
applied
sciences

Article

Managing Energy Plus Performance in Data Centers
and Battery-Based Devices Using an Online
Non-Clairvoyant Speed-Bounded
Multiprocessor Scheduling

Pawan Singh 1 , Baseem Khan 2 , Om Prakash Mahela 3 , Hassan Haes Alhelou 4,5 and
Ghassan Hayek 4,5,*

1 Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity
University Uttar Pradesh, Lucknow Campus, Lucknow 226010, India; pawansingh51279@gmail.com

2 Department of Electrical and Computer Engineering, Hawassa University, Hawassa P.O. Box 05, Ethiopia;
baseem.khan04@gmail.com

3 Power System Planning Division, Rajasthan Rajya Vidhyut Prasaran Nigam Ltd., Jaipur 302005, India;
opmahela@gmail.com

4 Department of Electrical Power Engineering, Faculty of Mechanical and Electrical Engineering, Tishreen
University, 2230 Lattakia, Syria; h.haesalhelou@gmail.com

5 Department of Electrical Power Engineering, Dresden University, 01069 Dresden, Germany
* Correspondence: prof.hayek@gmail.com

Received: 5 March 2020; Accepted: 30 March 2020; Published: 3 April 2020
����������
�������

Abstract: An efficient scheduling reduces the time required to process the jobs, and energy
management decreases the service cost as well as increases the lifetime of a battery. A balanced
trade-off between the energy consumed and processing time gives an ideal objective for scheduling
jobs in data centers and battery based devices. An online multiprocessor scheduling multiprocessor
with bounded speed (MBS) is proposed in this paper. The objective of MBS is to minimize the
importance-based flow time plus energy (IbFt+E), wherein the jobs arrive over time and the job’s
sizes are known only at completion time. Every processor can execute at a different speed, to reduce
the energy consumption. MBS is using the tradition power function and bounded speed model.
The functioning of MBS is evaluated by utilizing potential function analysis against an offline
adversary. For processors m ≥ 2, MBS is O(1)-competitive. The working of a set of jobs is simulated
to compare MBS with the best known non-clairvoyant scheduling. The comparative analysis shows
that the MBS outperforms other algorithms. The competitiveness of MBS is the least to date.

Keywords: multiprocessor system; online non-clairvoyant scheduling; weighted flow time; potential
analysis; energy efficiency

1. Introduction

There are number of server farms equipped with hundreds of processors. The cost of energy
used for cooling and running a machine for around three years surpasses the hardware cost of the
machine [1]. Consequently, the major integrated chips manufacturers such as Intel and AMD are
producing the dynamic speed scaling (DSS) enabled multiprocessor/multi-core machine and software
such as Intel’s SpeedStep [2], which support the operating system in managing the energy by varying
the execution speed of processors. A founder chip maker Tilera forecasted that the numbers of
processors/cores will be doubled every eighteen months [3], which will increase the energy demand to
a great extent. Data centers consume 1.5% of total electricity usage in United States [4]. To avoid such

Appl. Sci. 2020, 10, 2459; doi:10.3390/app10072459 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1342-9493
https://orcid.org/0000-0002-0562-0933
https://orcid.org/0000-0001-5995-6806
https://orcid.org/0000-0002-7427-2848
http://dx.doi.org/10.3390/app10072459
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/10/7/2459?type=check_update&version=3

Appl. Sci. 2020, 10, 2459 2 of 29

critical circumstances, the current issue in the scheduling is to attain the good quality of service by
generating an optimal schedule of jobs and to save the energy consumption, which is a conflicting and
complicated problem [5].

The power P consumed by a processor running at speed s is sV2, where V is a voltage [6].
The traditional power function is P = sα (α ≥ 2 for CMOS based chips [7,8]). There are two types of
speed models: the first unbounded speed model, in which the processor’s speed range is, i.e., [0, ∞);
the second bounded speed model, in which the speed of a processor can range from zero to some
maximum speed, i.e., [0, η]. This DSS plays a vital role in energy management, where in a processor
can regulate its speed to save energy. A few qualities of service metrics are slowdown, throughput,
makespan, flow time and weighted flow time. At low speed, the processor finishes jobs slower and
save energy, whereas at high speed, the processor finishes jobs faster but consumes more energy, as
shown in Figure 1. To get a better quality of service and low energy consumption the objective should
be to minimize the sum of flow time and energy; in case, if the importance or priority is attached, the
objective should be to minimize the sum of importance-based flow time and energy. The objective of
minimizing the IbFt+Ehas a natural explanation, as it can be considered in monetary terms [9].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 31

States [4]. To avoid such critical circumstances, the current issue in the scheduling is to attain the
good quality of service by generating an optimal schedule of jobs and to save the energy
consumption, which is a conflicting and complicated problem [5].

The power P consumed by a processor running at speed s is 𝑠𝑉 , where V is a voltage [6]. The
traditional power function is 𝑃 = 𝑠 (𝛼 ≥ 2 for CMOS based chips [7,8]). There are two types of
speed models: the first unbounded speed model, in which the processor’s speed range is, i.e., [0, ∞);
the second bounded speed model, in which the speed of a processor can range from zero to some
maximum speed, i.e., [0, 𝜂]. This DSS plays a vital role in energy management, where in a processor
can regulate its speed to save energy. A few qualities of service metrics are slowdown, throughput,
makespan, flow time and weighted flow time. At low speed, the processor finishes jobs slower and
save energy, whereas at high speed, the processor finishes jobs faster but consumes more energy, as
shown in Figure 1. To get a better quality of service and low energy consumption the objective
should be to minimize the sum of flow time and energy; in case, if the importance or priority is
attached, the objective should be to minimize the sum of importance-based flow time and energy.
The objective of minimizing the IbFt+Ehas a natural explanation, as it can be considered in monetary
terms [9].

Figure 1. Performance and speed curve.

In the multiprocessor systems, there is a requirement of three different policies: the first policy
is job selection, which decides the next job to be executed on every processor; the second policy is
speed scaling, which decides every processor’s execution speed at all time; the third policy is job
assignment, which indicates that to which processor the new job should be assigned. In the
c-competitive online scheduling algorithm, for each input the cost received is less than or equal to c
times the cost of optimal offline algorithm [9]. Unlike non-clairvoyant scheduling, the size of job is
unknown at arrival time, such as in UNIX operating system where jobs arrive with no information of
processing requirement. Unlike online modes, in the offline mode, the whole job progression is
known in advance. No online algorithm can attain a constant competitiveness with equal maximum
speed to optimal offline algorithm [10].

Motwani et al. [10] commenced the study of the non-clairvoyant scheduling algorithms. Yao et
al. inducted the theoretical study of speed scaling scheduling algorithm [11]. Yao et al. proposed an
algorithm average rate heuristic (AVR) with a competitive ratio at most 2 𝛼 using the
traditional power function. Koren et al. [12] presented an optimal online scheduling algorithm

Figure 1. Performance and speed curve.

In the multiprocessor systems, there is a requirement of three different policies: the first policy is
job selection, which decides the next job to be executed on every processor; the second policy is speed
scaling, which decides every processor’s execution speed at all time; the third policy is job assignment,
which indicates that to which processor the new job should be assigned. In the c-competitive online
scheduling algorithm, for each input the cost received is less than or equal to c times the cost of optimal
offline algorithm [9]. Unlike non-clairvoyant scheduling, the size of job is unknown at arrival time, such
as in UNIX operating system where jobs arrive with no information of processing requirement. Unlike
online modes, in the offline mode, the whole job progression is known in advance. No online algorithm
can attain a constant competitiveness with equal maximum speed to optimal offline algorithm [10].

Motwani et al. [10] commenced the study of the non-clairvoyant scheduling algorithms. Yao et al.
inducted the theoretical study of speed scaling scheduling algorithm [11]. Yao et al. proposed
an algorithm average rate heuristic (AVR) with a competitive ratio at most 2α−1αα using the
traditional power function. Koren et al. [12] presented an optimal online scheduling algorithm

Dover for a overloaded uniprocessor system with competitive ratio-
(

1

(1+
√

k)
2

)
for the objective of

Appl. Sci. 2020, 10, 2459 3 of 29

minimizing the throughput, where k is the importance ratio. The competitiveness of shortest
remaining processing time (SRPT) for multiprocessor system is O

(
min

(
log

(
m
n

)
, log σ

))
, where m is

number of processors, n is total number of jobs and σ represents the ratio of minimum to maximum
job size [13]. Kalyanasundaram et al. [14] presented the idea of resource augmentation. If the
resources are augmented and, (2 + ∆)-speed p processors are used then the competitive ratio of
Equi-partition lies between 2

3 (1 + ∆) and
(
2 + 4

∆

)
[15]. Multilevel feedback queue, a randomized

algorithm with n jobs is O(log n)-competitive [16,17]. The first algorithm with non trivial guarantee is
O
(
log2 σ

)
-competitive [18], where σ is the ratio of minimum to maximum job size. There are different

algorithms proposed with different objectives over a span of time [19–27].
Chen et al. [19] proposed algorithms with different approximation bounds for processors

with/without constraints on the maximum processor speed. The concept of merging dual objective of
energy used and total flow time into single objective of energy used plus total flow time is proposed
by Albers et al. [20]. Bansal et al. [21] proposed an algorithm, which uses highest density first (HDF)
for the job selection with a traditional power function. Lam et al. [22] proposed a multiprocessor
algorithm for homogeneous processors in which job assignment policy is a variant of round robin,
the job selection. Random dispatching can provide (1 + ∆)-speed O

(
1

∆3

)
-competitive non-migratory

algorithm [23]. Chan et al. [24] proposed an O(1)-competitive algorithm using sleep management for
the objective of minimizing the flow time plus energy. Albers et al. [25] studied an offline problem in
polynomial time and proposed a fully combitorial algorithm that relies on repeated maximum flow
computation. Gupta et al. [26] proved that highest density first, weighted shortest elapsed time first
and weighted late arrival processor sharing are not O(1)-speed O(1)-competitive for the objective
of minimizing the weighted flow time even in fixed variable speed processors for heterogeneous
multiprocessor setting. Chan et al. [27] studied an online clairvoyant sleep management algorithm
scheduling with arrival-time-alignment (SATA) which is (1 + ∆)-speed O

(
1

∆2

)
-competitive for the

objective of minimizing the flow time plus energy. For a detailed survey refer to [28–34].
In this paper, the problem of online non-clairvoyant (ON-C) DSS scheduling is studied and an

algorithm multiprocessor with bounded speed (MBS) is proposed with an objective to minimize the
IbFt+E. On the basis of potential function analysis MBS is O(1)- competitive. The notations used in this
paper are mentioned in the Table 1.

Table 1. Notations used.

Notations Meaning

t Current time
j A job
u A processor

r(j) or r j Release/arrival time of a job j
p(j) Processing requirement (size) of a job j
m Number of processors

lgu On a processor u, the count of lagging jobs, at time t
η Maximum speed of a processor using Opt
P Power of a processor at speed s

s(t) or s At time t, speed of some processor
α A constant, commonly believed that its value is 2 or 3
∆ A constant, its value depends on the value of α

I, S A set of jobs and their schedule, respectively
pwk(j, t), pwka(j, t) and pwko(j, t) Remaining/pending work of a job j at time t, using MBS and Opt, respectively

F(j) Flow time of a job j
F Total importance-based flow time

impuj(t) or impu(j) Importance/weight of a job j, at time t on a processor u
impua(t) or impua and impuo(t) or impuo Importance of all active jobs using MBS and Opt at time t on a processor u, respectively

implg(t) or implg and implgu (t) or implgu

Total importance of lagging jobs, at time t on all m processors and on a processor u,
respectively

na(t) or na and no(t) or no
Total number of active jobs (NoAJ) in MBS and Opt at time t on all m processors,

respectively
nua(t) or nua and nuo(t) or nuo NoAJ in MBS and Opt at time t on a processor u, respectively
sua(t) or sua and suo(t) or suo Speed of a processor u for MBS and Opt at time t, respectively

imp(t) Total importance of all active jobs na, at time t

Appl. Sci. 2020, 10, 2459 4 of 29

Table 1. Cont.

Notations Meaning

E Energy consumed by processors
G Total IbFt+E
c Competitiveness
µ A constant (0 < µ < 1), its value depends on the value of ∆

Ga(t) or Ga and Go(t) or Go IbFt+E acquired till time t by the MBS and Opt, respectively
dGa(t)

dt or dGa
dt and dGo(t)

dt or dGo
dt

Rate of change (RoC) of Ga due to MBS and Go due to Opt at time t, respectively
Gua(t) or Gua and Guo(t) or Guo IbFt+E acquired on a processor u till time t by the MBS and Opt, respectively
dGua(t)

dt or dGua
dt and dGuo(t)

dt or dGuo
dt

RoC of Ga due to MBS and Opt at time t on a processor u, respectively
γ A constant (> 0)
ci Coefficient of a job ji at time t
ωi Difference of pending work of a job ji using MBS and Opt at time t
δ A constant depends on α, its value is

(
1

2α

)
LGu A set of lagging jobs using MBS on a processor u
LG A set of all lagging jobs using MBS on all m processors

Φ(t) or Φ Total potential value of all m processors at time t
Φu(t) or Φu Potential value of a processor u at time t
dΦo
dt and dΦa

dt RoC of Φ due to Opt and MBS, respectively
dΦ
dt RoC of Φ due to Opt and MBS

dΦuo
dt and dΦua

dt RoC of Φ due to Opt and MBS on a processor u, respectively
dΦu
dt RoC of Φ due to Opt and MBS on a processor u

The organization of the paper is as follows. In Section 2, some related non-clairvoyant algorithms
are explained and their competitive values are compared to the proposed algorithm MBS. Section 3
presents the preliminary definition and information for the proposed work. In Section 4, the proposed
algorithm, its flow chart and potential function analysis is presented. The processing of a set of jobs
are simulated using MBS and the best identified algorithm to observe the working of MBS. Section 6
provides the conclusion and future scope of the work.

2. Related Work

Gupta et al. [35] gave an online clairvoyant scheduling algorithm GKP (proposed by Gupta,
Krishnaswamy and Pruhs) for the objective of minimizing the weighted flow time plus energy. Under
the traditional power function, GKP is O

(
α2

)
-competitive without a resource augmentation for power

heterogeneous processors. GKP uses highest density first (HDF) for the selection of jobs on each
processor; the speed of any processor scales such that the power of a processor is the fractional weight
of unfinished jobs; jobs are assigned in such a way that it gives the least increase in the projected
future weighted flow time. Gupta et al. [35] used a local competitiveness analysis to prove their work.
Fox et al. [36] considered the problem of scheduling the parallelizable jobs in the non-clairvoyant speed
scaling settings for the objective of minimizing the weighted flow time plus energy and they used the
potential function analysis to prove it. Fox et al. presented weighted latest arrival processor sharing
with energy (WLAPS+E), which schedules the late arrival jobs and every job use the same number
of machines proportioned by the job weight. WLAPS+E spares some machines to save the energy.
WLAPS+E is (1 + 6∆)-speed (5/∆2)-competitive, where 0 < ∆ ≤ 1/6. Thang [37] studied the online
clairvoyant scheduling problem for the objective of minimizing the weighted flow time plus energy
in the unbounded speed model and using the traditional power function. Thang gave an algorithm
(ALGThang) on unrelated machines and proved that ALGThang is 8(1 + α/lnα)-competitive. In AlGThang,
the speed of any processor depends on the total weight of pending jobs on that machine, and any new
job is assigned to a processor that minimizes the total weighted flow time.

Im et al. [38] proposed an ON-C scheduling algorithm SelfishMigrate-Energy (SM-E) for the
objective of minimizing the weighted flow time plus energy for the unrelated machines. Using the
traditional power function SM-E is O

(
α2

)
-competitive. In SM-E, a virtual queue is maintained on every

processor where the new or migrated jobs are added at tail; the jobs migrate selfishly until equilibrium
is gained. Im et al. simulates sequential best response (SBR) dynamics and they migrates each job
to the machine that is provided by the Nash equilibrium. The scheduling policy applied on every
processor is a variant of weighted round robin (WRR), wherein the larger speed is allotted to jobs

Appl. Sci. 2020, 10, 2459 5 of 29

residing at the tail of the queue (like Latest Arrival Processor Sharing (LAPS) and Weighted Latest
Arrival Processor Sharing (WLAPS)). Bell et al. [39] proposed an online deterministic clairvoyant
algorithm dual-classified round robin (DCRR) for the multiprocessor system using the traditional
power function. The motive of

(
24α

(
logαP + αα2α−1

))
-competitive DCRR is to schedule the jobs so that

they can be completed within deadlines using minimum energy, i.e., the objective is to maximize the
throughput and energy consumption. In DCRR, the sizes and the maximum densities (= size/(deadline
– release time)) of jobs are known and the classification of jobs depends on the size and the maximum
density both. The competitive ratio of DCRR is high, as it considers the jobs with deadlines and using
a variation of round robin with the speed scaling.

Azar et al. [40] gave an ON-C scheduling algorithm NC-PAR (Non-Clairvoyant for Parallel
Machine) for the identical parallel machines, wherein the job migration is not permitted. Using
traditional function NC-PAR is

(
α+ 1

α−1

)
-competitive for the objective of minimizing the weighted

flow time plus energy in unbounded speed model. In NC-PAR a global queue of unassigned jobs is
maintained in First In First Out (FIFO) order. A new job is assigned to a machine, when a machine
becomes free. In NC-PAR jobs are having uniform density (i.e., weight/size = 1) and the jobs are
not immediately allotted to the processors at release time. The speed of a processor using NC-PAR is
based on the total remaining weight of the active jobs. In non-clairvoyant model with known arbitrary
weights no results are known [40].

An ON-C multiprocessor speed scaling scheduling algorithm MBS is proposed and studied against
an offline adversary with an objective of minimizing IbFt+E. The speed of a processor using MBS is
proportional to the sum of importance of all active jobs on that processor. In MBS, the processor’s
maximum speed can be (1 + ∆/3m)η (i.e., the range of speed is from zero to (1 + ∆/3m)η), whereas the
processor’s maximum speed using Opt (Optimal algorithm) is η, where m is number of processors
and 0 < ∆ ≤ (3α)−1 a constant. In MBS, a new job is assigned to an idle processor (if available) or to a
processor having the minimum sum of the ratio of importance and executed size for all jobs on that
processor; the policy for job selection is weighted/importance-based round robin, and each active job
receives the processor speed equal to the ratio of its importance to the total importance of jobs on that
processor. In this paper, the performance of MBS is analysed using a competitive analysis, i.e., the
worst-case comparison of MBS and optimal offline scheduling algorithm. MBS is (1 + ∆/3m)-speed,(

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
= O(1) competitive, i.e., the value for competitive ratio c for m = 2,

α = 2 is 2.442; for m = 2, α = 3 is 2.399; the detailed results for different values of m, ∆ = (3α)−1

and α = 2 & 3 is shown in Table 2. The comparison of results is given along with the summary of
results in Table 3.

Table 2. Results of multiprocessor with bounded speed (MBS).

Number of
Processors (m)

α=2 α=3

Speed Ratio (sr) Competitive Ratio (c) Speed Ratio (sr) Competitive Ratio (c)

2 1.02778 2.44189 1.01852 2.39936
4 1.01389 2.40822 1.00926 2.36604
8 1.00694 2.39155 1.00463 2.34961

16 1.00347 2.38326 1.00231 2.34145
64 1.00086 2.37706 1.00058 2.33536
128 1.00043 2.37603 1.00029 2.33435
512 1.00010 2.37526 1.00007 2.33359

1024 1.00005 2.37513 1.00003 2.37513
4096 1.00001 2.37503 1.00001 2.33336

11,264 1.000004 2.37501 1.000003 2.33334

Note: the speed ratio sr =
Maximum speed o f a processor using MBS
Maximum speed o f a processor using Opt .

Appl. Sci. 2020, 10, 2459 6 of 29

On the basis of the values mentioned in the Table 2, it can be observed that in proposed algorithm
MBS if the number of processor increases then the speed ratio and competitive ratio increases. The data
mentioned in Table 3 describe the competitive values of different scheduling algorithm. Some
clairvoyant and non-clairvoyant algorithms competitive ratio are considered at α = 2, α = 3.
The lower competitive value represents the better algorithm. The value of competitiveness is least for
the proposed algorithm MBS.

Table 3. Summary of Results.

Multiprocessor Competitiveness for Weighted Flow Time + Energy Modelling Criteria

Algorithms General α=2 α=3
(Bounded (BS)/Unbounded

Speed(US)) (Clairvoyant
(C)/Non-Clairvoyant (NC)

GKP [35] α2 4 9 US, C

WLAPS+E [36] 5/∆2 (where 0 < ∆ ≤ 1
6) 180 180 US, NC

ALGThang [37] 8
(
1 + α

lnα

)
31.085 29.85 US, C

SM-E [38] α2 4 9 US, NC

DCRR [39]
24α

(
logαP + αα2α−1

)
where P is the ratio between the
maximum and minimum job size

>2048 >442368 US, C

NC-PAR [40]
(
α+ 1

α−1

)
3 3.5 US, NC

MBS [This Paper]

(
9
8 + 3∆

8

)(
1 + (1 + ∆/3m)α

)
(where 0 < ∆ ≤ (3α)−1)

2.442 2.399 BS, NC

3. Definitions and Notations

An ON-C job scheduling on a multiprocessor using speed bounded setting is considered, where
the jobs arrive over time, the job’s importance/weight are known at release time and the size of a job is
revealed only after the job’s completion. Processor’s speed using Opt can vary dynamically from 0 to
the maximum speed η i.e., [0, η]. The nature of jobs is sequential as well as unrestricted pre-emption is
permitted without penalty. The traditional power function Power P = speedα is considered, where
α > 1 a fixed constant. If s is the processor’s speed then a processor executes s unit of work per unit
time. An active job j has release time lesser than the current time t, and it is not completely executed.
The flow time F(j) of job j is the time duration since j released and until it is completed. The total
importance-based flow time F is

∑
j∈I imp(j)F(j). Amortized analysis is used for algorithms where an

occasional operation is very slow, but most of the other operations are faster. In amortized analysis, we
analyse a sequence of operations and guarantee a worst case average time which is lower than the
worst case time of a particular expensive operation.

4. Methodology

In this study, the amortized potential function analysis of the objective is used to examine the
performance of the proposed algorithm. Amortized analysis is a worst-case analysis of a sequence of
operations—to obtain a tighter bound on the overall or average cost per operation in the sequence
than is obtained by separately analyzing each operation in the sequence. The amortized potential
method, in which we derive a potential function characterizing the amount of extra work we can do in
each step. This potential either increases or decreases with each successive operation, but cannot be
negative. The objective of study is to minimize the total IbFt+E, denoted by G = F + E. It reflects that
the target is to minimize the quality of service and energy consumed. The input to the problem is the
set of jobs I. A scheduler generates the schedule S of jobs in I. The total energy consumption E for the
scheduling is

∫
∞

0 s(t)α dt. Let Opt be an optimal offline algorithm such that for any job sequence I,
IbFt+E FOpt(I) + EOpt(I) of Opt is minimized among all schedule of I. The notations used in MBS are
mentioned in the Table 1. Any online algorithm ALG is said to be c-competitive for c ≥ 1, if for all job

Appl. Sci. 2020, 10, 2459 7 of 29

sequences I and any input the cost incurred is never greater than c times the cost of optimal offline
algorithm Opt, and the following inequality is satisfied:(

FALG(I) + EALG(I)

)
≤ c·

(
FOpt(I) + EOpt(I)

)
The traditional power function is utilized to simulate the working of the proposed algorithm and

compare the effectiveness by comparing with the available best known algorithm. The jobs are taken
of different sizes and the arrival of jobs is considered in different scenario to critically examine the
performance of the proposed algorithm. Different parameters (such as IbFt, IbFt+E, speed of processor
and speed growth) are considered to evaluate the algorithm.

5. An O(1)-Competitive Algorithm

An ON-C multiprocessor scheduling algorithm multiprocessor with bounded speed (MBS) is
explained in this section. The performance of MBS is observed by using potential function analysis,
i.e., the worst-case comparison of MBS with an offline adversary Opt. The competitiveness of MBS is
O(1) with an objective to minimize the IbFt+E for m processors with the highest speed (1 + ∆/3m)η.

5.1. Multiprocessor with Bounded Speed Algorithm: MBS

At time t, the processing speed of u adjusts to sua(t) = (1 + ∆/3m)·min
((

impua(t)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 30

5.1. Multiprocessor with Bounded Speed algorithm: MBS

At time t, the processing speed of u adjusts to 𝑠𝑢𝑎(𝑡) = (1 + ∆
3𝑚⁄) ∙ 𝑚𝑖𝑛 ((

𝑖𝑚𝑝𝑢𝑎(𝑡)

Ϯ
)

1
𝛼⁄

, 𝜂),

where 0 < ∆≤ (
1

3𝛼
), Ϯ ≥ 1 and 𝛼 ≥ 2 are constants. The importance 𝑖𝑚𝑝(𝑗) of a job is uninformed

and acknowledged only at release time 𝑟(𝑗) . The policies considered for the multiprocessor

scheduling MBS are as follows:

Job selection policy: The importance-based/weighted round robin is used on every processor.

Job assignment policy: a newly arrived job is allotted to an idle processor (if available) or to a

processor having the minimum sum of the ratio of importance to the executed size for all jobs on that

processor (𝑖. 𝑒. 𝑚𝑖𝑛 ∑ (
𝑖𝑚𝑝𝑢(𝑗𝑓)

𝑒𝑥𝑠𝑢(𝑗𝑓)
)

𝑛𝑢𝑎
𝑓=1).

Speed scaling policy: The speed of every processor is scaled on the bases of the total importance

of active jobs on that processor. Every active job 𝑗𝑖 on u obtains the fraction of speed:

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟′𝑠 𝑠𝑝𝑒𝑒𝑑 (
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓𝑗𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑗𝑜𝑏𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
)

i.e., 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

∑ 𝑖𝑚𝑝𝑢(𝑗𝑘)
𝑛𝑢𝑎
𝑘=1

) or 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

𝑖𝑚𝑝𝑢𝑎
). The speed of any processor gets adjusted (re-evaluated)

on alteration in total importance of active jobs on that processor. MBS is compared against an

optimal offline algorithm Opt, using potential function analysis. The principal result of this study is

stated in Theorem 1. The algorithm of MBS is given next and the flow chart for MBS is given in

Figure 2.

Algorithm 1: MBS (Multiprocessor with Bounded Speed)

Input: total m number of processors {u1, … , uk, … , um}, na NoAJ {j1, … , ji, … , jna
} and the

importance of all na active jobs {imp(j1), … , imp(ji), … , imp(jna
)}.

Output: number of jobs allocated to every processor, the speed of all processors, at any time

and execution speed share of each active job.

Repeat until all processors become idle:

1: If any job jiarrives

2.: if m ≥ na

3. allocate job ji to a idle processor u

4. otherwise, when m < 𝑛a

5. allocate job ji to a processor u with min ∑ (
impu(jf)

exsu(jf)
)

nua
f=1

6. impua = impua + impu(ji)

7. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ > 1 is a constant value

8. Otherwise, if any job ji completes on any processor u and other active jobs are available for

execution on that processor then

9. impua = impua − impu(ji)

10. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ ≥ 1 is a constant value

11. the speed received by any job ji, which is executing on a processor u, is sua ∙ (
impu(ji)

impua
)

12. otherwise, processors continue to execute remaining jobs

Theorem 1. When using more than two processors (𝑖. 𝑒., 𝑚 ≥ 2) and each processor has the permitted

maximum speed (1 + ∆
3𝑚⁄)𝜂, MBS is c-competitive for the objective of minimizing the IbFt+E, where 𝑐 =

 (
9

8
+

3∆

8
) ∙ (1 + (1 + ∆

3𝑚⁄)
𝛼

) = 𝑂(1) and 0 < ∆≤
1

3𝛼
 .

)1/α
, η

)
, where

0 < ∆ ≤
(

1
3α

)
,

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 30

5.1. Multiprocessor with Bounded Speed algorithm: MBS

At time t, the processing speed of u adjusts to 𝑠𝑢𝑎(𝑡) = (1 + ∆
3𝑚⁄) ∙ 𝑚𝑖𝑛 ((

𝑖𝑚𝑝𝑢𝑎(𝑡)

Ϯ
)

1
𝛼⁄

, 𝜂),

where 0 < ∆≤ (
1

3𝛼
), Ϯ ≥ 1 and 𝛼 ≥ 2 are constants. The importance 𝑖𝑚𝑝(𝑗) of a job is uninformed

and acknowledged only at release time 𝑟(𝑗) . The policies considered for the multiprocessor

scheduling MBS are as follows:

Job selection policy: The importance-based/weighted round robin is used on every processor.

Job assignment policy: a newly arrived job is allotted to an idle processor (if available) or to a

processor having the minimum sum of the ratio of importance to the executed size for all jobs on that

processor (𝑖. 𝑒. 𝑚𝑖𝑛 ∑ (
𝑖𝑚𝑝𝑢(𝑗𝑓)

𝑒𝑥𝑠𝑢(𝑗𝑓)
)

𝑛𝑢𝑎
𝑓=1).

Speed scaling policy: The speed of every processor is scaled on the bases of the total importance

of active jobs on that processor. Every active job 𝑗𝑖 on u obtains the fraction of speed:

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟′𝑠 𝑠𝑝𝑒𝑒𝑑 (
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓𝑗𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑗𝑜𝑏𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
)

i.e., 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

∑ 𝑖𝑚𝑝𝑢(𝑗𝑘)
𝑛𝑢𝑎
𝑘=1

) or 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

𝑖𝑚𝑝𝑢𝑎
). The speed of any processor gets adjusted (re-evaluated)

on alteration in total importance of active jobs on that processor. MBS is compared against an

optimal offline algorithm Opt, using potential function analysis. The principal result of this study is

stated in Theorem 1. The algorithm of MBS is given next and the flow chart for MBS is given in

Figure 2.

Algorithm 1: MBS (Multiprocessor with Bounded Speed)

Input: total m number of processors {u1, … , uk, … , um}, na NoAJ {j1, … , ji, … , jna
} and the

importance of all na active jobs {imp(j1), … , imp(ji), … , imp(jna
)}.

Output: number of jobs allocated to every processor, the speed of all processors, at any time

and execution speed share of each active job.

Repeat until all processors become idle:

1: If any job jiarrives

2.: if m ≥ na

3. allocate job ji to a idle processor u

4. otherwise, when m < 𝑛a

5. allocate job ji to a processor u with min ∑ (
impu(jf)

exsu(jf)
)

nua
f=1

6. impua = impua + impu(ji)

7. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ > 1 is a constant value

8. Otherwise, if any job ji completes on any processor u and other active jobs are available for

execution on that processor then

9. impua = impua − impu(ji)

10. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ ≥ 1 is a constant value

11. the speed received by any job ji, which is executing on a processor u, is sua ∙ (
impu(ji)

impua
)

12. otherwise, processors continue to execute remaining jobs

Theorem 1. When using more than two processors (𝑖. 𝑒., 𝑚 ≥ 2) and each processor has the permitted

maximum speed (1 + ∆
3𝑚⁄)𝜂, MBS is c-competitive for the objective of minimizing the IbFt+E, where 𝑐 =

 (
9

8
+

3∆

8
) ∙ (1 + (1 + ∆

3𝑚⁄)
𝛼

) = 𝑂(1) and 0 < ∆≤
1

3𝛼
 .

≥ 1 and α ≥ 2 are constants. The importance imp(j) of a job is uninformed and
acknowledged only at release time r(j). The policies considered for the multiprocessor scheduling
MBS are as follows:

Job selection policy: The importance-based/weighted round robin is used on every processor.
Job assignment policy: a newly arrived job is allotted to an idle processor (if available) or to a

processor having the minimum sum of the ratio of importance to the executed size for all jobs on that

processor (i.e., min
∑nua

f = 1

(
impu(j f)
exsu(j f)

)
).

Speed scaling policy: The speed of every processor is scaled on the bases of the total importance
of active jobs on that processor. Every active job ji on u obtains the fraction of speed:

processor′s speed
(

importance o f ji
total importance o f all active jobs on that processor

)

i.e., sua·

(
impu(ji)∑nua

k = 1 impu(jk)

)
or sua·

(
impu(ji)

impua

)
. The speed of any processor gets adjusted (re-evaluated) on

alteration in total importance of active jobs on that processor. MBS is compared against an optimal
offline algorithm Opt, using potential function analysis. The principal result of this study is stated in
Theorem 1. The Algorithm 1 of MBS is given next and the flow chart for MBS is given in Figure 2.

Theorem 1. When using more than two processors (i.e., m ≥ 2) and each processor has the permitted
maximum speed (1 + ∆/3m)η, MBS is c-competitive for the objective of minimizing the IbFt+E, where
c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
= O(1) and 0 < ∆ ≤ 1

3α .

Appl. Sci. 2020, 10, 2459 8 of 29

Algorithm 1: MBS (Multiprocessor with Bounded Speed)

Input: total m number of processors {u1, . . . , uk, . . . , um}, na NoAJ
{
j1, . . . , ji, . . . , jna

}
and the importance of

all na active jobs
{
imp(j1), . . . , imp(ji), . . . , imp

(
jna

)}
.

Output: number of jobs allocated to every processor, the speed of all processors, at any time and execution
speed share of each active job.
Repeat until all processors become idle:
1. If any job ji arrives
2. if m ≥ na

3. allocate job ji to a idle processor u
4. otherwise, when m < na

5. allocate job ji to a processor u with min
∑nua

f = 1

(
impu(j f)
exsu(j f)

)
6. impua = impua + impu(ji)

7. sua = (1 + ∆/3m)·min

(impua

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 30

5.1. Multiprocessor with Bounded Speed algorithm: MBS

At time t, the processing speed of u adjusts to 𝑠𝑢𝑎(𝑡) = (1 + ∆
3𝑚⁄) ∙ 𝑚𝑖𝑛 ((

𝑖𝑚𝑝𝑢𝑎(𝑡)

Ϯ
)

1
𝛼⁄

, 𝜂),

where 0 < ∆≤ (
1

3𝛼
), Ϯ ≥ 1 and 𝛼 ≥ 2 are constants. The importance 𝑖𝑚𝑝(𝑗) of a job is uninformed

and acknowledged only at release time 𝑟(𝑗) . The policies considered for the multiprocessor

scheduling MBS are as follows:

Job selection policy: The importance-based/weighted round robin is used on every processor.

Job assignment policy: a newly arrived job is allotted to an idle processor (if available) or to a

processor having the minimum sum of the ratio of importance to the executed size for all jobs on that

processor (𝑖. 𝑒. 𝑚𝑖𝑛 ∑ (
𝑖𝑚𝑝𝑢(𝑗𝑓)

𝑒𝑥𝑠𝑢(𝑗𝑓)
)

𝑛𝑢𝑎
𝑓=1).

Speed scaling policy: The speed of every processor is scaled on the bases of the total importance

of active jobs on that processor. Every active job 𝑗𝑖 on u obtains the fraction of speed:

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟′𝑠 𝑠𝑝𝑒𝑒𝑑 (
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓𝑗𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑗𝑜𝑏𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
)

i.e., 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

∑ 𝑖𝑚𝑝𝑢(𝑗𝑘)
𝑛𝑢𝑎
𝑘=1

) or 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

𝑖𝑚𝑝𝑢𝑎
). The speed of any processor gets adjusted (re-evaluated)

on alteration in total importance of active jobs on that processor. MBS is compared against an

optimal offline algorithm Opt, using potential function analysis. The principal result of this study is

stated in Theorem 1. The algorithm of MBS is given next and the flow chart for MBS is given in

Figure 2.

Algorithm 1: MBS (Multiprocessor with Bounded Speed)

Input: total m number of processors {u1, … , uk, … , um}, na NoAJ {j1, … , ji, … , jna
} and the

importance of all na active jobs {imp(j1), … , imp(ji), … , imp(jna
)}.

Output: number of jobs allocated to every processor, the speed of all processors, at any time

and execution speed share of each active job.

Repeat until all processors become idle:

1: If any job jiarrives

2.: if m ≥ na

3. allocate job ji to a idle processor u

4. otherwise, when m < 𝑛a

5. allocate job ji to a processor u with min ∑ (
impu(jf)

exsu(jf)
)

nua
f=1

6. impua = impua + impu(ji)

7. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ > 1 is a constant value

8. Otherwise, if any job ji completes on any processor u and other active jobs are available for

execution on that processor then

9. impua = impua − impu(ji)

10. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ ≥ 1 is a constant value

11. the speed received by any job ji, which is executing on a processor u, is sua ∙ (
impu(ji)

impua
)

12. otherwise, processors continue to execute remaining jobs

Theorem 1. When using more than two processors (𝑖. 𝑒., 𝑚 ≥ 2) and each processor has the permitted

maximum speed (1 + ∆
3𝑚⁄)𝜂, MBS is c-competitive for the objective of minimizing the IbFt+E, where 𝑐 =

 (
9

8
+

3∆

8
) ∙ (1 + (1 + ∆

3𝑚⁄)
𝛼

) = 𝑂(1) and 0 < ∆≤
1

3𝛼
 .

)1/α

, η

, where 0 < ∆ ≤
(

1
3α

)
and

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 30

5.1. Multiprocessor with Bounded Speed algorithm: MBS

At time t, the processing speed of u adjusts to 𝑠𝑢𝑎(𝑡) = (1 + ∆
3𝑚⁄) ∙ 𝑚𝑖𝑛 ((

𝑖𝑚𝑝𝑢𝑎(𝑡)

Ϯ
)

1
𝛼⁄

, 𝜂),

where 0 < ∆≤ (
1

3𝛼
), Ϯ ≥ 1 and 𝛼 ≥ 2 are constants. The importance 𝑖𝑚𝑝(𝑗) of a job is uninformed

and acknowledged only at release time 𝑟(𝑗) . The policies considered for the multiprocessor

scheduling MBS are as follows:

Job selection policy: The importance-based/weighted round robin is used on every processor.

Job assignment policy: a newly arrived job is allotted to an idle processor (if available) or to a

processor having the minimum sum of the ratio of importance to the executed size for all jobs on that

processor (𝑖. 𝑒. 𝑚𝑖𝑛 ∑ (
𝑖𝑚𝑝𝑢(𝑗𝑓)

𝑒𝑥𝑠𝑢(𝑗𝑓)
)

𝑛𝑢𝑎
𝑓=1).

Speed scaling policy: The speed of every processor is scaled on the bases of the total importance

of active jobs on that processor. Every active job 𝑗𝑖 on u obtains the fraction of speed:

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟′𝑠 𝑠𝑝𝑒𝑒𝑑 (
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓𝑗𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑗𝑜𝑏𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
)

i.e., 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

∑ 𝑖𝑚𝑝𝑢(𝑗𝑘)
𝑛𝑢𝑎
𝑘=1

) or 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

𝑖𝑚𝑝𝑢𝑎
). The speed of any processor gets adjusted (re-evaluated)

on alteration in total importance of active jobs on that processor. MBS is compared against an

optimal offline algorithm Opt, using potential function analysis. The principal result of this study is

stated in Theorem 1. The algorithm of MBS is given next and the flow chart for MBS is given in

Figure 2.

Algorithm 1: MBS (Multiprocessor with Bounded Speed)

Input: total m number of processors {u1, … , uk, … , um}, na NoAJ {j1, … , ji, … , jna
} and the

importance of all na active jobs {imp(j1), … , imp(ji), … , imp(jna
)}.

Output: number of jobs allocated to every processor, the speed of all processors, at any time

and execution speed share of each active job.

Repeat until all processors become idle:

1: If any job jiarrives

2.: if m ≥ na

3. allocate job ji to a idle processor u

4. otherwise, when m < 𝑛a

5. allocate job ji to a processor u with min ∑ (
impu(jf)

exsu(jf)
)

nua
f=1

6. impua = impua + impu(ji)

7. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ > 1 is a constant value

8. Otherwise, if any job ji completes on any processor u and other active jobs are available for

execution on that processor then

9. impua = impua − impu(ji)

10. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ ≥ 1 is a constant value

11. the speed received by any job ji, which is executing on a processor u, is sua ∙ (
impu(ji)

impua
)

12. otherwise, processors continue to execute remaining jobs

Theorem 1. When using more than two processors (𝑖. 𝑒., 𝑚 ≥ 2) and each processor has the permitted

maximum speed (1 + ∆
3𝑚⁄)𝜂, MBS is c-competitive for the objective of minimizing the IbFt+E, where 𝑐 =

 (
9

8
+

3∆

8
) ∙ (1 + (1 + ∆

3𝑚⁄)
𝛼

) = 𝑂(1) and 0 < ∆≤
1

3𝛼
 .

> 1 is a constant value

8. Otherwise, if any job ji completes on any processor u and other active jobs are available for execution on that
processor then
9. impua = impua − impu(ji)

10. sua = (1 + ∆/3m)·min

(impua

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 30

5.1. Multiprocessor with Bounded Speed algorithm: MBS

At time t, the processing speed of u adjusts to 𝑠𝑢𝑎(𝑡) = (1 + ∆
3𝑚⁄) ∙ 𝑚𝑖𝑛 ((

𝑖𝑚𝑝𝑢𝑎(𝑡)

Ϯ
)

1
𝛼⁄

, 𝜂),

where 0 < ∆≤ (
1

3𝛼
), Ϯ ≥ 1 and 𝛼 ≥ 2 are constants. The importance 𝑖𝑚𝑝(𝑗) of a job is uninformed

and acknowledged only at release time 𝑟(𝑗) . The policies considered for the multiprocessor

scheduling MBS are as follows:

Job selection policy: The importance-based/weighted round robin is used on every processor.

Job assignment policy: a newly arrived job is allotted to an idle processor (if available) or to a

processor having the minimum sum of the ratio of importance to the executed size for all jobs on that

processor (𝑖. 𝑒. 𝑚𝑖𝑛 ∑ (
𝑖𝑚𝑝𝑢(𝑗𝑓)

𝑒𝑥𝑠𝑢(𝑗𝑓)
)

𝑛𝑢𝑎
𝑓=1).

Speed scaling policy: The speed of every processor is scaled on the bases of the total importance

of active jobs on that processor. Every active job 𝑗𝑖 on u obtains the fraction of speed:

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟′𝑠 𝑠𝑝𝑒𝑒𝑑 (
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓𝑗𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑗𝑜𝑏𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
)

i.e., 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

∑ 𝑖𝑚𝑝𝑢(𝑗𝑘)
𝑛𝑢𝑎
𝑘=1

) or 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

𝑖𝑚𝑝𝑢𝑎
). The speed of any processor gets adjusted (re-evaluated)

on alteration in total importance of active jobs on that processor. MBS is compared against an

optimal offline algorithm Opt, using potential function analysis. The principal result of this study is

stated in Theorem 1. The algorithm of MBS is given next and the flow chart for MBS is given in

Figure 2.

Algorithm 1: MBS (Multiprocessor with Bounded Speed)

Input: total m number of processors {u1, … , uk, … , um}, na NoAJ {j1, … , ji, … , jna
} and the

importance of all na active jobs {imp(j1), … , imp(ji), … , imp(jna
)}.

Output: number of jobs allocated to every processor, the speed of all processors, at any time

and execution speed share of each active job.

Repeat until all processors become idle:

1: If any job jiarrives

2.: if m ≥ na

3. allocate job ji to a idle processor u

4. otherwise, when m < 𝑛a

5. allocate job ji to a processor u with min ∑ (
impu(jf)

exsu(jf)
)

nua
f=1

6. impua = impua + impu(ji)

7. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ > 1 is a constant value

8. Otherwise, if any job ji completes on any processor u and other active jobs are available for

execution on that processor then

9. impua = impua − impu(ji)

10. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ ≥ 1 is a constant value

11. the speed received by any job ji, which is executing on a processor u, is sua ∙ (
impu(ji)

impua
)

12. otherwise, processors continue to execute remaining jobs

Theorem 1. When using more than two processors (𝑖. 𝑒., 𝑚 ≥ 2) and each processor has the permitted

maximum speed (1 + ∆
3𝑚⁄)𝜂, MBS is c-competitive for the objective of minimizing the IbFt+E, where 𝑐 =

 (
9

8
+

3∆

8
) ∙ (1 + (1 + ∆

3𝑚⁄)
𝛼

) = 𝑂(1) and 0 < ∆≤
1

3𝛼
 .

)1/α

, η

, where 0 < ∆ ≤
(

1
3α

)
and

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 30

5.1. Multiprocessor with Bounded Speed algorithm: MBS

At time t, the processing speed of u adjusts to 𝑠𝑢𝑎(𝑡) = (1 + ∆
3𝑚⁄) ∙ 𝑚𝑖𝑛 ((

𝑖𝑚𝑝𝑢𝑎(𝑡)

Ϯ
)

1
𝛼⁄

, 𝜂),

where 0 < ∆≤ (
1

3𝛼
), Ϯ ≥ 1 and 𝛼 ≥ 2 are constants. The importance 𝑖𝑚𝑝(𝑗) of a job is uninformed

and acknowledged only at release time 𝑟(𝑗) . The policies considered for the multiprocessor

scheduling MBS are as follows:

Job selection policy: The importance-based/weighted round robin is used on every processor.

Job assignment policy: a newly arrived job is allotted to an idle processor (if available) or to a

processor having the minimum sum of the ratio of importance to the executed size for all jobs on that

processor (𝑖. 𝑒. 𝑚𝑖𝑛 ∑ (
𝑖𝑚𝑝𝑢(𝑗𝑓)

𝑒𝑥𝑠𝑢(𝑗𝑓)
)

𝑛𝑢𝑎
𝑓=1).

Speed scaling policy: The speed of every processor is scaled on the bases of the total importance

of active jobs on that processor. Every active job 𝑗𝑖 on u obtains the fraction of speed:

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟′𝑠 𝑠𝑝𝑒𝑒𝑑 (
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓𝑗𝑖

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑗𝑜𝑏𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
)

i.e., 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

∑ 𝑖𝑚𝑝𝑢(𝑗𝑘)
𝑛𝑢𝑎
𝑘=1

) or 𝑠𝑢𝑎 ∙ (
𝑖𝑚𝑝𝑢(𝑗𝑖)

𝑖𝑚𝑝𝑢𝑎
). The speed of any processor gets adjusted (re-evaluated)

on alteration in total importance of active jobs on that processor. MBS is compared against an

optimal offline algorithm Opt, using potential function analysis. The principal result of this study is

stated in Theorem 1. The algorithm of MBS is given next and the flow chart for MBS is given in

Figure 2.

Algorithm 1: MBS (Multiprocessor with Bounded Speed)

Input: total m number of processors {u1, … , uk, … , um}, na NoAJ {j1, … , ji, … , jna
} and the

importance of all na active jobs {imp(j1), … , imp(ji), … , imp(jna
)}.

Output: number of jobs allocated to every processor, the speed of all processors, at any time

and execution speed share of each active job.

Repeat until all processors become idle:

1: If any job jiarrives

2.: if m ≥ na

3. allocate job ji to a idle processor u

4. otherwise, when m < 𝑛a

5. allocate job ji to a processor u with min ∑ (
impu(jf)

exsu(jf)
)

nua
f=1

6. impua = impua + impu(ji)

7. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ > 1 is a constant value

8. Otherwise, if any job ji completes on any processor u and other active jobs are available for

execution on that processor then

9. impua = impua − impu(ji)

10. sua = (1 + ∆
3m⁄) ∙ min ((

impua

Ϯ
)

1
α⁄

, η), where 0 < ∆≤ (
1

3α
) and Ϯ ≥ 1 is a constant value

11. the speed received by any job ji, which is executing on a processor u, is sua ∙ (
impu(ji)

impua
)

12. otherwise, processors continue to execute remaining jobs

Theorem 1. When using more than two processors (𝑖. 𝑒., 𝑚 ≥ 2) and each processor has the permitted

maximum speed (1 + ∆
3𝑚⁄)𝜂, MBS is c-competitive for the objective of minimizing the IbFt+E, where 𝑐 =

 (
9

8
+

3∆

8
) ∙ (1 + (1 + ∆

3𝑚⁄)
𝛼

) = 𝑂(1) and 0 < ∆≤
1

3𝛼
 .

≥ 1 is a constant value

11. the speed received by any job ji, which is executing on a processor u, is sua·

(
impu(ji)

impua

)
12. otherwise, processors continue to execute remaining jobs

5.2. Necessary Conditions to be Fulfilled

A potential function is needed to calculate the c-competitiveness of an algorithm. An algorithm is
called c-competitive if at any time t, the sum of augmentation in the objective cost of algorithm and the
modification in the value of potential is at the most c times the augmentation in the objective cost of
the optimal adversary algorithm. A potential function Φ(t) is required to demonstrate that MBS is
c-competitive. A c-competitive algorithm should satisfy the conditions:

Boundary Condition: The value of potential function is zero before the release of any job and after
the completion of all jobs.

Job Arrival and Completion Condition: The value of potential function remains same on arrival
or completion of a job.

Running Condition: At time when the above condition do not exist, the sum of the (rate of change)
RoC of Ga and the RoC of Φ is at the most c times the RoC of Go.

dGa(t)
dt

+ γ·
dΦ
dt
≤ c·

dGo(t)
dt

, where γ > 0. (1)

Appl. Sci. 2020, 10, 2459 9 of 29

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 31

Figure 2. Flow chart of the MBS scheduling algorithm.

Update the sum of

importance of jobs on a

processor u 𝑖𝑚𝑝𝑢𝑎 =

𝑖𝑚𝑝𝑢𝑎 + 𝑖𝑚𝑝𝑢(𝑗𝑖)

Yes

No

Yes

Recalculate the

speed of a

processor u

Recalculate the speed for

other jobs only on

processor u

Processor (s)

available with

active jobs

Processors continue

to execute remaining

jobs

End

No

Start

Keep checking the arrival or

completion of jobs

No Yes

Allocate 𝑗𝑖 to idle

processor u

 𝑚 ≥ 𝑛𝑎

Job 𝑗𝑖

completes on

processor u

No Yes Any job 𝑗𝑖

arrives

Allocate 𝑗𝑖 to idle

processor u with

𝑚𝑖𝑛 ∑ (
𝑖𝑚𝑝𝑢(𝑗𝑓)

𝑒𝑥𝑠𝑢(𝑗𝑓)
)

𝑛𝑢𝑎
𝑓=1

Processor u

goes idle

No Yes

Update the sum of

importance of jobs on a

processor u 𝑖𝑚𝑝𝑢𝑎 =

𝑖𝑚𝑝𝑢𝑎 − 𝑖𝑚𝑝𝑢(𝑗𝑖)

Jobs

available

Figure 2. Flow chart of the MBS scheduling algorithm.

Appl. Sci. 2020, 10, 2459 10 of 29

5.3. Potential Function Φ(t)

An active job j is lagging, if (pwka(j, t) − pwko(j, t)) > 0. Since t is the instantaneous time, this
factor is dropped from the rest of the analysis. For any processor u, let LGu =

{
j1, j2, . . . , jlgu

}
be

a group of lagging jobs using MBS and these jobs are managed in the ascending order of latest time
(when any job gets changed into lagging job). LG =

∑m
u = 1 LGu is a set of all lagging jobs on all

m processors. Further, implgu =
∑lgu

i = 1 impu(ji) is the sum of the importance of lagging jobs on a
processor u. Following this, implg =

∑m
u = 1 implgu is the sum of the importance of lagging jobs on

all m processors. Our potential function Φ(t) for IbFt+E is the addition of all potential values of
m processors.

Φ(t) =
m∑

u = 1

Φu(t) (2)

Φu(t) =

∑lgu

i = 1

((∑i
k = 1 impu(jk)

)1−2δ
)
·ωi i f

∑i
k = 1 impu(jk) ≤ η

1/2δ∑lgu
i = 1

(
1

1−δ

)
·

(∑i
k = 1 impu(jk)·η−1

)
·ωi otherwise

(3)

Where ωi = max
{
0, (pwka(ji, t) − pwko(ji, t))

}
δ = 1

2α and
(4)

(∑i

k = 1
impu(jk)

)1−2δ
and

(1
1− δ

)
·

(∑i

k = 1
impu(jk)·η−1

)
(5)

are the coefficients ci of ji on processor u
MBS is analyzed per machine basis. Firstly, the verification of boundary condition: the value of

Φ is zero after finishing of all jobs and prior to release of any job on any processor. There will be no
active job on any processor in both situations. Therefore, the boundary condition is true. Secondly, the
verification of arrival and completion condition: at time t, on release of a new job ji in I, ji without
execution is appended at end of I. ωi is zero as pwka(ji, t)− pwko(ji, t) = 0. The coefficient of all other
jobs does not change and Φ remains unchanged. At the time of completion of a job ji, ωi becomes zero
and other coefficients of lagging jobs either remains unchanged or decreases, so, Φ does not increase.
Thus the arrival and completion criteria holds true. The third and last criterion to confirm is running
condition, with no job arrival or completion.

According to previous discussion, for any processor u, let dGua
dt = impua + sua

α and dGuo
dt = impuo +

suo
α be the alteration of IbFt+E in an infinitesimal period of time [t, t + dt] by MBS and Opt, respectively.

The alteration of Φ because of Opt and MBS in an infinitesimal period of time [t, t + dt] by u is dΦuo
dt

and dΦua
dt , respectively. The whole alteration in Φ because of Opt and MBS in infinitesimal period

of time [t, t + dt] by u is dΦu
dt = dΦuo

dt + dΦua
dt . As this is multiprocessor system therefore to bound

the RoC of Φ by Opt and MBS, the analysis is divided in two cases based on na and m, and then
every case is further divided in three sub cases depending on whether impua > ηα and implu > η

α,
afterwards each sub case is further divided in two sub cases depending on implg >

(
impa −

(
3

3+∆

)
·impa

)
and implg ≤

(
impa −

(
3

3+∆

)
·impa

)
, where 0 < ∆ < 1, µ = 3

3+∆ . The potential analysis is done on
individual processor basis, the reason behind it is that all the processors will not face the same case at
the same time; rather different processors may face same or different cases.

Lemma 1. For the positive real numbers x, y, A and B, if x−1 + y−1 = 1 holds then [2]:

x−1
·Ax + y−1

·By
≥ A·B (6)

Lemma 2. If na ≤ m and implgu ≤ η
α

(a) dΦuo
dt ≤

suo
α

α + (1− 2δ)·implgu ; (b) dΦua
dt ≤ −

(
sua·implgu

1−2δ
)

Appl. Sci. 2020, 10, 2459 11 of 29

Proof. If na ≤ m then every processor executes not more than one job, i.e., every job is processed on
individual processor.

(a) It is required to upper-bound dΦuo
dt for a processor u. To calculate the upper-bound, the worst-case

is considered which occurs if Opt executes a job on u with the largest coefficient clgu = implgu
1−2δ. At

this time, ωi increases at the rate of suo (because of Opt on u). The count of lagging jobs on some u may
be only one.

dΦuo

dt
≤ clgu ·suo ≤ implgu

1−2δ
·suo (7)

Using Young’s inequality, Lemma 1 (Equation (6)) in (7) such that A = suo, B =
(
implgu

)1−2δ
, x = α and

y = 1
1−2δ we have:

dΦuo

dt
≤

suo
α

α
+ (1− 2δ)·implgu (8)

(b) Next, it is required to upper-bound dΦua
dt for a processor u. To compute the upper-bound,

consider that a lagging job ji on u is executed at the rate of
(
sua·

impu(ji)∑nua
k = 1 impu(jk)

)
or

(
sua·

impu(ji)
impua

)
, therefore,

the change in ωi is at the rate of
(
−sua·

impu(ji)
impua

)
.

dΦua

dt
=

∑lgu

i = 1

((∑i

k = 1
impu(jk)

)1−2δ)
·

(
−sua·

impu(ji)
impua

)

As only one job executes on a processor, therefore impu(ji)
impua

= 1 and lgu = i = 1,

dΦua
dt =

(
implgu

1−2δ
)
·(−sua)

dΦua
dt = −

(
sua·implgu

1−2δ
) (9)

�

Lemma 3. If na ≤ m and implgu > η
α

(a) dΦuo
dt ≤

(
1

1−δ

)
·implgu ; (b) dΦua

dt = −
(1+∆/3m)
(1−δ) ·implgu

Proof. If na ≤ m then every processor executes not more than one job, i.e., every job is processed on
individual processor.
(a) It is required to upper-bound dΦuo

dt for a processor u. To calculate the upper-bound, the worst-case is
considered which occurs if Opt executes a job on u with the largest coefficient clgu =

(
1

1−δ

)
·implgu ·η

−1.
At this time, ωi increases at the rate of suo (because of Opt on u) where suo ≤ η. The count of lagging
jobs on any u may be only one.

dΦuo
dt ≤ clgu ·suo ≤ clgu ·η =

(
1

1−δ

)
·implgu ·η

−1
·η

dΦuo
dt ≤

(
1

1−δ

)
·implgu

(10)

(b) Next, it is required to upper-bound dΦua
dt for a processor u. To compute the upper-bound, consider

that a lagging job ji on u is executed at the rate of
(
sua·

impu(ji)∑nua
k = 1 impu(jk)

)
or

(
sua·

impu(ji)
impua

)
, therefore the change

in ωi is at the rate of
(
−sua·

impu(ji)
impua

)
. impua ≥ impglu > η

α, sua = (1 + ∆/3m)·η

dΦua

dt
=

∑lgu

i = 1

(1
1− δ

)
·

(∑i

k = 1
impu(jk)·η−1

)
·

(
−sua·

impu(ji)
impua

)

Appl. Sci. 2020, 10, 2459 12 of 29

As only one job executes on a processor, therefore impu(ji)
impua

= 1 and lgu = i = 1,

dΦua
dt =

(
1

1−δ

)
·

(
implgu ·η

−1
)
·(−sua)

= −
(

1
1−δ

)
·

(
sua·implgu ·η

−1
)

= −
(

1
1−δ

)
·

(
(1 + ∆/3m)·η·implgu ·η

−1
)

dΦua

dt
= −

(1 + ∆/3m)

(1− δ)
·implgu (11)

�

Lemma 4. If na > m and implgu ≤ η
α

(a) dΦuo
dt ≤

suo
α

α + (1− 2δ)·implgu ; (b) dΦua
dt ≤ −

sua
(2−2δ) ·

(
implgu

2−2δ

impua

)
Proof. If na > m then:
(a) It is required to upper-bound dΦuo

dt for a processor u. To calculate the upper-bound, the worst-case is
considered which occurs if Opt is executing a job on u with the largest coefficient clgu = implgu

1−2δ.
At this time, ωi increases at the rate of suo (because of Opt on u).

dΦuo

dt
≤ clgu ·suo = implgu

1−2δ
·suo (12)

Using Young’s inequality, Lemma 1 (Equation (6)) in (12) such that A = suo , B = implgu
1−2δ, x = α and

y = 1
1−2δ we have:

dΦuo

dt
≤

suo
α

α
+ (1− 2δ)·implgu (13)

(b) Next, it is required to upper-bound dΦua
dt for a processor u, to compute the upper-bound consider

that a lagging job ji on u is executed at the rate of
(
sua·

impu(ji)∑nua
k = 1 impu(jk)

)
or

(
sua·

impu(ji)
impua

)
, therefore the change

in ωi is at the rate of
(
−sua·

impu(ji)
impua

)
. To make the discussion straightforward, let hui =

∑i
k = 1 impu(jk),

hu0 = 0, hulgu = implgu and impu(ji) = hui − hui−1. (by using Equation (3):

dΦua
dt =

∑lgu
i = 1

((∑i
k = 1 impu(jk)

)1−2δ
)
·

(
−sua·

impu(ji)
impua

)
= − sua

impua

∑lgu
i = 1

(
(hui)

1−2δ
)
·(hui − hui−1)

≤ −
sua

impua

∑lgu
i = 1

∫ hui
hui−1

f 1−2δ d f

≤ −
sua

impua

∫ hulgu
0 f 1−2δ d f

= − sua
impua
·
hulgu

2−2δ

(2−2δ)

= − sua
impua
·
implgu

2−2δ

(2−2δ)

dΦua

dt
≤ −

sua

(2− 2δ)
·

 implgu
2−2δ

impua

 (14)

�

Lemma 5. If na > m and implgu > η
α

(a) dΦuo
dt ≤

(
1

1−δ

)
·implgu ; (b) dΦua

dt ≤ −
(1+∆/3m)
(2−2δ) ·

(
implgu

2

impua

)
Proof. If na > m then:

Appl. Sci. 2020, 10, 2459 13 of 29

(a) It is required to upper-bound dΦuo
dt for a processor u. To calculate the upper-bound, the worst-case is

considered which occurs if Opt executes a job on u with the largest coefficient clgu
=

(
1

1−δ

)
·implgu

·η−1

(as impua ≥ implgu
> ηα). At this time, ωi increases at the rate of suo (because of Opt on u).

dΦuo
dt ≤ clgu ·suo

=
(

1
1−δ

)
·implgu ·η

−1
·suo

≤

(
1

1−δ

)
·implgu ·η

−1
·η

{
∵ suo ≤ η

}
dΦuo

dt
≤

(1
1− δ

)
·implgu (15)

(b) Next, it is required to upper-bound dΦua
dt for a processor u. To compute the upper-bound, consider

that a lagging job ji on u is executed at the rate of
(
sua·

impu(ji)∑nua
k = 1 impu(jk)

)
or

(
sua·

impu(ji)
impua

)
, therefore the change

in ωi is at the rate of
(
−sua·

impu(ji)
impua

)
. To make the discussion uncomplicated, let hui =

∑i
k = 1 impu(jk),

hu0 = 0, hulgu = implgu > η
α, impua ≥ implgu > η

α and impu(ji) = hui − hui−1. Let z < lu be the largest
integer such that huz ≤ η

α. (using Equation (3)):

dΦua
dt =

∑lgu
i = 1 ci·

(
−sua·

impu(ji)
impua

)
= −

(
sua

impua

)
·

(∑z
i = 1

(
impu(ji)·(hui)

1−2δ
)
+

∑lgu
i = z+1

((
1

1−δ

)
·

(
impu(ji)·hui·η

−1
)))

≤ −

(
sua

impua

)
·

((∫ huz
0 f 1−2δd f

)
+

((
1

1−δ

)
·η−1
·

(∫ hulgu
huz

f d f
)))

= −
(

sua
impua

)
·

(
huz

2−2δ

(2−2δ) +
hulgu

2
−huz

2

(2−2δ)·η

)
= −

(
sua

impua

)
·

(
huz

2

(2−2δ)huz
1/α +

hulgu
2
−huz

2

(2−2δ)·η

)
≤ −

(1+∆/3m)·η
impua

·

(
huz

2

(2−2δ)η +
hulgu

2
−huz

2

(2−2δ)·η

) {
∵ huz ≤ η

α }
= −

(1+∆/3m)
impua

·
hulgu

2

(2−2δ)

= −
(1+∆/3m)
(2−2δ) ·

(
implgu

2

impua

)
dΦua

dt
≤ −

(1 + ∆/3m)

(2− 2δ)
·

 implgu
2

impua

 (16)

�

Lemma 6. At all time t, when Φ does not comprise discrete alteration dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt , where

c =
(

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
. Assume that γ = 1

16 ·
(
1 + (1 + ∆/3m)α

)
.

Proof. The analysis is divided in two cases based on na > m or na ≤ m, and then each case is again
alienated in three sub-cases depending on whether impua > ηα or impua ≤ ηα and implgu > ηα or
implgu ≤ η

α, afterwards each sub-case is again alienated in two sub-cases depending on whether

implgu >
(
impua −

(
3

3+∆

)
·impua

)
or implgu ≤

(
impua −

(
3

3+∆

)
·impua

)
, where 0 < µ =

(
3

3+∆

)
< 1 and

∆ = (1/3α). As a job in MBS which is not lagging must be an active job in Opt,

impuo ≥ impua − implgu ≥ impua − (impua − µ·impua) ≥ µ impua⇒ impua ≤
impuo

µ
(17)

µ =
(3

3 + ∆

)
(18)

γ =
1
16
·

(
1 + (1 + ∆/3m)α

)
(19)

Appl. Sci. 2020, 10, 2459 14 of 29

c =
(9

8
+

3∆
8

)
·

(
1 + (1 + ∆/3m)α

)
(20)

�

Case I: When na ≤ m and impua ≤ ηα, since implgu ≤ impua we have implgu ≤ ηα, and

sua(t) = (1 + ∆/3m)·min
(
impua

1/α, η
)
= (1 + ∆/3m)·impua

1/α.

(a) If implgu >
(
impua −

(
3

3+∆

)
·impua

)
then the total RoC of Φ because of Opt and MBS is

dΦu
dt = dΦuo

dt + dΦua
dt .

(using Equations (8) and (9))

dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
−

(
sua·implgu

1−2δ
)

(21)

(by using Equations (1) and (21))
dGua

dt + γ· dΦu
dt

≤

(
impua + sua

α + γ·
((

suo
α

α + (1− 2δ)·implgu

)
−

(
sua·implgu

1−2δ
)))

=
(
impua + (1 + ∆/3m)α·impua +

γ
α ·suo

α + γ·(1− 2δ)·implgu − γ·(1 + ∆/3m)·impua
1/α
·implgu

1−2δ
)

≤

(
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α

)
·impua + γ·(1− 2δ)·impua − γ·(1 + ∆/3m)·impua

1/α
·

((
1−

(
3

3+∆

))
·impua

)1−2δ
)

=
(
γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ·(1− 2δ) − γ·(1 + ∆/3m)·

(
∆

3+∆

)1−2δ
))

≤
γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ− γ·

(
∆

3+∆

)1−2δ
)

≤
γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ− γ·

(
∆

3+∆

))
=

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ·

(
3

3+∆

))
≤

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

)
=

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

))
(by using Equation (19))

≤
γ
α ·suo

α +
impuo
µ ·

(
17
16 ·

(
1 + (1 + ∆/3m)α

))
(by using Equation (17))

=
γ
α ·suo

α + impuo·
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
(by using Equation (18))

≤
γ
α ·suo

α + impuo ·
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
(by using Equation (20))

dGua

dt
+ γ·

dΦu

dt
≤
γ

α
·suo

α + impuo ·c (22)

Since c =
(

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
and γ = 1

16 ·
(
1 + (1 + ∆/3m)α

)
, we have

⇒ c =
(9

8
+

3∆
8

)
·16γ⇒

γ

c
=

1
18 + 6∆

< 1⇒
γ

c
< 1⇒ γ < c

Since γ < c and α > 1⇒ 1 >
1
α
⇒

γ

α
< c (23)

(by using Equation (23) in Equation (22))

dGua

dt
+ γ·

dΦu

dt
≤ c·suo

α + c·impuo = c·(suo
α + impuo) = c·

dGuo

dt

Hence the running condition is fulfilled for na ≤ m, impua ≤ ηα, implgu ≤ ηα, implgu >(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

(b) If implgu ≤

(
impua −

(
3

3+∆

)
·impua

)
then the total RoC of Φ because of Opt and MBS depends on

dΦuo
dt since dΦua

dt ≤ 0.

Appl. Sci. 2020, 10, 2459 15 of 29

(by using Equation (8))
dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
(24)

(by using Equations (1) and (24))
dGua

dt + γ· dΦu
dt ≤ impua + sua

α + γ·
(

suo
α

α + (1− 2δ)·implgu

)
= impua + (1 + ∆/3m)α·impua +

γ
α ·suo

α + γ·(1− 2δ)·implgu

≤
γ
α ·suo

α + impua + (1 + ∆/3m)α·impua + γ·(1− 2δ)·impua

=
γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ·(1− 2δ)

)
≤

γ
α ·suo

α +
impuo
µ ·

(
1 + (1 + ∆/3m)α + γ·(1− 2δ)

)
(by using Equation (17))

≤
γ
α ·suo

α +
(

1
µ ·

((
1 + (1 + ∆/3m)α

)
+ γ

))
·impuo

=
γ
α ·suo

α +
(

1
µ ·

((
1 + (1 + ∆/3m)α

)
+ 1

16 ·
(
1 + (1 + ∆/3m)α

)))
·impuo (by using Equation (19))

=
γ
α ·suo

α +
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

≤
γ
α ·suo

α +
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo

≤ c·suo
α + c·impuo (by using Equations (18) and (23))

dGua
dt + γ· dΦu

dt ≤ c·(suo
α + wuo)

dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt

Hence the running condition is satisfied for na ≤ m, impua ≤ ηα, implgu ≤ ηα, implgu ≤(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

Case II: When na ≤ m, impua > ηα, implgu ≤ ηα, and

sua(t) = (1 + ∆/3m)·min
(
impua

1/α, η
)
= (1 + ∆/3m)η.

(a) If implgu >
(
impua −

(
3

3+∆

)
·impua

)
then the total RoC of Φ because of Opt and MBS is

dΦu
dt = dΦuo

dt + dΦua
dt .

(by using Equations (8) and (9))

dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
−

(
sua·implgu

1−2δ
)

(25)

(by using Equations (1) and (25))
dGua

dt + γ· dΦu
dt

≤ impua + sua
α + γ·

((
suo

α

α + (1− 2δ)·implgu

)
−

(
sua·implgu

1−2δ
))

= impua + (1 + ∆/3m)α·ηα +
γ
α ·suo

α + γ·(1− 2δ)·implgu − γ·(1 + ∆/3m)·η·implgu
1−2δ

≤ impua + (1 + ∆/3m)α·impua +
γ
α ·suo

α + γ·(1− 2δ)·impua − γ·(1 + ∆/3m)·implgu
2δ
·implgu

1−2δ

=
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α + γ·(1− 2δ)

)
·impua − γ·(1 + ∆/3m)·implgu

≤
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α + γ

)
·impua − γ·(1 + ∆/3m)·

(
1−

(
3

3+∆

))
·impua

≤
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α + γ− γ·

(
∆

3+∆

))
·impua

=
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α + γ·

(
3

3+∆

))
·impua

≤
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α + γ

)
·impua

≤
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

))
·
impuo
µ (by using Equations (17) and (19))

=
γ
α ·suo

α +
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

≤
γ
α ·suo

α +
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equations (20) and (23))

≤ c·suo
α + c·impuo

= c·(suo
α + impuo)

dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt

Hence the running condition is fulfilled for na ≤ m, impua > ηα, implgu ≤ ηα, implgu >(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

Appl. Sci. 2020, 10, 2459 16 of 29

(b) If implgu ≤

(
impua −

(
3

3+∆

)
·impua

)
then the total RoC of Φ because of Opt and MBS depends on

dΦuo
dt since dΦua

dt ≤ 0. (by using Equation (7))

dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
(26)

(by using Equations (1) and (26))
dGua

dt + γ· dΦu
dt ≤ impua + sua

α + γ·
(

suo
α

α + (1− 2δ)·implgu

)
= impua + (1 + ∆/3m)α·ηα +

γ
α ·suo

α + γ·(1− 2δ)·implgu

≤ impua + (1 + ∆/3m)α·impua +
γ
α ·suo

α + γ·(1− 2δ)·implgu

≤
γ
α ·suo

α + impua + (1 + ∆/3m)α·impua + γ·(1− 2δ)·impua

=
γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ·(1− 2δ)

)
≤

γ
α ·suo

α +
impuo
µ ·

(
1 + (1 + ∆/3m)α + γ

)
(by using Equation (17))

=
γ
α ·suo

α +
(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

))
·

impuo
µ (by using Equation (19))

=
γ
α ·suo

α +
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

≤
γ
α ·suo

α +
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo

≤ c·suo
α + c·impuo (by using Equations (20) and (23))

= c·(suo
α + impuo)

dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt

Hence the running condition is satisfied for na ≤ m, impua > ηα, implgu ≤ ηα, implgu ≤(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

Case III: When na ≤ m, impua > ηα, implgu > ηα, and

sua(t) = (1 + ∆/3m)·min
(
impua

1/α, η
)
= (1 + ∆/3m)η .

(a) If implgu >
(
impua −

(
3

3+∆

)
·impua

)
then the total RoC of Φ because of Opt and MBS is

dΦu
dt = dΦuo

dt + dΦua
dt .

(by using Equations (10) and (11))

dΦu

dt
≤

(1
1− δ

)
·implgu −

(1 + ∆/3m)

(1− δ)
·implgu (27)

(by using Equations (1) and (27))
dGua

dt + γ· dΦu
dt

≤ impua + sua
α + γ·

((
1

1−δ

)
·implgu −

(1+∆/3m)
(1−δ) ·implgu

)
= impua + (1 + ∆/3m)α·ηα + γ·

(
1

1−δ

)
·implgu − γ·

(1+∆/3m)
(1−δ) ·implgu

≤ impua + (1 + ∆/3m)α·impua + γ·
(

1
1−δ

)
·impua − γ·

(1+∆/3m)
(1−δ) ·

(
impua −

(
3

3+∆

)
·impua

)
= impua·

(
1 + (1 + ∆/3m)α + γ·

(
1

1−δ

)
− γ·

(
1

1−δ

)
·(1 + ∆/3m)·

(
∆

3+∆

))
≤ impua·

(
1 + (1 + ∆/3m)α + γ·

(
1

1−δ

)
− γ·

(
1

1−δ

)
·

(
∆

3+∆

))
= impua·

(
1 + (1 + ∆/3m)α + γ·

(
1

1−δ

)
·

(
3

3+∆

))
≤

impuo
µ ·

(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

)
·

(
1

1−δ

))
(by using Equations (17) and (19))

dGua

dt
+ γ·

dΦu

dt
≤

impuo

µ
·

((
1 + (1 + ∆/3m)α

)
+

1
16
·

(
1 + (1 + ∆/3m)α

)
·

(2α
2α− 1

))
(28)

Since α > 1⇒
2α

2α− 1
=

2α− 1 + 1
2α− 1

= 1 +
1

2α− 1
< 2⇒ 1 <

(2α
2α− 1

)
< 2 (29)

Appl. Sci. 2020, 10, 2459 17 of 29

(by using Equations (29) and (28))

dGua
dt + γ· dΦu

dt ≤
impuo
µ ·

((
1 + (1 + ∆/3m)α

)
+ 2

16 ·
(
1 + (1 + ∆/3m)α

))
=

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
·impuo (by using Equation (18))

= c·impuo (by using Equation (20))
≤ c·(suo

α + impuo)
dGua

dt + γ· dΦu
dt ≤ c· dGuo

dt

Hence the running condition is fulfilled for na ≤ m, impua > ηα, implgu > ηα, implgu >(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

(b) If implgu ≤

(
impua −

(
3

3+∆

)
·impua

)
then the total RoC of Φ because of Opt and MBS depends on

dΦuo
dt since dΦua

dt ≤ 0.
(by using Equation (10))

dΦu

dt
≤

(1
1− δ

)
·implgu (30)

(by using Equations (1) and (30))

dGua
dt + γ· dΦu

dt ≤ impua + sua
α + γ·

(
1

1−δ

)
·implgu

= impua + (1 + ∆/3m)α·ηα + γ·
(

1
1−δ

)
·implgu

≤ impua + (1 + ∆/3m)α·impua + γ·
(

1
1−δ

)
·impua

= impua·
(
1 + (1 + ∆/3m)α + γ·

(
2α

2α−1

))
≤

impuo
µ ·

(
1 + (1 + ∆/3m)α + 2γ

)
(by using Equations (17) and (29))

=
impuo
µ ·

((
1 + (1 + ∆/3m)α

)
+ 2

16 ·
(
1 + (1 + ∆/3m)α

))
(by using Equation (19))

=
(

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
·impuo (by using Equation (18))

= c·impuo (by using Equation (20))
≤ c·(suo

α + impuo)
dGua

dt +γ· dΦu
dt ≤ c· dGuo

dt

Hence the running condition is satisfied if na ≤ m, impua > ηα, implgu > ηα, implgu ≤(
impua −

(
3

3+∆

)
·impua

)
, for c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

Case IV: When na > m and impua ≤ ηα, since implgu ≤ impua we have implgu ≤ ηα and

sua(t) = (1 + ∆/3m)·min
(
impua

1/α, η
)
= (1 + ∆/3m)impua

1/α .

If implgu >
(
impua −

(
3

3+∆

)
·impua

)
then total RoC of Φ because of Opt and MBS is dΦu

dt = dΦuo
dt + dΦua

dt .
(by using Equations (13) and (14))

dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
−

 sua

(2− 2δ)
·

 implgu
2−2δ

impua

 (31)

(by using Equations (1) and (31))
dGua

dt + γ· dΦu
dt

≤ impua + sua
α + γ·

((
suo

α

α + (1− 2δ)·implgu

)
−

(
sua

(2−2δ) ·

(
implgu

2−2δ

impua

)))
= impua + (1 + ∆/3m)α·impua +

γ
α ·suo

α + γ·(1− 2δ)·implgu − γ·
(1+∆/3m)impua

1/α

(2−2δ) ·

(
implgu

2−2δ

impua

)
≤

γ
α ·suo

α +
(
1 + (1 + ∆/3m)α

)
·impua + γ·impua − γ·

(1+∆/3m)impua
1/α

(2−2δ) ·

(
(impua−(3

3+∆)·impua)
2−2δ

impua

)
=

γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ− γ·

(1+∆/3m)
(2−2δ) ·

(
∆

3+∆

)2−2δ
)

Appl. Sci. 2020, 10, 2459 18 of 29

≤
γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ− γ·

(∆
3+∆)

2−2δ

(2−2δ)

)

dGua

dt
+ γ·

dΦu

dt
≤
γ

α
·suo

α + impua·

1 + (1 + ∆/3m)α + γ− γ·

(
∆

3+∆

)2

(2− 2δ)

 (32)

Since α > 1⇒ 2α
2α−1 = 2α−1+1

2α−1 = 1 + 1
2α−1 > 1⇒

(
1

2−2δ

)
= α

2α−1 = 1
2 ·
(

2α
2α−1

)
> 1

2 (33)

(by using Equations (32) and (33))
dGua

dt + γ· dΦu
dt ≤

γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ−

γ
2 ·
(

∆
3+∆

)2
)

=
γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ

(
1− 1

2 ·
(

∆
3+∆

)2
))

=
γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

(
2∆2+11∆+18
2∆2+12∆+18

))
≤

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

)
(by using Equations (17) and (19))

≤
γ
α ·suo

α +
impuo
µ ·

(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
impuo
µ ·

(
17
16 ·

(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

≤
γ
α ·suo

α +
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo

≤ c·suo
α + c·impuo (by using Equations (20) and (23))

= c·(suo
α + impuo)

dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt

Hence the running condition is fulfilled for na > m, impua ≤ ηα, implgu ≤ ηα, implgu >(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

(a) If implgu ≤

(
impua −

(
3

3+∆

)
·impua

)
then total RoC of Φ because of Opt and MBS depends on dΦuo

dt

since dΦua
dt ≤ 0.

(by using Equation (13))
dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
(34)

(by using Equations (1) and (34))
dGua

dt + γ· dΦu
dt ≤ impua + sua

α + γ·
(

suo
α

α + (1− 2δ)·implgu

)
= impua + (1 + ∆/3m)α·impua +

γ
α ·suo

α + γ·(1− 2δ)·implgu

≤
γ
α ·suo

α + impua + (1 + ∆/3m)α·impua + γ·(1− 2δ)·impua

=
γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ·(1− 2δ)

)
≤

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

)
(by using Equations (17) and (19))

≤
γ
α ·suo

α +
impuo
µ ·

(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
impuo
µ ·

(
17
16 ·

(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

≤
γ
α ·suo

α +
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo

≤ c·suo
α + c·impuo (by using Equations (20) and (23))

= c·(suo
α + impuo)

dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt

Hence the running condition is satisfied for na > m, impua ≤ ηα, implgu ≤ ηα, implgu ≤(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

Appl. Sci. 2020, 10, 2459 19 of 29

Case V: When na > m and impua > ηα, implgu ≤ ηα, and

sua(t) = (1 + ∆/3m)·min
(
impua

1/α, η
)
= (1 + ∆/3m)η .

(a) If implgu >
(
impua −

(
3

3+∆

)
·impua

)
then the total RoC of Φ because of Opt and MBS is

dΦu
dt = dΦuo

dt + dΦua
dt .

(by using Equations (13) and (14))

dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
−

 sua

(2− 2δ)
·

 implgu
2−2δ

impua

 (35)

(by using Equations (1) and (35))
dGua

dt + γ· dΦu
dt

≤ impua + sua
α + γ·

((
suo

α

α + (1− 2δ)·implgu

)
−

(
sua

(2−2δ) ·

(
implgu

2−2δ

impua

)))
= impua + (1 + ∆/3m)α·ηα +

γ
α ·suo

α + γ·(1− 2δ)·implgu − γ·
(1+∆/3m)η
(2−2δ) ·

(
implgu

2−2δ

impua

)
≤ impua + (1 + ∆/3m)α·impua +

γ
α ·suo

α + γ·(1− 2δ)·impua − γ·
(1+∆/3m)η
(2−2δ) ·

(
implgu

2−2δ

impua

)
≤

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

)
− γ·

(1+∆/3m)implgu
1/α

(2−2δ) ·

(
implgu

2−2δ

impua

)
≤

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

)
− γ· 1

(2−2δ) ·
(1−(3

3+∆))
2
·impua

2

impua

dGua

dt
+ γ·

dΦu

dt
≤
γ

α
·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ− γ·

1
(2− 2δ)

·

(∆
3 + ∆

)2)
(36)

(by using Equations (36) and (33))
dGua

dt + γ· dΦu
dt ≤

γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ−

γ
2 ·
(

∆
3+∆

)2
)

=
γ
α ·suo

α + impua·

(
1 + (1 + ∆/3m)α + γ

(
1− 1

2 ·
(

∆
3+∆

)2
))

=
γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

(
2∆2+11∆+18
2∆2+12∆+18

))
≤

γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

)
(by using Equations (17) and (19))

≤
γ
α ·suo

α +
impuo
µ ·

(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
impuo
µ ·

(
17
16 ·

(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

≤
γ
α ·suo

α +
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo

≤ c·suo
α + c·impuo (by using Equations (20) and (23))

= c·(suo
α + impuo)

dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt

Hence the running condition is fulfilled for na > m, impua > ηα, implgu ≤ ηα, implgu >(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

(a) If implgu ≤

(
impua −

(
3

3+∆

)
·impua

)
then total RoC of Φ due to Opt and MBS depends on dΦuo

dt

since dΦua
dt ≤ 0.

(by using Equation (13))
dΦu

dt
≤

(suo
α

α
+ (1− 2δ)·implgu

)
(37)

(by using Equations (1) and (37))
dGua

dt + γ· dΦu
dt ≤ impua + sua

α + γ·
(

suo
α

α + (1− 2δ)·implgu

)
= impua + (1 + ∆/3m)α·ηα +

γ
α ·suo

α + γ·(1− 2δ)·implgu

≤
γ
α ·suo

α + impua + (1 + ∆/3m)α·impua + γ·impua

Appl. Sci. 2020, 10, 2459 20 of 29

=
γ
α ·suo

α + impua·
(
1 + (1 + ∆/3m)α + γ

)
(by using Equations (17) and (19))

≤
γ
α ·suo

α +
impuo
µ ·

(
1 + (1 + ∆/3m)α + 1

16 ·
(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
impuo
µ ·

(
17
16 ·

(
1 + (1 + ∆/3m)α

))
=

γ
α ·suo

α +
(

17
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

≤
γ
α ·suo

α +
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo

≤ c·suo
α + c·impuo (by using Equations (20) and (23))

= c·(suo
α + impuo)

dGua
dt + γ· dΦu

dt ≤ c· dGuo
dt

Hence the running condition is satisfied for na > m, impua ≤ ηα, implgu ≤ ηα, implgu ≤(
impua −

(
3

3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

Case VI: When na > m and impua > ηα, implgu > ηα, and

sua(t) = (1 + ∆/3m)·min
(
impua

1/α, η
)
= (1 + ∆/3m)η.

(a) If implgu >
(
impua −

(
3

3+∆

)
·impua

)
then total RoC of Φ because of Opt and MBS is dΦu

dt = dΦuo
dt +

dΦua
dt .

(by using Equations (15) and (16))

dΦu

dt
≤

((1
1− δ

)
·implgu

)
−

 (1 + ∆/3m)

(2− 2δ)
·

 implgu
2

impua

 (38)

(by using Equations (1) and (38))
dGua

dt + γ· dΦu
dt

≤ impua + sua
α + γ·

(((
1

1−δ

)
·implgu

)
−

(
(1+∆/3m)
(2−2δ) ·

(
implgu

2

impua

)))
≤ impua + (1 + ∆/3m)α·ηα + γ·

(
1

1−δ

)
·impua − γ·

(1+∆/3m)
(2−2δ) ·

(
implgu

2

impua

)
≤ impua + (1 + ∆/3m)α·impua + γ·

(
1

1−δ

)
·impua − γ· 1

(2−2δ) ·

(
(impua−(3

3+∆)·impua)
2

impua

)
= impua + (1 + ∆/3m)α·impua + γ·

(
1

1−δ

)
·impua − γ·

(∆
3+∆)

2

(2−2δ) ·impua

=

(
1 + (1 + ∆/3m)α + γ·

(
2α

2α−1

)
− γ·

(∆
3+∆)

2

(2−2δ)

)
·impua

≤

(
1 + (1 + ∆/3m)α + 2γ− γ

2 ·
(

∆
3+∆

)2
)
·impua (by using Equations (29) and (33))

=
(
1 + (1 + ∆/3m)α + γ·

(
2− 1

2 ·
(

∆
3+∆

)2
))
·impua

=
(
1 + (1 + ∆/3m)α + γ·

(
1 + 2∆2+11∆+18

2∆2+12∆+18

))
·impua

≤

(
1 + (1 + ∆/3m)α + 2γ

)
·impua

≤
impuo
µ ·

(
1 + (1 + ∆/3m)α + 2

16 ·
(
1 + (1 + ∆/3m)α

))
(by using Equations (17) and (19))

=
impuo
µ ·

(
18
16 ·

(
1 + (1 + ∆/3m)α

))
=

(
18
16 ·

(
1 + ∆

3

)
·

(
1 + (1 + ∆/3m)α

))
·impuo (by using Equation (18))

=
((

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

))
·impuo

= c·impuo (by using Equation (20))
≤ c·(suo

α + impuo)
dGua

dt + γ· dΦu
dt ≤ c· dGuo

dt
Hence the running condition is fulfilled for na > m, impua > ηα, implgu > ηα, implgu >(

impua −
(

3
3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

Appl. Sci. 2020, 10, 2459 21 of 29

(a) If implgu ≤

(
impua −

(
3

3+∆

)
·impua

)
then total RoC of Φ due to Opt and MBS depends on dΦuo

dt

since dΦua
dt ≤ 0.

(by using Equations (15))
dΦu

dt
≤

((1
1− δ

)
·implgu

)
(39)

(by using Equations (1) and (39))
dGua

dt + γ· dΦu
dt ≤ impua + sua

α + γ·
((

1
1−δ

)
·implgu

)
= impua + (1 + ∆/3m)α·ηα + γ·

(
1

1−δ

)
·implgu

≤ impua + (1 + ∆/3m)α·impua + γ·
(

1
1−δ

)
·impua

≤ impua
(
1 + (1 + ∆/3m)α + γ·

(
1

1−δ

))
= impua·

(
1 + (1 + ∆/3m)α + γ·

(
2α

2α−1

))
≤

impuo
µ ·

(
1 + (1 + ∆/3m)α + 2γ

)
(by using Equations (17) and (29))

=
impuo
µ ·

((
1 + (1 + ∆/3m)α

)
+ 2

16 ·
(
1 + (1 + ∆/3m)α

))
(by using Equation (19))

=
(

9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
·impuo (by using Equation (18))

= c·impuo (by using Equation (20))
≤ c·(suo

α + impuo)
dGua

dt + γ· dΦu
dt ≤ c· dGuo

dt
Hence the running condition is satisfied for na > m, impua > ηα, implgu > ηα, implgu ≤(

impua −
(

3
3+∆

)
·impua

)
, c =

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m)α

)
.

The analysis of all cases and sub cases in Lemma 6 prove that the first condition, running condition
is fulfilled. Aggregating the discourse about all conditions job arrival and completion condition,
boundary condition and Lemma 6, it is concluded that Theorem 1 follows. The competitive values
of related algorithms and MBS on α = 2 and 3 are shown in Table 3. Among all online clairvoyant
and ON-C scheduling algorithms, the competitiveness of MBS is least, which reflects that the MBS
outperforms other algorithms.

6. Illustrative Example

To observe the performance of MBS, a group of four processors and a set of seven jobs are
considered. The best known result in the online non-clairvoyant scheduling algorithms is provided by
the Azar et al. [40] in NC-PAR. NC-PAR is a super-constant lower bound on the competitive ratio of any
deterministic algorithm even for fractional flow-time in the case of uniform densities. The processing
of jobs using algorithms MBS and NC-PAR [40] is simulated and the results are stated in Table 4 as well
as in Figures 3–11. The jobs arrived along with their importance but the size of jobs was computed
on the completion of jobs. The response time (Rt) is the time interval between the starting time of
execution and arrival time of a job. The turnaround time is the time duration between completion time
and arrival time of a job. Most of the jobs using MBS have lesser turnaround time than using NC-PAR.
The Rt of the jobs using MBS is better than NC-PAR. In Figures 3 and 4, the allocation and execution
sequence of jobs on four processors is depicted with the help of triangles and rectangles using NC-PAR
and MBS, respectively. As per the Figures 3 and 4, the importance of the jobs in NC-PAR increased
with time where as in MBS the importance remains constant during the life time of the jobs. It is clearly
evident from the Figures 3 and 4 that on any processor using NC-PAR at a time only one job has been
executed, whereas using MBS the processor has been shared by more than one job. The hardware
specifications are mentioned in the Table 5.

Appl. Sci. 2020, 10, 2459 22 of 29

Table 4. Job details and execution data using MBS and NC-PAR.

Job Details MBS [This Paper] NC-PAR [40]

Job Size Importance Arrival
Time

Completion
Time

Response
Time

Turnaround
Time

Completion
Time

Response
Time

Turnaround
Time

J1 35 8 1 14 0 13 14 0 13
J2 64 10 2 24 0 22 23 0 21
J3 15 5 4 10 0 6 12 0 8
J4 83 11 6 30 0 24 33 0 27
J5 45 5 7 29 0 22 29 6 22
J6 17 4 8 23 0 15 23 7 15
J7 56 6 10 32 0 22 43 14 33

Average Values 23.143 0 17.714 25.286 3.857 19.857

Table 5. Hardware specifications.

Simulation Parameters Values

CPU Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz
RAM 4.00 GB RAM

Hard Drive 1.0 TB
Operating System Red Hat Linux 6.1

Kernel Linux kernel version 2.2.12

Appl. Sci. 2020, 10, x FOR PEER REVIEW 24 of 31

Figure 3. Scheduling of jobs using NC-PAR.

Figure 4. Scheduling of jobs using MBS.

J2

 P1

 P4

 P2

 P3

0 5 10 15 20 25 30 35 40 45

 J1

J6

J7

J3

J5

J4

P1

P4

P2

P3

0 5 10 15 20 25 30 35

J1

J5

J2

J6

J3

J7

J4

Figure 3. Scheduling of jobs using NC-PAR.

Appl. Sci. 2020, 10, 2459 23 of 29

Appl. Sci. 2020, 10, 0 24 of 32
Appl. Sci. 2020, 10, x FOR PEER REVIEW 24 of 31

Figure 3. Scheduling of jobs using NC-PAR.

Figure 4. Scheduling of jobs using MBS.

J2

 P1

 P4

 P2

 P3

0 5 10 15 20 25 30 35 40 45

 J1

J6

J7

J3

J5

J4

P1

P4

P2

P3

0 5 10 15 20 25 30 35

J1

J5

J2

J6

J3

J7

J4

Figure 3. Scheduling of jobs using NC-PAR.

Figure 4. Scheduling of jobs using MBS.
Figure 4. Scheduling of jobs using MBS.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 25 of 31

Figure 5. Speed of processors using MBS and NC-PAR.

Figures 5 and 6 present the speed of different processors and combined speed of all processors
with respect to time using MBS and NC-PAR, respectively. As per the graphs of Figure 5, the speed
of a processor using MBS goes high initially but later it reduces and most of the time the speed of
processors using MBS is constant, but when processors executes jobs using NC-PAR the speed of
processors have heavy fluctuations, which shows that some extra energy may be needed for such
frequent fluctuation in NC-PAR. The graphs of the Figure 6 shows that the combined speed of
processors using NC-PAR increased and decreased linearly whereas using MBS it increased and
decreased stepwise. The count of local maxima and minima in the speed growth graphs (Figure 7) of
NC-PAR is more than MBS. Therefore, not only individual processor’s speed but also the combined
speed of all the processors is reflecting the heavy fluctuation in NC-PAR and varying-constant
mixed behaviour of MBS.

In this simulation analysis the traditional power function is used and the value of α is 2. The
processors are having the maximum limit of speed which is considered 3.6. The value of ∆=(3𝛼) is considered for the analysis. The power consumed is square of the speed, i.e. proportional to
the speed this fact can be viewed by comparing the graphs of Figures 5 and 9. Figure 8, shows that
initially MBS consumed more power but power consumption decreased with respect to increase in
time, whereas in case of NC-PAR there is no fix pattern, but power consumption is higher most of
the time than in MBS.

Figure 5. Speed of processors using MBS and NC-PAR.

Figures 5 and 6 present the speed of different processors and combined speed of all processors
with respect to time using MBS and NC-PAR, respectively. As per the graphs of Figure 5, the speed of a
processor using MBS goes high initially but later it reduces and most of the time the speed of processors
using MBS is constant, but when processors executes jobs using NC-PAR the speed of processors have
heavy fluctuations, which shows that some extra energy may be needed for such frequent fluctuation
in NC-PAR. The graphs of the Figure 6 shows that the combined speed of processors using NC-PAR
increased and decreased linearly whereas using MBS it increased and decreased stepwise. The count

Appl. Sci. 2020, 10, 2459 24 of 29

of local maxima and minima in the speed growth graphs (Figure 7) of NC-PAR is more than MBS.
Therefore, not only individual processor’s speed but also the combined speed of all the processors is
reflecting the heavy fluctuation in NC-PAR and varying-constant mixed behaviour of MBS.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 26 of 31

Figure 6. Combined speed of all processors using MBS and NC-PAR.

Figure 7. Growth of combined speed of all processors using MBS and NC-PAR.

Figure 6. Combined speed of all processors using MBS and NC-PAR.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 26 of 31

Figure 6. Combined speed of all processors using MBS and NC-PAR.

Figure 7. Growth of combined speed of all processors using MBS and NC-PAR. Figure 7. Growth of combined speed of all processors using MBS and NC-PAR.

Appl. Sci. 2020, 10, 2459 25 of 29Appl. Sci. 2020, 10, x FOR PEER REVIEW 27 of 31

Figure 8. Total power consumed by all processors using MBS and NC-PAR.

Figure 9. Power consumed by processors using MBS and NC-PAR.

Figure 8. Total power consumed by all processors using MBS and NC-PAR.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 27 of 31

Figure 8. Total power consumed by all processors using MBS and NC-PAR.

Figure 9. Power consumed by processors using MBS and NC-PAR. Figure 9. Power consumed by processors using MBS and NC-PAR.

In this simulation analysis the traditional power function is used and the value of α is 2.
The processors are having the maximum limit of speed which is considered 3.6. The value of
∆ = (3α)−1 is considered for the analysis. The power consumed is square of the speed, i.e.,
proportional to the speed this fact can be viewed by comparing the graphs of Figures 5 and 9. Figure 8,
shows that initially MBS consumed more power but power consumption decreased with respect to
increase in time, whereas in case of NC-PAR there is no fix pattern, but power consumption is higher
most of the time than in MBS.

The graphs of Figure 10 demonstrate the objective of the algorithm (important based flow time plus
energy). It reveals that except one processor P1, all other processor have lesser objective value, when
these processors executed jobs by using MBS than NC-PAR. The combined objective of all processor is

Appl. Sci. 2020, 10, 2459 26 of 29

given in the Figure 11, which strengthen the previous observation of Figure 10 (the objective values
using MBS is lesser than using NC-PAR). It can be concluded from the different observations and the
Figure 11, that the algorithm MBS performs better than NC-PAR.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 28 of 31

Figure 10. Importance-based flow time + energy consumed using MBS and NC-PAR.

Figure 11. Total importance-based flow time + energy consumed using MBS and NC-PAR.

The graphs of Figure 10 demonstrate the objective of the algorithm (important based flow time
plus energy). It reveals that except one processor P1, all other processor have lesser objective value,
when these processors executed jobs by using MBS than NC-PAR. The combined objective of all
processor is given in the Figure 11, which strengthen the previous observation of Figure 10 (the
objective values using MBS is lesser than using NC-PAR). It can be concluded from the different
observations and the Figure 11, that the algorithm MBS performs better than NC-PAR.

7. Conclusions and Future Work

To date, the problem of ON-C scheduling algorithms with an objective to minimize the IbFt+E
for multiprocessor setting is studied less extensively. A scheduling algorithm multiprocessor with

Figure 10. Importance-based flow time + energy consumed using MBS and NC-PAR.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 28 of 31

Figure 10. Importance-based flow time + energy consumed using MBS and NC-PAR.

Figure 11. Total importance-based flow time + energy consumed using MBS and NC-PAR.

The graphs of Figure 10 demonstrate the objective of the algorithm (important based flow time
plus energy). It reveals that except one processor P1, all other processor have lesser objective value,
when these processors executed jobs by using MBS than NC-PAR. The combined objective of all
processor is given in the Figure 11, which strengthen the previous observation of Figure 10 (the
objective values using MBS is lesser than using NC-PAR). It can be concluded from the different
observations and the Figure 11, that the algorithm MBS performs better than NC-PAR.

7. Conclusions and Future Work

To date, the problem of ON-C scheduling algorithms with an objective to minimize the IbFt+E
for multiprocessor setting is studied less extensively. A scheduling algorithm multiprocessor with

Figure 11. Total importance-based flow time + energy consumed using MBS and NC-PAR.

7. Conclusions and Future Work

To date, the problem of ON-C scheduling algorithms with an objective to minimize the IbFt+E for
multiprocessor setting is studied less extensively. A scheduling algorithm multiprocessor with bounded
speed (MBS) is proposed, which uses importance-based/weighted round robin (WRR) for job selection.
MBS extends the theoretical study of an ON-C multiprocessor DSS scheduling problem with an
objective to minimize the IbFt+E using the bounded speed model, where every processor’s maximum
speed using MBS is (1 + ∆/3m)η and using offline adversary Opt is η. The speed of any processor

Appl. Sci. 2020, 10, 2459 27 of 29

changes if there is a variation in the total importance of jobs on that processor. The competitiveness of
MBS is

(
9
8 + 3∆

8

)
·

(
1 + (1 + ∆/3m∆/3m∆/3m∆/3m∆/3m∆/3m∆/3m∆/3m)α

)
= O(1) against an offline adversary,

using the potential function analysis and traditional power function. The performance of MBS is
compared with best known algorithm NC-PAR [40]. A set of jobs and processors are used to simulate
the working of MBS and NC-PAR. The average turnaround and response time of jobs, when they are
executed by using MBS is lesser than NC-PAR. The speed scaling strategy and power consumption
in MBS is better than NC-PAR. For all processors at any time, MBS provides the lesser value of the
sum of important-based flow time and energy consumed than NC-PAR. Competitiveness of NC-PAR
is 3 for α = 2 and 3.5 for α = 3, whereas the value of competitive ratio c of MBS for ∆ = (3α)−1,
m = 2 and α = 2 is 2.442; for ∆ = (3α)−1, m = 2 and α = 3 is 2.399; for ∆ = (3α)−1, m > 2,
α = 2 is 2.375 < c < 2.442; for ∆ = (3α)−1, m > 2, α = 3 is 2.333 < c < 2.399. These results
demonstrate that the scheduling algorithm MBS outperforms other algorithms. The competitive
value of MBS is least to date. Before these outcomes, there were no results acknowledged for the
multi-processor machines in the ON-C model with identified importance, even for unit importance
jobs [40]. The further enhancement of this study will be to implement the MBS in real environment.
One open problem is to achieve a reasonably less competitive algorithm than MBS. In this study, author
considers non-migratory and sequential jobs and this work may be extended to find a scheduling
for migratory and non-sequential jobs. Other factors (such as memory requirement) may also be
considered for analysis in future extension.

Author Contributions: All authors have worked on this manuscript together. Writing—original draft, P.S.;
writing—review and editing, B.K., O.P.M., H.H.A. and G.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Belady, C. In the Data Center, Power and Cooling Costs More Than the IT Equipment It Supports, Electronics
Cooling Magazine. Available online: http://www.electronics-cooling.com/2007/02/in-the-data-center-power-
and-cooling-costs-more-than-the-it-equipment-it-supports/ (accessed on 10 January 2020).

2. Chan, H.L.; Edmonds, J.; Lam, T.W.; Lee, L.K.; Marchetti-Spaccamela, A.; Prush, K. Non-clairvoyant speed
scaling for flow and energy. Algorithmica 2011, 61, 507–517. [CrossRef]

3. Merritt, R. CPU Designers’ Debate Multi-Core Future, EE Times. 2 June 2008. Available online: http:
//www.eetimes.com/document.asp?doc_id=1167932 (accessed on 15 January 2020).

4. U.S. Environmental Protection Agency, EPA Report on Server and Data Center Energy Efficiency.
Available online: https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Report_Exec_
Summary_Final.pdf (accessed on 14 January 2020).

5. Singh, P.; Wolde-Gabriel, B. Executed-time Round Robin: EtRR an online non-clairvoyant scheduling on
speed bounded processor with energy management. J. King Saud Univ. Comput. Inf. Sci. 2016, 29, 74–84.
[CrossRef]

6. Bansal, N.; Chan, H.L.; Pruhs, K. Speed scaling with an arbitrary power function. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms, New York, NY, USA, 4–6 January 2009; pp. 693–701.

7. Bansal, N.; Kimbrel, T.; Pruhs, K. Dynamic speed scaling to manage energy and temperature. J. ACM 2007,
54, 1–39. [CrossRef]

8. Singh, P.; Khan, B.; Vidyarthi, A.; Haes Alhelou, H.; Siano, P. Energy-aware online non-clairvoyant scheduling
using speed scaling with arbitrary power function. Appl. Sci. 2019, 9, 1467. [CrossRef]

9. Lam, T.W.; Lee, L.K.; To, I.K.K.; Wong, P.W.H. Nonmigratory multiprocessor scheduling for response time
and energy. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 1–13.

10. Motwani, R.; Phillips, S.; Torng, E. Nonclairvoyant scheduling. Theor. Comput. Sci. 1994, 30, 17–47. [CrossRef]
11. Yao, F.; Demers, A.; Shenker, S. A scheduling model for reduced CPU energy. In Proceedings of the Annual

Symposium on Foundations of Computer Science, Berkeley, CA, USA, 23–25 October 1995; pp. 374–382.

http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://dx.doi.org/10.1007/s00453-010-9420-2
http://www.eetimes.com/document.asp?doc_id=1167932
http://www.eetimes.com/document.asp?doc_id=1167932
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Report_Exec_Summary_Final.pdf
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Report_Exec_Summary_Final.pdf
http://dx.doi.org/10.1016/j.jksuci.2016.03.002
http://dx.doi.org/10.1145/1206035.1206038
http://dx.doi.org/10.3390/app9071467
http://dx.doi.org/10.1016/0304-3975(94)90151-1

Appl. Sci. 2020, 10, 2459 28 of 29

12. Koren, G.; Shasha, D. Dover: An optimal on-line scheduling algorithm for overloaded uniprocessor real-time
systems. SIAM J. Comput. 1995, 24, 318–339. [CrossRef]

13. Leonardi, S.; Raz, D. Approximating total flow time on parallel machines. In Proceedings of the ACM
Symposium on Theory of Computing, El Paso, TX, USA, 4–6 May 1997; pp. 110–119.

14. Kalyanasundaram, B.; Pruhs, K. Speed is as powerful as clairvoyant. J. ACM 2000, 47, 617–643. [CrossRef]
15. Edmonds, J. Scheduling in the dark. Theor. Comput. Sci. 2000, 235, 109–141. [CrossRef]
16. Kalyanasundaram, B.; Pruhs, K. Minimizing flow time nonclairvoyantly. J. ACM 2003, 50, 551–567. [CrossRef]
17. Becchetti, L.; Leonardi, S. Nonclairvoyant scheduling to minimize the total flow time on single and parallel

machines. J. ACM 2004, 51, 517–539. [CrossRef]
18. Chekuri, C.; Goel, A.; Khanna, S.; Kumar, A. Multiprocessor scheduling to minimize flow time with epsilon

resource augmentation. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, 13–15 June 2004; pp. 363–372.

19. Chen, J.J.; Hsu, H.R.; Chuang, K.H.; Yang, C.L.; Pang, A.C.; Kuo, T.W. Multiprocessor energy efficient
scheduling with task migration considerations. In Proceedings of the 16th Euromicro Conference on
Real-Time Systems, Catania, Italy, 2 July 2004; pp. 101–108.

20. Albers, S.; Fujiwara, H. Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 2007,
3, 49. [CrossRef]

21. Bansal, N.; Pruhs, K.; Stein, C. Speed scaling for weighted flow time. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 805–813.

22. Lam, T.W.; Lee, L.K.; To, I.K.K.; Wong, P.W.H. Competitive non-migratory scheduling for flow time and
energy. In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, 14–16 June 2008; pp. 256–264.

23. Chadha, J.; Garg, N.; Kumar, A.; Muralidhara, V. A competitive algorithm for minimizing weighted flow
time on unrelated processors with speed augmentation. In Proceedings of the Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 679–684.

24. Chan, S.H.; Lam, T.W.; Lee, L.K.; Liu, C.M.; Ting, H.F. Sleep management on multiple processors for
energy and flow time. In Proceedings of the 38th International Colloquium on Automata, Languages and
Programming, Zurich, Switzerland, 4–8 July 2011; pp. 219–231.

25. Albers, S.; Antoniadis, A.; Greiner, G. On multi-processor speed scaling with migration. In Proceedings of
the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, 4–6
June 2011; pp. 279–288.

26. Gupta, A.; Im, S.; Krishnaswamy, R.; Moseley, B.; Pruhs, K. Scheduling heterogeneous processors isn’t as easy
as you think. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto,
Japan, 17–19 January 2012; pp. 1242–1253.

27. Chan, S.H.; Lam, T.W.; Lee, L.K.; Zhu, J. Nonclairvoyant sleep management and flow-time scheduling on
multiple processors. In Proceedings of the 25th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, Montreal, QC, Canada, 23–25 July 2013; pp. 261–270.

28. Lawler, E.L.; Lenstra, J.K.; Kan, A.R.; Shmoys, D.B. Sequencing and Scheduling: Algorithms and Complexity.
In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 1993;
Volume 4, pp. 445–522.

29. Hall, H. Approximation algorithm for scheduling. In Approximation Algorithm for NP-Hard Problems;
Hochbaum, D.S., Ed.; PWS Publishing Company: Boston, MA, USA, 1997; pp. 1–45.

30. Sgall, J. On-line scheduling. In Online Algorithms, The State of the Art; Fiat, A., Woeginger, G.J., Eds.; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 196–231.

31. Karger, D.; Stein, C.; Wein, J. Scheduling Algorithms, CRC Handbook of Theoretical Computer Science; CRC Press:
Boca Raton, FL, USA, 1999.

32. Irani, S.; Pruhs, K. Algorithmic problems in power management. ACM SIGACT News 2005, 36, 63–76.
[CrossRef]

33. Albers, S. Energy efficient algorithms. Commun. ACM 2010, 53, 86–96. [CrossRef]
34. Albers, S. Algorithms for dynamic speed scaling. In Proceedings of the 28th International Symposium of

Theoretical Aspects of Computer Science, Dortmund, Germany, 10–12 March 2011; pp. 1–11.

http://dx.doi.org/10.1137/S0097539792236882
http://dx.doi.org/10.1145/347476.347479
http://dx.doi.org/10.1016/S0304-3975(99)00186-3
http://dx.doi.org/10.1145/792538.792545
http://dx.doi.org/10.1145/1008731.1008732
http://dx.doi.org/10.1145/1290672.1290686
http://dx.doi.org/10.1145/1067309.1067324
http://dx.doi.org/10.1145/1735223.1735245

Appl. Sci. 2020, 10, 2459 29 of 29

35. Gupta, A.; Krishnaswamy, R.; Pruhs, K. Scalably scheduling power-heterogeneous processors. In Proceedings
of the 37th International Colloquium on Automata, Languages and Programming, Bordeaux, France, 5–10
July 2010; pp. 312–323.

36. Fox, K.; Im, S.; Moseley, B. Energy efficient scheduling of parallelizable jobs. In Proceedings of the 24th
Annual Symposium on Discrete Algorithms, New Orleans, LA, USA, 6–8 January 2013; pp. 948–957.

37. Thang, N.K. Lagrangian duality in online scheduling with resource augmentation and speed scaling.
In Proceedings of the 21st European Symposium on Algorithms, Sophia Antipolis, France, 2–4 September
2013; pp. 755–766.

38. Im, S.; Kulkarni, J.; Munagala, K.; Pruhs, K. SelfishMigrate: A scalable algorithm for non-clairvoyantly
scheduling heterogeneous processors. In Proceedings of the 55th IEEE Annual Symposium on Foundations
of Computer Science, Philadelphia, PA, USA, 18–21 October 2014; pp. 531–540.

39. Bell, P.C.; Wong, P.W.H. Multiprocessor speed scaling for jobs with arbitrary sizes and deadlines. J. Comb.
Optim. 2015, 29, 739–749. [CrossRef]

40. Azar, Y.; Devanue, N.R.; Huang, Z.; Panighari, D. Speed scaling in the non-clairvoyant model. In Proceedings
of the 27th Annual ACM Symposium on Parallelism in Algorithms and Architectures, Portland, OR, USA,
13–15 June 2015; pp. 133–142.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10878-013-9618-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Definitions and Notations
	Methodology
	An O(1) -Competitive Algorithm
	Multiprocessor with Bounded Speed Algorithm: MBS
	Necessary Conditions to be Fulfilled
	Potential Function (t)

	Illustrative Example
	Conclusions and Future Work
	References

