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Abstract: Recently, graph neural networks (GNNs) have achieved great success in dealing with
graph-based data. The basic idea of GNNs is iteratively aggregating the information from neighbors,
which is a special form of Laplacian smoothing. However, most of GNNs fall into the over-smoothing
problem, i.e., when the model goes deeper, the learned representations become indistinguishable.
This reflects the inability of the current GNNs to explore the global graph structure. In this
paper, we propose a novel graph neural network to address this problem. A rejection mechanism
is designed to address the over-smoothing problem, and a dilated graph convolution kernel is
presented to capture the high-level graph structure. A number of experimental results demonstrate
that the proposed model outperforms the state-of-the-art GNNs, and can effectively overcome the
over-smoothing problem.
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1. Introduction

Graph structure data is ubiquitous in the real world, such as social networks [1–5],
citation networks [6–8], wireless sensor networks [9], and graph-based molecules [10,11]. Recently,
graph neural networks (GNNs) have aroused a surge of research interest. The goal of GNNs is to
learn representation vectors of nodes in a graph, and then the learned vectors can be used in many
graph-based applications, such as link prediction and node classification [12–16]. The general idea of
GNNs is “message propagation”, i.e., each node iteratively passes, transforms, and aggregates messages
(i.e., features) from its neighbors. Then, after k iterations, each node can capture the information of its
neighbor nodes within k-hops.

There are many works in developing graph neural networks. GCN [17] simplifies the localized
spectral filters used in [18] by weighted propagating information. GraphSAGE [6] proposes several
types of aggregation strategies to propagate messages from neighbors effectively. GAT [10] adopts
a self-attention [19] to dynamically propagate messages.

However, the majority of these models suffer from the “over-smoothing” problem [20,21].
Specifically, message propagation is proved to be a type of Laplacian smoothing. Stacking too many
layers (i.e., repeatedly applying Laplacian smoothing many times) may lead to the representations of
nodes indistinguishable and hurt the performance of GNNs [20]. Furthermore, a random walk view to
message propagation shows GNNs converge to a random walk distribution [21], leading to similar
conclusions with the “over-smoothing” problem.

As a matter of fact, many GNNs are shallow neural networks with only two or three layers. Thus,
limited neighborhood information is captured. Moreover, adding additional layers cannot always
improve the performance of GNNs, and may even have an opposite effect on GNNs [17,20]. The above
discussions reflect the inability of the current GNN models in exploring the global graph structure.
Therefore, although a sufficient size of neighborhoods may help models to capture the high-level graph

Appl. Sci. 2020, 10, 2421; doi:10.3390/app10072421 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2986-2574
http://www.mdpi.com/2076-3417/10/7/2421?type=check_update&version=1
http://dx.doi.org/10.3390/app10072421
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 2421 2 of 16

patterns [12,20,21], most of GNNs fall into the over-smoothing problem and can only capture limited
local structure of nodes.

In this paper, we focus on dealing with the limitations of current GNNs, i.e., the need and the
bottleneck both introduced by the global information. In detail, we propose a rejection mechanism,
which softly rejects information from distant nodes, and allows our model to be free from the
over-smoothing problem. To further capture the global graph structure, a graph dilated convolution
kernel is proposed, and enlarges the size of the neighborhood at each layer.

The main contributions of this paper are summarized as follows.

• We propose a novel graph neural network model, i.e., Graph Dilated networks with Rejection
mechanism (GraphDRej), to learn expressive node representations.

• We design a rejection mechanism, which is a simple but effective strategy to address the
over-smoothing problem.

• We present multiple graph dilated convolution kernels to explore a sufficient size of
neighborhoods in message propagation.

• Extensive experimental results show that the proposed model achieves state-of-the-art results.
Also, the effectiveness of both the rejection mechanism and the graph dilated convolution kernel
used in GraphDRej is demonstrated.

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3
presents the preliminaries. Section 4 analyzes the limitation of existing GNNs. Section 5 proposes
GraphDRej model, i.e., Graph Dilated Network with Rejection Mechanism. Section 6 reports the
experiments. Section 7 concludes the paper.

2. Related Work

Recently, a vast amount of literature has focused on analyzing graph-based problems by
leveraging the graph neural networks [6,10,17,22–24]. GCN [17] is a pilot work, which simplifies
the localized spectral filters used in [18], and extracts the 1-localized information for each node in
each convolution layer. Then, the deeper relational features can be captured by stacking multiple
convolution layers. GraphSAGE [6] takes the representation learning into a formal pattern, i.e.,
aggregation and combination, and proposes several kinds of aggregation strategies. Actually, GCN can
be taken as a special case of GraphSAGE. GAT [10] considers the diversity in neighborhoods,
and leverages the self-attention mechanism [19] to effectively select important information in
neighborhoods. GG-NN [25] designs a gate mechanism-based aggregation function, which provides
a weighted average of the messages from neighbors and the center node. Besides, there are some
works [26,27] considering the imbalanced nodes in representation. Although these GNNs can
characterize the node structure and learn the representations of nodes, most of them suffer from
the over-smoothing problem.

Meanwhile, there are several works analyzing the mechanism of the graph neural networks,
which are related to the over-smoothing problem. Li et al. (2018) [20] took graph neural networks as
a special form of Laplacian smoothing, which is the main reason why GNNs work. At the same time,
it shows the limitation of current GNNs, i.e., GNNs cannot capture the global graph structure due to
the over-smoothing problem. Although Li et al. (2018) [20] proposed to leverage co- and self-training
to improve the GNN performance, both co- and self-training are designed to deal with the limited
validation issue. Therefore, the over-smoothing problem mentioned by Li et al. (2018) [20] still needs
to be solved. Xu et al. (2018) [21] provide another viewpoint of GNNs. The message propagation of
GNNs can be considered as a modified random walk. The distribution of influence scores between two
nodes converges to a stationary distribution, which also reflects the over-smoothing problem. Xu et al.
(2018) [21] proposed a densenet-like [28] module to aggregate neighbors from different hops adaptively
as well as to address the over-smoothing problem. The PN [29] model proposes a novel normalization
layer, which is applied on the output of the graph convolution layer to address the over-smoothing
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problem. Normalizing the representations of nodes can prevent these representations from being
too similar. MADReg [30] provides a topological view of the over-smoothing problem and brings
a MADReg loss to avoid the representations of the distant nodes to be similar to the representations of
the neighbor nodes. Experimental results (see Section 6.5) show MADReg can only relieve rather than
prevent this problem. Although some of these works can solve the over-smoothing problem, none of
them considers how to capture a suitable larger neighborhood well to learn better node representations
in a situation where GNNs are free of the over-smoothing problem. In this paper, GraphDRej can not
only overcome the over-smoothing problem by a rejection mechanism, but also better characterize
node structures by multiple graph dilated convolution kernels. Related experimental results are shown
in Sections 6.4 and 6.5.

3. Preliminaries

We begin with summarizing the common GNN models and, along the way, introduce our
notations. We represent a graph G as (V, E), where V denotes the node set and E is the edge set. Let A
be the adjacency matrix of G. The k-hop neighborhood Nk(v) of node v is the set of all nodes reaching
to node v in k steps exactly. As default, N(v) is the 1-hop neighborhood of node v. Each node v ∈ V is
associated with a feature vector Xv and a label yv.

Most GNNs aim to learn a node representation mapping function by using the graph structure
and node features. Current GNNs follow a “message propagation” scheme, where at each iteration,
the node can aggregate the information (i.e., “messages”) from its neighbors. Therefore, after k
iterations of propagation, the node representation can capture k-hop structure information. Formally,
at the k-th layer, a GNN can be expressed as

m(k)
v = AGGREGATE

(
{h(k−1)

u : u ∈ N(v)}
)

(1)

h(k)v = COMBINE
(

m(k)
v , h(k−1)

v

)
(2)

where h(k)v is the representation (i.e., “message”) of node v at the k-th layer, which captures the k hop
structure information, and m(k)

v can be taken as the integrated message representation from neighbors.
The initialization message h0

v = Xv. AGGREGATE is a message propagation function which aggregates
information from neighbors, and COMBINE is a function that combines the information from different
hops. An illustration is shown in Figure 1. All the information from the neighbors (i.e., nodes 2–6) of
the center node 1 is merged by AGGREGATE. Then, COMBINE combines the information from the
neighbors and the center node 1.

Figure 1. The illustrations of the AGGREGATE and COMBINE functions. To learn the representation of
node 1, the AGGREGATE function aggregates the neighbor information of node 1. Then, the COMBINE
function combines the aggregated information and the information of node 1 itself.



Appl. Sci. 2020, 10, 2421 4 of 16

Different models have different propagation functions. For example, Graph Convolutional
Network (GCN) [17] proposes a degree-normalized algorithm to aggregate neighbors’ messages.
The propagation rule (i.e., Equation (1)) of GCN can be presented as

h(k)v = σ

W(k) ∑
u∈{v}∪N(v)

h(k−1)
u√

|N(u)||N(v)|

 (3)

where W(k) is the weight matrix. AGGREGATE and COMBINE are fused into one function (i.e.,
u ∈ N(v) in Equation (1) and u ∈ {v} ∪ N(v) in Equation (3)), and σ is a nonlinear function.

4. Limitation of Existing GNNs

Although GNN models significantly outperform many state-of-the-art methods on some
benchmarks, there remain some problems that limit the performance of GNNs.

In point of fact, the message propagation scheme in GNNs can be taken as a random walk [21].
The influence score of node u on node v, which measures the effect of the input feature of node u to
the representation of node v, can be defined as

I(v, u) = ∑
i
∑

j

∣∣∣∣∣∣ ∂h(k)v,i

∂h(0)u,j

∣∣∣∣∣∣ (4)

where h(k)v is the representation vector of node v at the k-th layer, h(k)v,i refers to the i-th dimension of

h(k)v , and h(0)u = Xu. Then, the expected distribution of the normalized influence score follows a slightly
modified k-step random walk distribution P(u|v, k) starting at the root node v [21]. Thus, the message
propagates from node u to node v in a random walk pattern.

As we know, the node sequence (vt : t = 0, 1, . . . ) generated by a random walk is a Markov
chain. When k→ ∞, the probability distribution P(u|v, k→ ∞) converges to a stationary distribution
(i.e., P(o|x) ≡ P(o|y) for any node x, y, o ∈ V) [31]. It means that, for the message propagation
scheme, the representation of each node is influenced almost equally by any other nodes (i.e., I(x, o) ≈
I(y, o)) [21] when GNNs go deeper (i.e., a large value of k). In other words, the node representations
may be over-smoothed and lose their focus by the information from distant nodes [20], which is called
the over-smoothing problem.

Therefore, one of the limitations of existing GNNs is that most GNN models cannot go deeper.
A deeper version of these models even performs worse than a shallow version, and the best
performance of these models is usually achieved within two or three layers [17]. Although a sufficient
size of neighborhoods is especially important, which allows the models to explore a more complex
graph structure and aggregate useful neighbors’ information [20,21], existing GNNs can only capture
limited structure information in a small size of the neighborhoods.

In summary, on the one hand, when we stack too many layers in a GNN model, the node
representation will be over smoothed, which makes the node representation indistinguishable. On the
other hand, there always exists a need for a sufficient size of neighborhoods to learn a more effective
representation [20,21]. Therefore, in this paper, we propose a new neural network architecture to tackle
the over-smoothing problem and capture a larger size of neighborhoods at the same time.

5. Graph Dilated Network with Rejection Mechanism

In this section, we introduce the proposed model, called Graph Dilated network with Rejection
mechanism (GraphDRej). To overcome the conflict of GNNs just shown in the preceding section,
we propose two main components, i.e., the rejection mechanism and the graph dilated convolution
kernel. Generally speaking, at each layer, each node can aggregate messages from a large neighborhood
via graph dilated convolution kernels, and a hop penalty parameter is introduced to implicitly reject
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the information from distant nodes (addressing the over-smoothing problem). At the last layer,
a cross-entropy loss is adopted to optimize the parameters of the proposed model. Figure 2 illustrates
the architecture of the proposed model.

Figure 2. The architecture of Graph Dilated networks with Rejection mechanism (GraphDRej).

5.1. Rejection Mechanism

5.1.1. Method

To address the over-smoothing problem, we propose a simple but effective Rejection Mechanism
(RM). As discussed in Section 4, the over-smoothing problem is caused by averaging too much
information from distant neighbors. Therefore, we introduce a learnable hop penalty parameter
c(k) ∈ R (optimized by the backpropagation) at each layer to adaptively control the messages flowing
from one layer to the next layer (i.e., from one hop to the next hop). In this way, the model can reject
the messages from distant nodes to address the over-smoothing problem.

Different from GAT, which dynamically selects messages from 1-hop neighbors, the rejection
mechanism is a layer-wise or hop-wise operation. Specifically, the rejection mechanism focuses on
the combination function (i.e., Equation (2)) introduced in the message propagation. At the k-th layer,
the hop penalty parameter c(k) is applied into the integrated message representation from neighbors,
and then the combination function can be rewritten as

c(k)
′
= sigmoid

(
c(k)
)

h(k)v = σ
(

W(k)(h(k−1)
v ⊕c(k)

′ �m(k)
v
))

(5)

where W(k) is a weight matrix, c(k)
′ ∈ [0, 1] is the rescaled penalty parameter, and � refers that each

element of the vector m(k) multiplies the rescaled hop penalty parameter c(k)
′
. Intuitively, the value of

c(k)
′

can be regarded as a gate to influence the message propagation from neighbors to the center node.
⊕ is an element-wise addition operation.

To fully understand the proposed rejection mechanism, we provide an example (shown in
Figure 3) to illustrate how it works to address the over-smoothing problem. For simplicity, a chain
graph containing four nodes is taken as an example, and only considers the predecessor nodes as
1-hop neighbors. Considering a three-layer graph neural network, which adopts the mean aggregation
function and the proposed combination function with RM, the propagation in the k-th layer for this
chain graph can be expressed as (ignoring the weight matrix and nonlinear function in Equation (5))

m(k)
i = h(k−1)

i−1 (6)

h(k)i = h(k−1)
i ⊕c(k)m(k)

i

= h(k−1)
i ⊕c(k)h(k−1)

i−1 (7)
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where i, k ∈ {1, 2, 3}, the symbol � in Equation (5) is ignored for expressing convenience, and c(k)

refers to the rescaled parameter c(k)
′
.

Figure 3. An example of the reject mechanism in a chain graph.

Then, the node 3’s representation obtained from the last layer, can be represented as

h(3)3 =h(0)3 ⊕(c
(1) + c(2) + c(3))h(0)2

⊕(c(1)c(2) + c(1)c(3) + c(2)c(3))h(0)1

⊕c(1)c(2)c(3)h(0)0 . (8)

It reveals that the influence from the distant node 0 to the representation of node 3 is punished by
∏3

k=1 c(k). Due to c(k) ∈ [0, 1], multiple multiplications will lead to a small value, which adaptively
controls the message flowing from distant nodes (e.g., node 0) to the representation node (e.g., node 3).

Therefore, the benefits of the proposed rejection mechanism can be summarized as follows.
(1) When stacking layers to build a deep GNN, the information from distant nodes will be more likely
to be punished or even rejected. It is a simple but effective way to address the over-smoothing problem.
(2) The information from distant nodes can also affect the node representation, which helps to capture
the global structure. (3) The combination of the hop penalty parameters leads to adaptively aggregate
information from different hops, which contributes to building a more powerful deep graph model.

5.1.2. Discussion

We notice that the graph neural network GG-NN [25] proposes a gate mechanism to aggregate
neighbors, which is similar to the rejection mechanism proposed in our paper. The differences between
these two mechanisms are summarized as follows. (1) The motivations of these two mechanisms
are different. For GG-NN, the gate mechanism is proposed to dynamically aggregate neighbors’
information based on the information of neighbors and the center node. For GraphDRej, the rejection
mechanism is proposed to reject the information from distant nodes to address the over-smoothing
problem. (2) The rejection mechanism is simpler and does not require much computation, whereas for
GG-NN, the gate computation involves several multiplication and addition operations of matrices [25].
(3) The rejection mechanism is a more direct way that strictly limits the information from the distant
nodes by the penalty parameters, whereas in GG-NN, according to Equation (6) in the original paper
of GG-NN [25], not only the messages from the neighbors are rescaled, but also the message from
the center node is rescaled. This means the gate mechanism in GG-NN is more like a weighted
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average of the message from neighbors and the center node, and the messages from the center
node may also be rejected. Experimental results (see Section 6.6) show GG-NN still suffers from the
over-smoothing problem.

To further analyze the connection between the rejection mechanism and the gate mechanism,
we propose a gate-based version of GraphDRej (denoted as GraphDRej-Gate). The only difference
between GraphDRej and GraphDRej-Gate is the computation of the penalty parameter. The penalty
parameter c(k) in GraphDRej is used for all the nodes in the same layer, whereas the penalty parameter
c(k)v in GraphDRej-Gate is used for node v in the same layer.

c(k)v = sigmoid
(
W(k)m(k)

v + U(k)h(k−1)
v

)
(9)

where W(k) and U(k) are the transformation matrices. Compared with GG-NN, the rejection (gate)
mechanism in GraphDRej-Gate is only applied to the neighbors’ messages, which helps to address
the over-smoothing problem (see Section 6.6). Note that although the gate mechanism is common
in other research areas, how to apply the gate mechanism on GNNs to address the over-smoothing
problem is still an open question. For example, GG-NN falls into the over-smoothing problem,
while GraphDRej-Gate can solve this problem. Actually, the rejection mechanism is a more general
idea and leads to a direction on addressing this problem, and the penalty parameter can be a simple
learnable parameter or can be computed by a gate function.

5.2. Graph Dilated Convolution Kernel

To have a sufficient size of neighborhoods in message propagation, we explore the idea of dilated
convolution kernel [32] used in Computer Version to enlarge the reception field. Then, we propose
a graph dilated convolution kernel, which changes the standard and single message propagation
scheme, i.e., one layer for searching 1-hop neighbors, and brings the diversity of propagation schemes.

Specifically, we introduce a graph dilation rate γ, which refers to the distance between the node
and its neighbor nodes. Figure 4 illustrates the examples of graph dilated convolution kernels with
γ ∈ {1, 2, 3}. Actually, the standard graph convolution kernels used in GNNs can be taken as a special
case of our graph dilated convolution kernel where γ = 1. Obviously, a larger value of γ allows the
model to explore nodes from a larger neighborhood. For example, a two-layer stacked graph dilated
convolution (γ = 3) network can view neighbors within six hops, whereas for a standard two-layer
stacked graph convolution network, only neighbors in two hops are considered. Therefore, we can
enlarge the neighborhood size via graph dilated convolution kernels.

(a)γ = 1 (GCN-like) (b)γ = 2 (c)γ = 3

Figure 4. An example for graph dilated convolution kernel with different values of γ. The red node
refers to the center node, and the corresponding neighborhood of the center is constructed by the blue
nodes. Note that when γ = 2, only the neighbors in exact 2-hops are considered.

As presented above, different graph dilated convolution kernels take nodes in different hops as
the neighborhoods. To have a diverse and sufficient size of neighborhoods, multiple types of graph
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dilated convolution kernels are simultaneously applied to the center node. Then, we further propose
Multi Graph Dilated Convolution Kernels (MGDCK). At each k-th layer, multiple types of graph
dilated convolution kernels are adopted. Each node v may aggregate the messages not only from
1-hop neighbors (i.e., N(v)), but also from 2-hop neighbors (i.e.,N2(v)). Formally, when each layer
contains T types of graph dilated convolution kernels, the AGGREGATE and COMBINE functions can
be expressed as

m(k,t)
v = AGGREGATE

({
h(k−1,t)

u : u ∈ Nt(v)
})

(10)

h(k,t)
v = COMBINE

(
m(k,t)

v , h(k−1,t)
v

)
(11)

where t ∈ {1, 2, 3, . . . , T}, COMBINE refers to the combination function with RM mentioned in
Section 5.1, and the implementation of AGGREGATE can be various. In this paper, we adopt a mean
aggregation strategy. Other aggregation functions can also be applied. Then, the representation of
node v at the k-th layer is the mean of all the representation vectors produced by T graph dilated
convolution kernels

h(k)v = mean
({

h(k,t)
v : t ∈ {1, 2, 3, . . . , T}

})
. (12)

Note that other pooling strategies such as max-pool, min-pool, and attention-pool can also be
considered as the summarization operators on all the representations from these T graph dilated
convolution kernels. Here, we only take the mean-pool as an example.

Although directly stacking layers can also enlarge the size of neighborhoods, too many layers may
introduce the difficulty of the model training. The experimental results also show the effectiveness of
graph dilated kernels compared with the directly stacking strategy (see Section 6.7).

5.3. Training

In this section, we introduce the training details of GraphDRej, including the loss function and
the overall algorithm.

5.3.1. Loss Function

We follow the loss used in standard GNNs [6,10,17]. The loss function of GraphDRej is
a supervised loss, i.e., making a prediction for the label of each training node. The supervised
loss is defined as the cross-entropy.

zv = softmax
(
Wzh(K)v

)
(13)

Loss = ∑
v

yvlnzv (14)

where Wz is a weight matrix, h(K)v is the output of last layer and is taken as the learned node
representation vector, and zv is the label prediction of node v in the training nodes.

5.3.2. Overall Algorithm

The overall algorithm of GraphDRej is summarized in Algorithm 1. First, in each iteration,
we sample a batch of nodes from the training nodes in Line 4. At each layer k, multiple graph dilated
convolution kernels are applied to aggregate information from neighbors (Lines 8–9), and a rejection
mechanism based combination is adopted to combine the information from the neighbors and the center
node (Lines 10–11). Then, the node representation vector is updated by averaging the representation
produced by different graph dilated convolution kernels (Line 13). We calculate the label prediction and
the cross-entropy loss in Lines 16–17. After the forward propagation (Lines 4–17), backward propagation
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is carried out to update the parameters in Line 18. Finally, after the convergence, we take the last layer
output as the embeddings of nodes in Line 20.

Algorithm 1: The Algorithm of GraphDRej.

Input: Graph Gs = (Vs, Es);
Node features {Xv, ∀v ∈ V};
The number of layers K;
The dimension of the representation vector;
The number of the dilated convolution kernels T;
The value of each γ;
Output: the node embedding hv, ∀v ∈ V

1 Set h(0)v = Xv, ∀v ∈ V;
2 Initialize the parameters of GraphDRej;
3 while not converging do
4 Sample source node batch B from the training nodes;
5 for k=1,...,K do
6 for v ∈ B do
7 for t = 1, ..., T do
8 //AGGREGATE;
9 Aggregate neighbors information by the graph dilated convolution kernel in the current

γ, i.e., calculating m(k,t)
v according to Equation (10);

10 //COMBINE;
11 Combine neighbor information and the information of the center node, i.e., calculating

h(k,t)
v according to Equation (11);

12 end
13 Update the representation of vector of node v in the k-th layer by averaging all the

representation vectors produced by T graph dilated convolution kernels, i.e., calculating h(k)v
according to Equation (12);

14 end
15 end
16 Calculate the prediction label of each node in B according to Equation (13);
17 Calculate the loss function according to Equation (14);
18 Backward propagate and update parameters in GraphDRej;
19 end

20 Return hv ← h(K)v , ∀v ∈ V.

6. Experiments

We evaluate the benefits of GraphDRej against a number of state-of-the-art graph neural networks
with the goal of answering the following questions.

Q1. How does the GraphDRej perform in comparison to the state-of-the-art GNNs?
Q2. Can the proposed rejection mechanism address the over-smoothing problem?
Q3. How much improvement is provided by multiple graph dilated convolution kernels?

6.1. Data Sets

To adequately evaluate the performance of our model and baselines, the experiments are
conducted on three real-world data sets.

Cora is a research paper-based graph. It contains 2708 machine learning papers from seven
classes and 5429 links between them. The links are citation relationships among the papers.
Each paper is described by a binary vector of 1433 dimensions, indicating the presence of the
corresponding words.
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Citeseer is another research based graph that contains 3327 publications from six classes and 4732 links
between them. Similar to Cora, the links are citation relationships among these papers, and each
paper is described by a binary vector of 3703 dimensions.

Pubmed is also a citation graph, and contains 19,717 papers from three classes as well as 44,338 links
between them. Similar to Cora, the links are citation relationships among the papers, and each
paper is described by a binary vector of 500 dimensions.

The statistics of the data sets are presented in Table 1.

Table 1. Data set information.

Data Set #Nodes #Edges #Class #Features

Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19,717 44,338 3 500

6.2. Baselines

In the performance comparison, we consider the state-of-the-art baselines based on GNNs.

GCN [17] is a graph convolution neural network, which simplifies the localized spectral filters used
in [18], and extracts the 1-localized information for each node in each convolution layer.

GraphSAGE [6] extends GCN to a more general way, and introduces two basic functions, i.e.,
the aggregation function and the combination function.

GAT [10] employs the idea of self attention [19] to filter important messages from neighbors.
JK [21] deals with the over-smoothing problem, which uses a densenet-like [28] module to adaptively

aggregate neighbors information from different hops.
PN [29] proposes a novel normalization layer which is applied on the output of the graph

convolutional layer. In this way, PN can address the over-smoothing problem.
MADReg [30] also focuses on the over-smoothing problem. It takes the gap of MAD values

(MADGap) as a regularization term to avoid the representations of distant nodes to be similar.
GG-NN [25] proposes a gate mechanism to aggregate the messages from neighbors.
GraphDRej-Gate is a gate version of GraphDRej, in which the penalty parameter is calculated by

a gate function.

6.3. Experimental Setting

We set the dimension of the representation vector to 16 for all models. Moreover, we use
the pooling aggregation in GraphSAGE, which achieves the best performance compared to other
aggregation strategies, (as discussed in [6]). For JK, we use the Maxpool for the same reason as
GraphSAGE. All models are trained using the Adam SGD optimizer [33] with an initial learning rate
of 0.01. We use dropout rate d = 0.2 for all layers. For all data sets, we take 20% nodes as the training
nodes, 40% nodes as the validation nodes, and the rest 40% as the test nodes. We use an early stopping
strategy on both the model loss and accuracy score on the validation nodes, with the patience of
20 epochs.

6.4. Results for Node Classification Task

To fully evaluate the performance of GraphDRej (including RM and MGDCK) and baselines,
we not only report the classification accuracy (shown in Table 2) of these models with the same
two layers but also report the best results (presented in Table 3) achieved by these models with
different numbers of layers. These results provide the positive evidence to question Q1: GraphDRej
significantly outperforms previous models both on the two-layer results and on the best results over
all data sets. For the tasks with the two-layer models, GraphDRej achieves an improvement ranging
from 0.68% to 6.18% over all data sets. Also, compared with the best results, GraphDRej achieves
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gains from 0.15% to 4.77% over all data sets. Furthermore, compared with the GNNs (i.e., JK,
PN, and MADReg), which consider the over-smoothing problem, GraphDRej also achieves the best
performances. Although GG-NN adopts a gate mechanism which is similar to our proposed
rejection mechanism, GraphDRej can also outperform GG-NN (further analysis can be found in
Section 6.6). These analyses show the effectiveness of GraphDRej on learning a more meaningful
node representation.

Table 2. Node classification accuracy (%) for two-layer graph neural networks (GNNs). The list in
parentheses next to the accuracy of GraphDRej refers to the value set of γ adopted by the corresponding
GraphDRej on different data sets.

Method\Data Sets Cora Citeseer Pumbed

GraphSAGE 76.20 71.00 84.54
GCN 79.98 71.90 80.70
GAT 76.66 70.85 84.62

JK 74.82 71.53 84.75
PN 75.46 71.83 83.64

MADReg 76.38 71.07 84.56
GG-NN 73.99 70.85 84.62

GraphDRej 81.00 (γ = [1, 2]) 72.58 (γ = [1, 2]) 85.39 (γ = [1, 2])

Table 3. The best performance for GNNs on the node classification task. For baselines, the number
in parentheses next to the accuracy indicates the best performing number of layers. For GraphDRej,
the first number in parentheses has the same meaning as that in baselines, and the second list in
parentheses refers to the value set of γ adopted by the corresponding GraphDRej.

Method\Data Sets Cora Citeseer Pumbed

GraphSAGE 80.54 (6) 71.45 (4) 84.54 (2)
GCN 80.26 (4) 71.90 (2) 80.70 (2)
GAT 80.54 (6) 70.85 (2) 84.62 (2)

JK 81.83 (9) 71.53 (2) 85.32 (4)
PN 79.34 (6) 71.83 (2) 83.67 (2)

MADReg 81.37 (6) 71.30 (4) 84.56 (2)
GG-NN 77.40 (4) 70.85 (2) 84.85 (4)

GraphDRej 83.39 (3, [1,2]) 72.58 (2, [1,2]) 85.47 (2, [1,2,3])

6.5. Evaluation of Rejection Mechanism

Actually, the proposed rejection mechanism (RM) is a general method to address the
over-smoothing problem. Therefore, we apply the RM to other GNN models to evaluate whether
RM can help these GNNs to prevent the over-smoothing problem (i.e., answering the question Q2).
Additionally, we also provide the results of GraphDRej to show the effectiveness of RM. Furthermore,
to avoid the influence of multiple dilated convolution kernels, for GraphDRej, we apply a single dilated
convolution kernel with γ = 1 (i.e., a GCN-like kernel). The results on Cora in terms of classification
accuracy are presented in Figure 5 (similar performance trends are also observed on other data sets).

Some observations can be summarized as follows.
Evaluation with the standard GNNs. First, we evaluate the RM with the standard GNNs, which suffer
the over-smoothing problem. As shown in Figure 5a–d, when we gradually increase the number of
layers, most of the original models fail in the over-smoothing problem. Specifically, when it comes to
a deeper model (e.g., the layer of GNNs is 9 or 10 in Figure 5), the performance of most of these models
sharply decreases, which also supports the discussion mentioned in Section 4. When we apply RM
to these failed models, all of these models in a deep version obviously overcome the over-smoothing
problem and achieve high performances. Thus, it indicates the rejection mechanism is indeed beneficial
to solving the over-smoothing problem.
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(a) GraphDRej vs. #layers (b) GraphSAGE vs. #layers (c) GCN vs. #layers (d) GAT vs. #layers

(e) JK vs. #layers (f) PN vs. #layers (g) MADReg vs. #layers

Figure 5. The results of GNNs combined with the rejection mechanism on Cora. “XX-Rej” refers to
the model XX with the rejection mechanism, and GraphDRej-NRej refers to the version of GraphDRej
without the rejection mechanism.

Evaluation with the GNNs, which also address the over-smoothing problem. Then, we evaluate the
RM with the GNNs (i.e., JK [21], PN [29], and MADReg [30]), which also address the over-smoothing
problem. (1) As seen in Figure 5e–f, both JK and PN can well solve the over-smoothing problem,
as the performances do not drop sharply with the increasing of the layer number. (2) As shown in
Figure 5g, it seems that the over-smoothing problem still exists in MADReg. Similar conclusions
can be found in the original paper of MADReg [30]. Specifically, from Table 5 in [30], we can find
that although MADReg can improve the performance of the standard GNNs, the performance of
a GNN with the MADReg in a deep version is far away from the performance of that in a shallow
version. (3) Then, we apply RM on these GNNs (including JK, PN, and MADReg). JK still can be
improved by RM. PN-Rej achieves comparable performance with PN. For MADReg, as discussed
above, MADReg cannot well address the over-smoothing problem. With the help of RM, MADReg-Rej
can achieve a big improvement and address the over-smoothing problem.

6.6. Evaluation between Rejection Mechanism and Gate Mechanism

To further analyze the rejection mechanism, we conduct experiments to evaluate the performances
between the rejection mechanism and the gate mechanism. In order to avoid the influence of
multiple graph dilated convolution kernels, the variants of GraphDRej (including GraphDRej and
GraphDRej-Gate) used in this section only adopt a single kernel, i.e., γ = 1. The nodes classification
results with the different number of layers are reported in Table 4. It shows that the performance of
GG-NN drops quickly when the number of layers increases. It indicates that although GG-NN adopts
a gate mechanism, the over-smoothing problem still exists, whereas for GraphDRej-Gate, it successfully
overcomes this problem and achieves comparable performance with GraphDRej. It shows the main
factor to solve the over-smoothing problem is to reject the message from distant nodes with the penalty
parameter, which can be implemented by a learnable parameter or a gate function.
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Table 4. Rejection mechanism vs. gate mechanism. We report the accuracy (%) of nodes classification
with different numbers of layers on Cora.

Method\#layers 1 2 3 4 5 6 7 8 9 10

GG-NN 67.90 73.99 76.66 77.40 76.01 30.44 30.44 30.44 30.44 30.44
GraphDRej 73.52 78.04 79.43 79.61 80.17 80.44 80.26 79.70 78.60 80.17

GraphDRej-Gate 71.31 76.94 79.70 80.17 80.81 80.44 80.90 79.43 80.54 73.80

6.7. Evaluation of Multiple Graph Dilated Convolution Kernels

To address Q3, we design two types of classification tasks. In order to avoid the influence of RM,
the variants of GraphDRej used in this subsection disable RM temporarily.

6.7.1. Evaluation of GraphDRej with the Same Number of Layers

We provide three variants of GraphDRej: GraphDRej-1, GraphDRej-2, and GraphDRej-3. All of
these three models have two layers. The only difference among them is that GraphDRej-1 adopts
a single graph dilated convolution kernel with γ = 1 at each layer, GraphDRej-2 adopts two types
of graph dilated convolution kernels with γ ∈ {1, 2} at each layer, and GraphDRej-3 contains three
types of graph dilated convolution kernels with γ ∈ {1, 2, 3}. This means that although all of these
models have the same number of layers, the total size of neighborhoods is different. The statistics
of these versions are summarized in Table 5. The results are reported in Table 6. We observe that
enlarging the neighborhood size in a GNN layer can improve the model performance, and achieve
gains 3.32% and 3.23%, respectively (compared to GraphDRej-1). Furthermore, compared to the
results of GraphDRej-2 and GraphDRej-3, too large a size of neighborhoods may not further improve
the performance. The reasons for this are as follows. (1) On the one hand, adopting a larger
size of neighborhoods is easier for models to overfitting the training data, which may influence the
generalization of the model and lead to a worse performance. (2) On the other hand, not all the nodes
are useful to characterize the representation of the center node, and the distant nodes are likely to
bring noise [30]. Therefore, a larger size of neighborhoods is more likely to introduce some noise nodes
(e.g., distant node) in representation. Therefore, it indicates that a suitable size of neighborhoods is
needed, which can enable GraphDRej to explore sufficient neighbors’ structure and avoid overfitting
as well as the negative effect of noise nodes.

Table 5. The statistics for graphDRej variants.

Variants #Layers γ #Neighborhood

GraphDRej-1 2 [1] 2
GraphDRej-2 2 [1,2] 4
GraphDRej-3 2 [1,2,3] 6

GraphDRej-1-6 6 [1] 6
GraphDRej-2-3 3 [1,2] 6
GraphDRej-3-2 2 [1,2,3] 6

Table 6. The accuracy (%) for evaluation of GraphDRej with the same number of layers on Cora.

Variants GraphDRej-1 GraphDRej-2 GraphDRej-3

Accuracy 76.38 79.61 79.70

6.7.2. Evaluation of GraphDRej with the Same Size of Neighborhoods

We also design another three variants of GraphDRej, denoted as GraphDRej-1-6, GraphDRej-2-3,
and GraphDRej-3-2. The details of these versions can be found in Table 5. Generally speaking, although
these three variants contain different numbers of layers and different kinds of graph convolution dilated
kernels, all of these models capture the same size of neighborhoods, i.e., 6-hop-based neighborhoods.
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The results are reported in Table 7. Although these models capture the same size of neighborhoods,
GraphDRej-2-3 outperforms the other two variants significantly, and can better characterize the
structure information. It demonstrates the effectiveness of graph dilated convolution kernels, and also
shows a well-designed graph dilated convolution architecture is needed.

Table 7. The accuracy (%) for evaluation of GraphDRej with the same size of neighborhoods on Cora.

Variants GraphDRej-1-6 GraphDRej-2-3 GraphDRej-3-2

Accuracy 79.98 82.10 79.70

7. Conclusions

In this paper, we first analyze the limitations of existing GNNs, i.e., the need and the bottleneck
both introduced by the global information. Then a rejection mechanism is designed, which is a concise
but effective way to address the over-smoothing problem. Next, we propose a graph dilated convolution
kernel, which enlarges the size of the neighborhood at each layer. Extensive experimental results
demonstrate that the proposed model achieves state-of-the-art results. In the future, we will pay more
attention to the analysis of how to design a good architecture for graph dilated networks with RM to
capture graph information as much as possible.
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