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Abstract: The incipient fault detection technology of rolling bearings is the key to ensure its normal
operation and is of great significance for most industrial processes. However, the vibration signals of
rolling bearings are a set of time series with non-linear and timing correlation, and weak incipient fault
characteristics of rolling bearings bring about obstructions for the fault detection. This paper proposes
a nonlinear dynamic incipient fault detection method for rolling bearings to solve these problems.
The kernel function and the moving window algorithm are used to establish a non-linear dynamic
model, and the real-time characteristics of the system are obtained. At the same time, the deep
decomposition method is used to extract weak fault characteristics under the strong noise, and the
incipient failures of rolling bearings are detected. Finally, the validity and feasibility of the scheme are
verified by two simulation experiments. Experimental results show that the fault detection rate based
on the proposed method is higher than 85% for incipient fault of rolling bearings, and the detection
delay is almost zero. Compared with the detection performance of traditional methods, the proposed
nonlinear dynamic incipient fault detection method is of better accuracy and applicability.

Keywords: rolling bearings; incipient fault detection; feature extraction; timing correlation;
nonlinear characteristics

1. Introduction

The rolling bearing is one of the most commonly used components in rotating machinery and
equipment [1,2]. However, the running state of the rolling bearings are easily affected by shock
and vibrations, and incomplete statistics show that about 30% of rotating machinery failures are
caused by bearing failures [3,4]. The failures of rolling bearings often develop from the normal
stage to the incipient stage, then enter the stage of repeated failure, and finally reach the stage of
complete breakdown. The serious faults do not occur in an instant, but has a process of gradual
deterioration [5–7]. Therefore, it is of great significance to study the incipient fault detection of rolling
bearings, find the incipient signal characteristics of faults, and eliminate the safety hazards in time
when the fault has not developed toward a serious degree [8,9].

The fault detection methods mainly include model-driven and data-driven methods. Some scholars
have established rolling bearings degradation models by analyzing the prior physical knowledge of
rolling bearings [10,11], or completed the incipient fault detection of rolling bearings by analyzing
the characteristic frequency of failure of rolling bearings [12,13]. However, the model-based method
requires an accurate prior physical model of rolling bearings. The motion and internal stress of rolling
bearings are complicated, which causes the decline of accuracy and generalization. The data-driven
method is used to finding incipient failures by analyzing the collected data, and is more suitable
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for incipient failure detection of current large-scale industrial processes. The deep learning theory
brings opportunities to solve the feature extraction problems in rolling bearings fault detection with
its powerful feature extraction capabilities [14–17]. By continuously increasing the abstraction of
various representations, rich and differentiated features can be obtained and studied. However, the
computational intensity of the complicated model becomes stronger, which will lead to a decrease in
the training and detecting speed of the system in a large network structure. The method based on signal
processing is also a common detection method for incipient faults [18–20]. For example, the signal
feature processing based on the wavelet variation method [21] and empirical mode decomposition
method [22] has been generalized successfully in many applications. However, the incipient fault
features are usually weak and buried in the noises, and the noise in the entire signal makes the normal
state similar to the actual incipient fault, thus affecting the effect of fault detection.

Many scholars have proposed many methods for fault detection, but incipient fault detection still
mainly focuses on the following challenges [23–25]: 1. The incipient failure characteristics are weak,
and it is difficult to extract the fault characteristics. 2. The vibration signal is a kind of non-linear
and non-stationary signal, which brings difficulty to extract the rolling bear fault weak feature 3. The
collected signals can be easily affected by the noise and transmission loss, which makes it difficult to
extract signal characteristics. Therefore, the weak fault feature extraction is the key technology for
incipient fault detection of rolling bearings.

Literature [26] proposed an incipient fault detection method based on the Deep Principal
Component Analysis (Deep PCA). This method is used to the principle of deep decomposition to
accurately divide the data to extract weak fault features and detect incipient faults. However, Deep PCA
is a linear stationary transformation method, when it is used for a monitoring non-linear time-varying
system, its performance is greatly reduced since it does not fully take account of the characteristics
of the actual system. In order to solve this problem, many non-linear time-varying fault detection
methods have been proposed [27–30]. Schölkopf found that the Kernel Principal Component Analysis
(KPCA) was a common nonlinear principal component analysis method when researching support
vector classification algorithms [31]. It maps the input vector to a high-dimensional space through some
preselected non-linear mapping, so that the input vector has better separability, and then performs
linear principal component analysis on the mapped data in the high-dimensional space to obtain
the non-linear principal components. However, the vibration signals are time series data arranged
according to the time axis, and the system model will change gradually when the bearing is running.
Normal parameters often deviate from the statistical boundary of the model, causing the original
model to lose its existing effect and lead to a false alarm.

Aiming at the problems brought by the weak incipient fault characteristics, this paper proposes a
nonlinear dynamic incipient fault detection method for rolling bearings. This method first establishes
a dynamic kernel matrix by Dynamic Kernel Principal Component Analysis (DKPCA) method. Then
the moving window algorithm is used to update the latest samples to the dynamic kernel matrix
and discard the oldest samples without losing the time dynamics of the data during the model
building process. Finally, the updated matrix is decomposed into multiple subspaces for detection,
and fault information is fully mined. Based on this, the model update process is improved through the
autocorrelation matrix, which simplifies the recursive formula and improves the calculation speed.

The rest of the paper is arranged as follows. The basic theory is introduced in the second part.
The nonlinear dynamic incipient fault detection method is proposed in the third part. The feasibility
of the proposed method is proved by simulation experiments in the fourth part. The conclusion of
proposed method is made in the fifth part.
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2. Preliminary

2.1. Kernel Principal Component Analysis Method

Kernel Principal Component Analysis (KPCA) is a kind of non-linear principal component
analysis [32]. This method uses kernel functions to map non-linear data to high-dimensional linear
space, and performs linear principal component analysis on the mapped data in high-dimensional
space. KPCA can effectively eliminate redundancy among data and spatial correlation, non-linear
feature principal components for extracting main data information.

Let the data set = [x1, x2 . . . , xn]
T
∈ Rn∗m, where n is the sample number and m is the observed

variable. Formula (1) is the kernel function K
(
xi, x j

)
:

K
(
xi, x j

)
= exp (−

‖xi − x j‖
2

2σ2 ) (1)

The flow chart of KPCA is shown in Figure 1:
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Figure 1. The flow chart of Kernel Principal Component Analysis (KPCA).

2.2. Adaptive Dynamic Method

The vibration signal collected during the running of rolling bearings reflects the change of the
bearing with the running time [33,34]. Aiming at this time correlation, a moving window algorithm
was used to update the model in real time to achieve adaptive detection. On this basis, combined with
the autocorrelation matrix, the online update speed was approximately doubled.
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In the process of the update model, the recursive moving window is 1, and the update window
length is L, that is, the covariance matrix is updated every L data collection. Let the mean value Xa and
the covariance Ra of the previous matrix block Xa be known then the mean value Xm and covariance
Rm of Xm is:

Xm =
L

L− 1
Xa −

1
L− 1

xa (2)

Rm =
L− 1
L− 2

(Ra −
1
L

xa−L−1xT
a−L−1 −

∑
−1

a
∆Xma∆Xma

T
∑
−1

a
) (3)

According to Xm and Rm, the mean value Xa+1 and covariance Ra of Xa as follows:

Xa+1 =
L− 1

L
Xm +

1
L

xa+L (4)

Ra+1 =
L− 2
L− 1

Rm +
1

L− 1
xa+LxT

a+L +
∑
−1

a+L
∆Xm(a+L)∆Xm(a+L)

T
∑
−1

a+L
(5)

where, ∆Xma = Xm −Xa, ∆Xm(a+1) = Xa+1 −Xm.
According to Formulas (2)–(5), updating the covariance can avoid the complexity of calculating

large block matrices and matrix multiplication, but the calculation steps are still complicated. The
online update rate can quickly increased through the autocorrelation matrix:∑

−1

a
∆Xma∆Xma

T
∑
−1

a
=

1
L2 xaxT

a (6)

∑
−1

a+L
∆Xm(a+L)∆Xm(a+L)

T
∑
−1

a+L
=

1
L2 xa+LxT

a+L (7)

Substitute Formulas (3), (6), and (7) into Formula (5) obtaining the Formula (8):

Ra+1 = Ra +
L2 + L− 1
L2(L− 1)

(
xa+LxT

a+L − xaxT
a

)
(8)

The improved model only needs to directly calculate Xa+1 through Xa, which reduces the
calculation of the number of steps from four to just two, and the online update rate is improved by
double. It saves the storage space of hardware and greatly improves the calculation efficiency.

3. Nonlinear Dynamic Incipient Fault Detection Method

Due to the KPCA dynamic model method discards some fault features when extracting the main
components, which lead to this method cannot accurately detect weak fault information. This paper
combining PCA a deep decomposition theory proposes a nonlinear dynamic incipient fault detection
method based on Deep Adaptive Dynamic Kernel Principal Component Analysis (Deep ADKPCA).
This method decomposes the data set and retains most of the fault information, which can fully mine
the data to obtain more accurate fault information to achieve the purpose of incipient fault detection.

3.1. The Deep Decomposition Principle

In order to even better extract the feature of the weak fault in the vibration signal, combining
the deep decomposition theorem, the original space is decomposed into multiple data processing
layers, and the weak fault information in the signal is deeply mined to achieve the effect of incipient
fault detection.

According to the method in Section 2.1, the dynamic kernel matrix was decomposed into the
principal component space and the residual space is shown in the Formula (9):

XK = XK11 + XK12 (9)
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where, XK11 and XK12 represent the first-order subprincipal component space and subresidual space of
the original dynamic kernel matrix XK, respectively. It can be expressed as Formula (10):

XK11 = P11P11
TXK

XK12 =
(
I − P11P11

T
)
XK (10)

where, P11 is the principal feature vector of XK. Continue to divide XK11 and XK12 to obtain the
second-order subprincipal component space XK21, XK23 and subresidual space XK22, XK24. By analogy,
the original dynamic kernel matrix XK can be expressed as the sum of 2i subspaces, where i represents
the order. The subspace XKij can be expressed as Formula (11):

XKij =

 Pi jPi j
TXK i−1 ,( j+1)/2 j is odd(

I − Pi jPi j
T
)
X

K i−1, j
2

j is even (11)

By increasing the order of the Deep ADKPCA method, extremely weak fault information can be
detected, thereby achieving incipient fault detection. The structure of Deep ADKPCA is shown in
Figure 2:
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ADKPCA).

3.2. The process of Deep ADKPCA

Firstly, the EMD method was used to decompose the vibration signal to obtain n IMF components,
secondly the n IMF components were composed into a matrix, and thirdly the matrix was obtained by
kernel transformation to obtain a dynamic kernel matrix. Eigenvalue decomposition was performed
on the dynamic kernel matrix to obtain the principal component space and residual space. Finally, the
subprincipal component space and the subresidual space were decomposed multiple times to obtain
i-layer subspaces, calculate the statistics, and control limits of each subspace and compare them to
determine whether a fault occurs.

The T2
i j and SPEi j statistics for each subspace XKij as Formulas (12) and (13):

T2
i j = XK

TPi+1, 2 j−1Λ−1
i j PT

i+1 2 j−1XK (12)



Appl. Sci. 2020, 10, 2443 6 of 18

SPEi j =
n∑

c=1

ti j
2
c −

ai j∑
c=1

ti j
2
c (13)

where, ai j is the number of principal elements of the subspace XKij.
The T2

i j and SPEi j control the limit for each subspace XKij:

T2
i j satisfies the F distribution, and its control limit is shown in Formula (14):

Ti j
2
∼

ai j
(
N2
− 1

)
N

(
N − ai j

) Fai j,N−ai j (14)

SPEi j satisfies the χ2 distribution, and its control limit is shown in Formula (15):

δi j
2 = gi jχ

2
(
hi j

)
(15)

where, gi j =
ρ2

i j
2µi j

, hi j =
2µi j

2

ρ2
i j

. µi j and ρ2
i j are the mean and variance of SPEi j.

The flowchart of the fault detection method based on Deep ADKPCA is shown in Figure 3:
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Figure 3. The process of Deep Adaptive Dynamic Kernel Principal Component Analysis (Deep
ADKPCA).

4. Experimental Results and Analysis

This section used the comprehensive simulation test bench for mechanical failure to perform
experiments as shown in Figure 4. The experimental device included a comprehensive mechanical
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fault simulation test rig, AIC9916FS comprehensive fault diagnosis and analysis system software,
FL6816L16 channel sensor, BSZ800D-16 vibration signal acquisition instrument, and computer storage
device. In the experiment, the speed was 1730 r/min.
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There were three sets of data in the experiment. The first set was the vibration signal of a normal
undamaged rolling bearing to establish an offline model. The second set was the vibration signal of the
outer ring fault rolling bearing with a fault diameter of 0.2 mm, and the last set was the vibration signal
of the rolling body fault rolling bearing with a fault diameter of 0.2 mm. The online monitoring part
used the fault data collected by the second and third sets. Each set of vibration signal data collected
1024 samples, that is n = 1024. The update window size L = 3. The first control limit was calculated
through normal data in the offline modeling process, and then in the online monitoring process,
the model was updated every three samples collected. The selected fault diameter was relatively
small, and the fault features in the vibration signal were weak, so these faults were accounted as the
incipient fault.

4.1. Simulation Results and Analysis of The Rolling Bearing Outer Ring Faults

4.1.1. The Rolling Bearing Outer Ring Fault Simulation Results

When there is a defect point on the outer surface of a rolling bearing, the rolling bearing passes
the defect point during operation, which will generate a periodic pulse force to the system. Generally,
because the outer ring is fixed, the pulse intensity of each cycle is considered as constant, and the
periodic pulse signal presents the law of periodic equal amplitude vibration changes [35]. This section
simulates the incipient failure of the rolling bearing outer ring.

The validity and accuracy of proposed methods were tested, and the results were also compared
with other known methods such as ADKPCA, Deep KPCA, and Deep DKPCA.

The original data was divided into multiple subspaces according to the steps in Section 3.2,
and calculate the T2

i j and Qi j control limits and statistics of each subspace. The results are shown

in Figure 5. Figure 5a,b show the simulation results of T2
01 and Q01 statistics of the original space X

based on the Deep ADKPCA method, that is, the simulation results based on the ADKPCA method.
Figure 5c–j show the simulation results of T2

i j and Qi j statistics of the second-order subspace X21–X24

based on the Deep ADKPCA method, respectively. In the figures, the solid black line is the statistic,
and the red dotted line is the control limit with 95% confidence. If the statistics exceeded the control
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limit, a fault occurred, otherwise it is normal. Since the model was updated every three sets of data
when updating the model, the number of samples in the figure was about 340. From Figure 5a,b, T2

01
and Q01 were slightly affected by this fault. Figure 5d,f shows the detection results of incipient failures
of rolling bearings outer rings of Q21 and Q22, we could obtain that Q21 and Q22 were not sensitive to
this fault. Figure 5g,i show the results of the T2

23 and T2
24 statistics on the fault detection. From the

image, it can be seen that T2
23 and T2

24 were more sensitive to the fault, the fault detection rate was
around 90%. So, Deep ADKPCA the method had a good incipient fault detection capability.

Figure 6a–h describes the simulation results of T2
i j and Qi j statistics of the second-order subspace

X21–X24 based on the Deep KPCA method, respectively. Figure 6b,c,d shows the detection results of
incipient failures of rolling bearing outer rings of T2

22, Q21, and Q22, we could obtain that T2
22, Q21, and

Q22 were less affected by this fault. From Figure 6g, we could obtain that T2
24 was more sensitive to the

fault. The Deep KPCA method has some incipient fault detection capabilities, but it still has some
disadvantages compared to the Deep ADKPCA method.

Figure 7a–h describes the simulation results of T2
i j and Qi j statistics of the second-order subspace

X21–X24 based on the Deep DKPCA method, respectively. Figure 7a,g describes the detection results
of incipient failures of rolling bearing outer rings of T2

21 and T2
24, the rolling bearing outer rings fault

could be successfully detected by T2
21 and T2

24. From Figure 7c, we could obtain that this fault had no
obvious influence on T2

22.
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4.1.2. Performance Comparison

This section compared the experimental results of ADKPCA, Deep DPCA, Deep DKPCA, and
Deep ADKPCA by analyzing the fault detection rate and detection delay of the incipient failure
experiment results of the rolling bearing outer ring. The detection delay refers to the interval from
failure to detection. The fault detection rate refers to the ratio of the number of detected failures to the
total number of failures. In the experiments, the thresholds of ADKPCA, Deep DPCA, Deep DKPCA,
and Deep ADKPCA method were determined by the same confidence level, and the false detection
rate of all methods was similar, so it was not used as the evaluation index.

Figure 8a shows the fault detection rate of rolling bearing outer ring fault by ADKPCA, Deep KPCA,
Deep DKPCA, and Deep ADKPCA method. The fault detection rate of the ADKPCA fault detection
method was 62.86%. The detection effect by ADKPCA was low, this method basically did not have
incipient fault detection capability. The fault detection rate of Deep KPCA and Deep DKPCA was
about 80%, compared with ADKPCA method the detection rate had increased, but the detection
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capability still needs to be improved. The fault detection rate of Deep ADKPCA was 92.43%, which was
significantly higher than other methods, and had a certain incipient fault detection capability.
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Figure 8. (a)The fault detection rate of rolling bearing outer ring fault and (b) the detection delay of
rolling bearing outer ring fault.

Figure 8b shows the detection delay of the rolling bearing outer ring fault by ADKPCA, Deep KPCA,
Deep DKPCA, and Deep ADKPCA method. The ADKPCA method detected a failure at the fifth
augmented data point, that is, at approximately the 15th sampling point. We could obtain that the
Deep KPCA and Deep DKPCA methods were the 7th sampling points. The Deep ADKPCA method
detected a failure at the second augmented data point, that is, at approximately the 6th sampling point.
It can be seen from the failure delay that the Deep ADKPCA method could detect the incipient failure
of the rolling bearing outer ring earlier.

Therefore, the validity and accuracy of proposed methods were better than that of other methods.

4.2. Simulation Results and Analysis of The Rolling Bearing Rolling Body Faults

4.2.1. The Rolling Body Fault Simulation Results

The fault characteristics of rolling elements were more complicated, which was determined by the
motion characteristics of rolling elements. When the rolling bearing is in operation, it must not only
ensure the rotation with the cage, but also complete its own rotation [36]. When a rolling body fails,
the modulation frequency of its high-frequency resonance signal will be consistent with the rotation
frequency of the cage, and the signal in the frequency domain will have a larger amplitude spectral
line. Theoretically, the sideband distance on both sides of the spectral line should be consistent with
the rotation frequency of the cage. However, due to the interference of the rolling motion of the rolling
body, the performance of the actual collected vibration signal had weak characteristics. Fault detection
was difficult. This section tested the incipient failure of rolling elements to verify the accuracy of the
proposed Deep ADKPCA method. The simulation results were as follows.

The validity and accuracy of proposed methods were tested, and the results were also compared
with other known methods such as ADKPCA, Deep KPCA, and Deep DKPCA.

Figure 9 describes the simulation results of the Deep ADKPCA fault detection method for the
rolling bearing rolling body. Figure 9a,b shows the simulation results of T2

01 and Q01 statistics of the
original space X based on the Deep ADKPCA method, that is, the simulation results based on the
ADKPCA method. Figure 9c–j shows the simulation results of T2

i j and Qi j statistics of the second-order
subspace X21–X24 based on the Deep ADKPCA method, respectively. It can be seen from Figure 9a,b
that the failure detection rate of the ADKPCA method was about 50%, this method basically did not
have incipient fault detection capabilities. Figure 9c shows the detection result of the fault by the T2

21
statistic. It can be seen from the image that the T2

21 statistic was less sensitive to the fault than other
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statistic. Figure 9g,i,h shows T2
23, T2

24, and Q23 statistics for the fault detection result. From the images
we could obtain that T2

21, T2
24, and Q23 were more sensitive to this fault, and the fault detection rate

was about 85%. So, the Deep ADKPCA method had a good incipient fault detection capability.
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Figure 10 describes the simulation results of the Deep KPCA fault detection method for the rolling
bearing rolling body. Figure 10a–h describes the simulation results of T2

i j and Qi j statistics of the
second-order subspace X21–X24 based on the Deep KPCA method, respectively. Figure 10c,e shows the
detection results of incipient failures of rolling bearing outer rings of T2

22 and T2
23, we could obtain

that T2
22 and T2

23 were less affected by this fault. From Figure 10g, we could obtain that T2
24 was more

sensitive to the fault. The Deep KPCA method had some incipient fault detection capabilities, but it
still had some disadvantages compared to the Deep ADKPCA method.
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Figure 10. Experimental results of the Deep KPCA fault detection method for the rolling bearing rolling
body fault. (a) The result of T2
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Figure 11 describes the simulation results of the Deep DKPCA fault detection method for the
rolling bearing rolling body. Figure 11a–h describes the simulation results of T2

i j and Qi j statistics of
the second-order subspace X21–X24 based on the Deep DKPCA method, respectively. Figure 11b,g
describes the detection results of incipient failures of rolling bearing outer rings of Q21 and T2

24,
the rolling bearing outer rings fault could be successfully detected by Q21 and T2

24. From Figure 11e,
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we could obtain that this fault had no obvious influence on T2
23. Compared with the Deep KPCA

method, the incipient fault detection capability of Deep DKPCA method was improved. This is
because the Deep DKPCA method considered the timing correlation characteristic, but it still had some
disadvantages compared to the Deep ADKPCA method.
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Figure 11. Experimental results of the Deep DKPCA fault detection method for the rolling bearing
rolling body fault. (a) The result of T2

21, (b) The result of Q21, (c) The result of T2
22, (d) The result of Q22,

(e) The result of T2
23, (f) The result of Q23, (g) The result of T2

24 and (h) The result of Q24.

4.2.2. Performance Comparison

This section compared the experimental results of ADKPCA, Deep KPCA, Deep DKPCA, and Deep
ADKPCA by analyzing the failure detection rate and detection delay of the incipient failure experimental
results of rolling bearing rolling elements.

Figure 12a shows the fault detection rate of the rolling bearing rolling body fault by ADKPCA,
Deep KPCA, Deep DKPCA, and Deep ADKPCA method. The failure detection rate of the ADKPCA
failure detection method was 57.14%, which proved that this method basically did not have incipient
fault detection capability. The fault detection rate of Deep KPCA and Deep DKPCA was about 80%,
compared with ADKPCA method the detection rate had increased, but the detection capability still
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needs to be improved. Deep ADKPCA had a fault detection rate of 85.71%, which was significantly
higher than other methods, and had a certain incipient fault detection capability.
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Figure 12. (a) The fault detection rate of the rolling bearing rolling body fault and (b) the detection
delay of the rolling bearing outer rolling body fault.

Figure 12b shows the detection delay of the rolling bearing rolling body fault by ADKPCA,
Deep KPCA, Deep DKPCA, and Deep ADKPCA method. The ADKPCA method detected a failure at
the 9th augmented data point, that is, at about the 27th sampling point. The Deep KPCA and Deep
DKPCA methods found failures at the 14th and 5th sampling points, respectively. These methods
could quickly detect the incipient fault. The Deep ADKPCA method detected failures at the beginning
of the inspection without a time delay. From Figure 9b we could obtain that Q21 was more sensitive
to this fault, the fault was detected from the beginning of the fault without delay. It could be seen
from the failure delay that the Deep ADKPCA method could detect the incipient failure of the rolling
bearing outer ring earlier.

It can be seen that Deep ADKPCA method could quickly detect the fault than the other
three methods, and its detection rate was also the higher among the four methods. In summary,
Deep ADKPCA had good fault detection performance.

5. Conclusions

Aiming at the problems that the incipient fault characteristics are weak, and the vibration signals
of rolling bearings are a set of time series with non-linear and timing correlation, a nonlinear dynamic
incipient fault detection method based on Deep ADKPCA was proposed. This method combines the
advantages of Deep PCA and moving window algorithm, effectively captures the noise information by
capturing the timing relationship between variables, fully mines the fault information in the signal,
and improves the incipient detection capability of the fault. The proposed method uses the concept
of kernel function, constructs a dynamic non-linear principal component model, and has the ability
to handle non-linear and non-stationary signals. Compared with the fault detection results of the
ADKPCA, Deep KPCA, and Deep DKPCA methods, the fault detection rate of the Deep ADKPCA
method proposed in this paper was more than 85%, the detection delay was almost zero, and the ability
to detect incipient faults was significantly improved. It was proved that Deep ADKPCA incipient fault
detection method had a certain feasibility. The application of this method in other fields such as motors
and rotors needs further research.
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