recall (sensitivity)
score, and F1 value is also calculated. For recall score, Equation (3) is used, and for F1 value, Equation
(4) is utilized. In addition, Figure 8 illustrates the confusion matrix for the proposed approach.

Recall_score =
True_positive

True_positive + False_negetive
(3)
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F1_value = 2×
(Class_based_accuracy×Recall_score)
(Class_based_accuracy + Recall_score)

(4)
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Figure 8. Confusion matrix for the proposed method.

Along with the proposed approach, several assessments are made to establish the robustness.
Besides the proposed method, three approaches are measured for comparative study: (1) reduction of
the feature space by using PCA to use the k-NN for final classification, (2) dimensionality reduction
of the HBoF by t-SNE and then usage of k-NN for final classification, and (3) taking all the features
into account to use the k-NN for final health classification. In Table 4, the classification accuracies
from different approaches are portrayed in a comprehensive way. From the information shown
there, the necessity of finding out the ranked features is demonstrated, as opposed to keeping all
the information.



Appl. Sci. 2020, 10, 2525 9 of 10

Table 4. Classification accuracy of various approaches.

Approach Classification Accuracy (%) Average Classification
Accuracy (%)

Decrement from the
Proposed Method (%)NC FC1 FC2

Proposed 100 99.5 99.7 99.7 -
HBof + k-NN 80 68.2 59.7 69.3 30.4

HBof + t-SNE + k-NN 75.5 35 34.2 48.23 51.5
HBoF+ PCA + k-NN 79.5 82.5 78.9 80.3 19.4

From Table 4, it is observable that when there is no feature selection algorithm after extracting
all the features (HBof + k-NN), the classifier (k-NN) failed to distinguish among different health
types. Then again, when the manifold learning technique—t-SNE and dimensionality reduction
technique—PCAs are used as feature selectors, they failed to differentiate among different health
types into the low-dimensional feature space. Moreover, both algorithms mainly compress the high
dimensional data into low dimension. Unlike the proposed feature selector Boruta, these algorithms
do not signify the importance of any individual feature. Thus, the proposed approach signifies the
importance of the feature selector—Boruta for multiclass classification in this experiment.

4. Conclusions

The main objective of this research is to distinguish among three different health conditions
(normal condition (NC), faulty condition (FC)1, and FC2) of a spherical tank by analyzing the AE signal.
Therefore, this paper presents a hybrid feature selection method called HBoF, which is composed
of AE feature analysis and statistical information from time and frequency analysis. However,
the identification of the most distinctive feature information among all the important features is
challenging. Thus, to select the most intrinsic features from the proposed HBoF, a wrapper-based
algorithm—Boruta is utilized. Boruta is utilized for selecting all the appropriate features from the HBof
instead of picking only the non-redundant ones. Thereafter, k-NN is applied for multiclass classification,
which leads to a 99.7% average accuracy for NC, FC1, and FC2. Comparative analysis with different
non-linear feature dimensionality reduction techniques (i.e., PCA and t-SNE) was performed to
justify the performance. However, unlike the feature selector Boruta, these dimensionality reduction
algorithms never signify the importance of individual features for further analysis. Therefore,
the proposed approach outperformed the PCA and t-SNE based methods by respective 19.4% and
51.5% classification accuracies. This indicates that the Boruta based proposed approach can better
establish distinctive feature sub-sets from the designed HBof for classifying the heath states of a
spherical tank.

Author Contributions: All of the authors contributed equally to the conception of the idea, the design of
experiments, the analysis and interpretation of results, as well as the writing of the manuscript. writing—original
draft preparation, M.J.H. and J.K.; writing—review and editing, C.H.K. and J.-M.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)
and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20192510102510). This work
was also supported by the Technology Infrastructure Program funded by the Ministry of SMEs and Startups (MSS,
Korea).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Saidur, R. A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 2010, 14,
877–898. [CrossRef]

2. Morofuji, K.; Tsui, N.; Yamada, M.; Maie, A.; Yuyama, S.; Li, Z.W. Quantitative Study of Acoustic Emission
Due To Leaks from Water Tanks. Group 2003, 21, 213–222.

http://dx.doi.org/10.1016/j.rser.2009.10.018


Appl. Sci. 2020, 10, 2525 10 of 10

3. Luo, T.; Wu, C.; Duan, L. Fishbone diagram and risk matrix analysis method and its application in safety
assessment of natural gas spherical tank. J. Clean. Prod. 2018, 174, 296–304. [CrossRef]

4. Korkmaz, K.A.; Sari, A.; Carhoglu, A.I. Seismic risk assessment of storage tanks in Turkish industrial facilities.
J. Loss Prev. Process Ind. 2011, 24, 314–320. [CrossRef]

5. Li, W.; Dai, G.; Wang, Y.; Long, F. Study of Tank Acoustic Emission Testing Signals Analysis Method Based
on Wavelet Neural Network. In Proceedings of the ASME 2011 Pressure Vessels and Piping Conference,
Baltimore, MD, USA, 17–21 July 2011; ASME: New York, NY, USA, 2011; Volume 1, pp. 699–703.

6. Amar, M.; Gondal, I.; Wilson, C. Vibration spectrum imaging: A novel bearing fault classification approach.
IEEE Trans. Ind. Electron. 2015, 62, 494–502. [CrossRef]

7. Sohaib, M.; Islam, M.; Kim, J.; Jeon, D.-C.; Kim, J.-M. Leakage Detection of a Spherical Water Storage Tank in
a Chemical Industry Using Acoustic Emissions. Appl. Sci. 2019, 9, 196. [CrossRef]

8. Islam, M.; Sohaib, M.; Kim, J.; Kim, J.-M. Crack Classification of a Pressure Vessel Using Feature Selection
and Deep Learning Methods. Sensors 2018, 18, 4379. [CrossRef] [PubMed]

9. Sohaib, M.; Kim, C.-H.; Kim, J.-M. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault
Diagnosis. Sensors 2017, 17, 2876. [CrossRef] [PubMed]

10. Hasan, M.J.; Sohaib, M.; Kim, J.M. 1D CNN-based transfer learning model for bearing fault diagnosis
under variable working conditions. In Proceedings of the Advances in Intelligent Systems and Computing,
Changsha, China, 18–20 October 2019; Volume 888, pp. 13–23.

11. Hasan, M.; Kim, J.-M. A Hybrid Feature Pool-Based Emotional Stress State Detection Algorithm Using EEG
Signals. Brain Sci. 2019, 9, 376. [CrossRef]

12. Liu, G.; Yu, Z.; Liang, X.; Ye, C. Vibration-Based Structural Damage Identification and Evaluation for
Cylindrical Shells Using Modified Transfer Entropy Theory. J. Press. Vessel Technol. 2018, 140, 61204–61214.
[CrossRef]

13. Hasan, M.; Kim, J.-M. Fault Detection of a Spherical Tank Using a Genetic Algorithm-Based Hybrid Feature
Pool and k-Nearest Neighbor Algorithm. Energies 2019, 12, 991. [CrossRef]

14. Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13.
[CrossRef]

15. Nilsson, R.; Peña, J.M.; Björkegren, J.; Tegnér, J. Consistent feature selection for pattern recognition in
polynomial time. J. Mach. Learn. Res. 2007, 8, 589–612.

16. Liaw, A.; Wiener, M. Classification and regression by randomForest. R news 2002, 2, 18–22.
17. Pandya, D.H.; Upadhyay, S.H.; Harsha, S.P. Fault diagnosis of rolling element bearing with intrinsic mode

function of acoustic emission data using APF-KNN. Expert Syst. Appl. 2013, 40, 4137–4145. [CrossRef]
18. Yigit, H. A weighting approach for KNN classifier. In Proceedings of the 2013 International Conference

on Electronics, Computer and Computation (ICECCO), Ankara, Turkey, 7–9 November 2013; Volume 1,
pp. 228–231.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jclepro.2017.10.334
http://dx.doi.org/10.1016/j.jlp.2011.01.003
http://dx.doi.org/10.1109/TIE.2014.2327555
http://dx.doi.org/10.3390/app9010196
http://dx.doi.org/10.3390/s18124379
http://www.ncbi.nlm.nih.gov/pubmed/30544949
http://dx.doi.org/10.3390/s17122876
http://www.ncbi.nlm.nih.gov/pubmed/29232908
http://dx.doi.org/10.3390/brainsci9120376
http://dx.doi.org/10.1115/1.4041264
http://dx.doi.org/10.3390/en12060991
http://dx.doi.org/10.18637/jss.v036.i11
http://dx.doi.org/10.1016/j.eswa.2013.01.033
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Data Acquisition Set-Up 
	Hybrid Bag of Features (HBoF) 
	Feature Selection by Boruta 
	K-Nearest Neighbor Algorithm Based Classification 

	Result Analysis and Comparative Discussions 
	Dataset Description 
	Performance Analysis of the Feature Selector Boruta 
	Diagnostic Performance Analysis 

	Conclusions 
	References

