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Abstract: The growing interest towards textile-based drug delivery systems is due to their
potential innovative medical and well-being applications. In recent years, the technique of
encapsulation or inclusion of the medicine/active principle into a polymer functional matrix has
been employed in order to obtain textile materials with controlled drug release. In this study,
a sol–gel-based coating was developed and used as an entrapping polymeric cross-linked network for
a N-Palmitoyl-ethanolamine (PEA) derivative, 2-methyl-pentadecanoic acid (4-nitro-phenyl)-amide
or N-Palmitoyl-(4-nitro-phenyl)-amine (PNPA), whose anti-inflammatory and antioxidant properties
have already been shown. A wide series of chemical-physical methods have been used to characterize
the silica-based functional sol and to ascertain the efficient and temporary deposit of PNPA on
the sol–gel coated cotton fabrics. The medicine release system achieved was shown to ensure
biocompatibility, PNPA reservoir and its subsequent releasing under the action of cutaneous stimuli,
thus providing useful insights in the design of medical textiles.

Keywords: sol–gel coating; medical textiles; antioxidant; anti-inflammatory; PEA derivative;
drug release

1. Introduction

The research field dealing with the development of controlled drug delivery systems has been of
relevant scientific interest since the 1970s and has grown and diversified rapidly in recent years, in
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particular thanks to the benefits it brings to healthcare; furthermore, it covers a large market segment [1].
In general, the effectiveness of drug therapy is the main objective of controlled release systems [1,2],
with a corresponding (i) reduction of the number of drug administrations; (ii) improvement in
therapeutic activity [3,4]; (iii) consequent reduction of the intensity of side effects; and (iv) elimination
of specialized drug administration [5]. This pharmaceutical technology, especially in recent years,
has seen application in other fields ranging from cosmetics [6] to agriculture [7], including textiles [8,9],
as an interesting and innovative application. Indeed, textile fabrics, thanks to their biocompatibility,
breathing structure and absorptive capacity, are of great interest as a medium (for ex vivo applications)
for controlled release of drugs, active principles or aroma substances of particular comfortability [10].
Several examples are nowadays in common use, such as the well-known transdermal patches or
textile costumes, generally characterized by different layers in which the release of a specific drug
substance, deposited on the textile surface, is activated by stimuli such as temperature, humidity,
enzyme, perspiration types or friction [11].

In general, in controlled release systems, biocompatibility and controllability are important
features; furthermore, in terms of biocompatibility, the carcinogenicity, toxicity, teratogenicity and
mutagenicity are important elements to be controlled [10]. The use of textile fabrics for the realization of
controlled release systems presents several advantages but on the other hand, some disadvantages with
respect to the oral administration of substances. Indeed, this administration represents an attractive
and easier therapy for the patient due to its efficacy since the drug avoids both the digestive apparatus
and the hepatic metabolism that reduce the concentration of the drug. Furthermore, it requires
lower dosages due to the higher diffusion through tissues, which correspond to lower social costs of
therapies [11]. On the other hand, the disadvantages are related to the diffusion rate of the drug as
function of its molecular structure and body surface administration [11]. Different methods have been
employed in order to develop better textile-based delivery systems (i.e., bandages, patches), with good
controllability, biocompatibility and active species entrapment/release by use of host-guest molecules
(cyclodextrins [12], aza-crown ethers, fullerenes) or doping functional molecules (ion-exchange;
drug-loaded hollow; nanoparticles; bioactive) [10]. Several C–C polymer heteroatom-containing
(i.e., N, P, Si) backbones for controlled release applications have been tested and considered in order to
improve the drug therapy effectiveness [5]. All the developed release polymeric systems have been
shown to act through mechanisms of temporal controlled release, such as drug-delayed dissolution,
diffusion-controlled, and drug solution flow control after interaction with environmental water or by
reacting to specific skin stimuli.

The sol–gel method has been shown to be a useful method in the preparation of functional
nanostructured coatings for textiles, thus combining the entrapment/encapsulation of bioactive
compounds, biomolecules and their controlled release [13].

In our previous studies, we have already shown that nano-hybrid sol–gel-based coatings feature
abrasion resistance, tensile strength and elongation properties of the treated fabrics [13,14]. These
peculiar characteristics may be combined with a proper doping molecule, such as a dye [15–21],
an antimicrobial [22], a hydrophobic [23–25] or a flame-resistant molecule [26,27], with the aim of
improving the textile surface properties and making a functional nano-hybrid coating.

With the aim of developing a functional sol–gel-based coating suitable for medical application,
we thought worthwhile to make a silica sol containing the 3-glycidoxypropyltriethoxysilane
(GPTES, hereafter “G”), as silica cross-linker precursor, and a PEA derivative,
the N-Palmitoyl-(4-nitro-phenyl)-amine (hereafter PNPA), whose anti-inflammatory and antioxidant
properties have already been tested and compared with other analogue molecules [28]. The sol
was successfully applied on cotton surfaces and, after drying and curing, a stable and uniform
PNPA-containing silica-based coating was obtained, as confirmed by morphological studies (SEM
and AFM microscopy). As already shown in previous studies for halochromic dyestuff [20], the PEA
derivative results firmly encapsulated into the 3D hybrid silica layer in absence of external stimuli
(i.e., variable pH conditions), thanks to non-covalent and weak interactions (i.e., hydrogen bonds
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and van der Waals interactions) acting between the non-polar active molecule and the alkoxysilane
hosting network.

Finally, the functionally coated cotton samples were employed for in vitro diffusion studies with
the aim of testing their ability to release the synthesized PEA derivative in a controlled manner
compared to a standard solution of the molecule. This effectively prepared functional hybrid system,
based on the non-covalently immobilized PNPA, showed good results so that it can be considered a
suitable scaffold for fabrics in drug release applications, thus providing useful insights in the design
and the development of medical textiles.

2. Materials and Methods

N-Palmitoyl-(4-nitro-phenyl)-amine (PNPA) was synthetized according to a synthetic strategy
described in previous researches [28]. 3-glycidyloxypropyltriethoxysilane (GPTES) and methanol were
purchased from Wacker and Aldrich, respectively, and used without further purification. Two cotton
scoured and bleached 100% plain-weave textile fabrics (coded COL and COH) kindly supplied by
Albini S.p.A. (Albino, Italy) and Mascioni S.p.A. (Cuvio, Italy), respectively, were used for this research.
The fabrics showed different mass per unit area (COL = 119 g/m2 and COH = 331 g/m2, respectively).
Cotton fabrics were washed before treatment at pH 7 and at 40 ◦C for 20 min in a non-ionic detergent,
rinsed several times with de-ionized water and then dried. The cleaned samples were conditioned at
20 (± 1) ◦C and under standard atmospheric pressure at 65 (± 2)% relative humidity for at least 24 h
prior to all experiments.

PNPA (25 mg) was dissolved in 40 mL of methanol through ultrasonication and left under
continuous stirring. Then 2 mL of a 1 M aqueous sol–gel solution of GPTES were added drop by
drop to the clear methanol solution of antioxidant molecule, thus resulting in a final GPTES sol
concentration of 0.05 M (1:0.034 molar ratio with respect to PNPA). The obtained solution (G-PNPA sol)
was ultrasonicated and left at room temperature under stirring for at least 90 min. The same reaction
was also carried out in absence of the antioxidant molecule in order to obtain a reference GPTES sol
sample. Both solutions were applied separately onto cotton textile (10 cm × 10 cm) through a two-roll
laboratory padder (Werner Mathis, Zurich, Switzerland) at a nip pressure of 2 bar, then dried (80 ◦C
for 5 min) and cured (100 ◦C for 1 min) in an electric laboratory oven.

PNPA, G-PNPA and G sols were fully investigated through FT-IR spectroscopy and Nuclear
magnetic resonance (NMR). Untreated and treated textiles were characterized by FT-IR spectroscopy,
Scanning Electron Microscopy (SEM) coupled to energy dispersive X-ray (EDS) and Atomic Force
Microscopy (AFM).

The PNPA controlled release from the two prepared textiles, COL_G-PNPA and COH_G-PNPA,
was investigated by performing in vitro diffusion studies using Franz diffusion cells and according to
the experimental protocol reported in a previous work [29]. For this purpose, Strat-M® membranes
(25 mm discs, Cat. No. SKBM02560, Merck Millipore, Darmstadt, Germany) were positioned
between the donor and the receptor compartments of each Franz cell and the experiments were
carried out at 37 ± 0.5 ◦C. The two tested items, COL_G-PNPA and COH_G-PNPA, were placed on
the Strat-M® membrane with the GPTES layer facing towards the acceptor chamber. Then, the Franz
cell compartments were fixed together and filled with 0.5 and 5.5 mL of phosphate buffer at pH 7.4
(10−3 M), respectively. The content of the receptor chamber was withdrawn at different times, such as
1, 2, 4, 6 and 24 h, for UV-Vis analysis and replaced with phosphate buffer. The same experimental
conditions were applied to a control sample consisting of a standard PNPA solution. The in vitro
diffusion studies were carried out in triplicate and the obtained results were expressed as diffused
amount (%).

FT-IR spectra were performed by a Thermo Avatar 370 equipped with an attenuated total reflection
(ATR) accessory and using a diamond crystal as internal reflectance element. Spectra were acquired
with 32 scans and in the range from 4000 to 550 cm−1 with a resolution of 4 cm−1.
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One- and two-dimensional NMR experiment were recorded in methanol-d4 at 298.2 (±0.1) K
on Bruker ARX-300, equipped with a 5 mm gradient probe and operating at 300.1 MHz for 1H
nucleus. All chemical shifts are shown in parts per million (δ/ppm), downfield to tetramethylsilane
(Me4Si) as an internal standard (δ = 0.0 ppm), or referenced to the residual protiated solvent
signal such as in methanol-d4 (1H NMR: 3.30 ppm). 1H NMR signals were assigned by means
of two-dimensional homonuclear NMR gradient experiments (gCOSY, gNOESY), acquired using
standard Bruker pulse sequences.

SEM morphology and SEM-EDS of the investigated samples were obtained using a FEI Quanta
FEG 450 microscope. An operating voltage of 5 kV in low vacuum was used for SEM images. EDS
analysis was conducted with an operating voltage of 20 kV, always in low vacuum. Samples were
fixed on aluminum sample holders by means of a graphitic adhesive.

AFM characterization was performed using a stand-alone SMENA head by NTMDT, equipped
with a Bruker silicon probe model NCHV working in semi-contact mode. The samples were fixed onto
metallic stubs using a small piece of double-sided scotch tape and studied at RT.

3. Results

3.1. Sol–Gel Synthesis and Coating Application

To obtain a controlled drug release fabric, 3-glycidoxypropyltriethoxysilane (GPTES) was
employed in a sol–gel synthesis in the presence of an antioxidant/anti-inflammatory molecule,
the N-Palmitoyl-(4-nitro-phenyl)-amine (PNPA) [28]. The simultaneous presence of both an epoxy
group and a triethoxysilane functionalities makes this specific silica precursor able to cross-link to
other GPTES molecules, to entrap the antioxidant doping molecule and still to coat the textile surface,
respectively. In this regard, a GPTES-based sol was synthesized in acidic aqueous medium by addition
of slight amount of HCl, as catalyst, and then added to a methanol solution containing the PNPA
molecule. As reported in previous studies [15–21], the sol–gel synthesis leads to the formation of a
hybrid polymeric 3D network through the opening of the epoxy ring of GPTES and interaction of the
triethoxysilane end to form an extended polyethylene oxide network (PEO) [20], in whose holes the
PNPA is physically and stably entrapped (Scheme 1).
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The so obtained G-PNPA functional sol was applied by padding on cotton fabrics and cured
thermally with the aim to prepare a nano-hybrid coating for controlled release application (Scheme 2).Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 13 
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3.2. Sol NMR Characterization

A reaction mixture relative to the G-PNPA sol as obtained in methanol for coating application,
has been achieved in situ (1:0.1 = [GPTES]:[PNPA] molar ratio) in methanol-d4 and characterized by
means of 1H one- and two-dimensional NMR spectroscopy. Figure 1 shows the 1H NMR spectra
as recorded at time zero and after 24 h (in methanol-d4 at 298 K, 300 MHz). The comparison of the
aliphatic regions of the 1H NMR spectra of the reaction mixtures recorded at different times clearly
reveal the presence of the protonic pattern expected for the diol/PEO silylated (red squares in Figure 1)
derivatives and the starting GPTES (black squares in Figure 1, [20]) as shown in Scheme 1. In particular,
the aliphatic regions of the 1H NMR spectra in Figure 1 clearly show: (i) the presence of the expected
protonic pattern for the GPTES open ring derivative, bringing a hydroxyl and an ether group bonded to
two vicinal carbon Ce and Cf atoms (δ = 0.68, CH2a; 1.71, CH2b; 3.48, CH2c + CH2d + CH2f; 3.88 CH2e,
red squares in lower spectrum) [30] (ii) the proton peaks relative to the starting GPTES in a decreased
concentration (δ = 0.67, CH2a; 1.68, CH2b; 2.61+2.78, CH2f; 3.16, CH2e; 3.32 + 3.76, CH2d; 3.49, CH2c,
black squares in upper spectrum); (iii) the presence of the upper-field methylene and the methyl proton
resonances relative to free ethanol moieties, compared to those relative to the ethylic groups of GPTES
(δ = 3.63, CH2, 1.19, CH3 vs 3.84, CH2, 1.22, CH3; cut signals in both spectra).
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Unfortunately, the long penta-decanoic protonic chain is buried under other signals, also due
to the strong molar ratio exceed of GPTES. The aromatic region shows the expected and unchanged
pattern of broad signals for para-substituted phenyl ring of the PNPA molecule.

The 1H NMR experiments clearly show that the GPTES epoxy ring opening reaction by a suitable
nucleophilic group of the PNPA molecule is not occurring, as well as the formation of a stable ether
covalent bond. As previously shown [20], the stable encapsulation of the PNPA molecule into the
PEO silylated GPTES derivative is most likely due to the formation of weak bonds (i.e., van der Waals
or electrostatic) between the polymerized GPTES (i.e., ether oxygen and hydroxyl group) and the
N-Palmitoyl-(4-nitro-phenyl)-amine (i.e., nitrogen, oxygen, long alkyl chain, phenyl group).

3.3. ATR FT-IR

FT-IR spectra of untreated and treated cotton fabrics were analyzed after the normalization at 1362
cm−1, absorption band relative to the CH bending of cellulose. In Figure 2, FT-IR of COL untreated
and treated samples with GPTES sol and G-PNPA sol (COL_UT, COL_GPTES and COL_G-PNPA,
respectively) are reported and compared with those relative to COH untreated and treated fabrics
with the same solutions (COH_UT, COH_GPTES and COH_G-PNPA, respectively). In particular, in all
spectra, it is possible to distinguish clearly the characteristic absorption bands relative to cellulose
moieties, such as: the broad bands around to 3331 cm−1 and 2894 cm−1 (stretching mode of OH and CH,
respectively), and the absorption bands between 1097 cm−1 and 895 cm−1 relative to the asymmetric
in-plane ring stretch and to C–O stretch and asymmetric out-of-phase ring stretch (C1–O–C4) [31].
In particular, in the inset in Figure 2A,B the presence of a silica coating is evident through the increase
of the bands in the range 1145 cm−1–895 cm−1 for the COL, assigned to the asymmetric stretching of
the -Si–O–Si, and in the range between 995 cm−1–760 cm−1 for the COH, due to the Si–O–Si absorption
bending (852 cm−1) and stretching (790 cm−1).
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With the aim of investigating the chemical structure and interactions between silica precursor
and antioxidant molecule without the interference of the intense absorption bands of cotton fabrics,
the FT-IR spectra of each sol was carried out on the pure xerogel. The latter was obtained by depositing
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a few drops of each solution onto optical glass slides further subjected to a thermal treatment (100 ◦C)
to remove the solvent [26]. Indeed, by analyzing the FT-IR spectra of PNPA, it was possible to identify
the characteristic peaks in order to establish its interaction with the GPTES sol. Spectra of the GPTES
sol (Figure 3, green line) clearly shows the formation of the inorganic network due to the absorption
bands relative to: asymmetric (1093–1010 cm−1) and symmetric stretching of Si–O–Si (756 cm−1) and its
bending mode (850 cm−1) [17,18,20]. Furthermore, the absorption bands at 3072–3000 cm−1, 1255 cm−1

and 906–850 cm−1 were assigned to asymmetric and symmetric C–H stretch, ring breathing, as well as
the asymmetric and symmetric ring deformation, respectively [17,18], indicating that some unopened
epoxy ring remain in GPTES sol.
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These peaks relative to the GPTES sol are also evidenced in the sol containing PNPA (Figure 3,
black line), in which the main characteristic absorption bands of the antioxidant molecules are present.
As shown in Figure 2 (red line), PNPA is featured by the asymmetric and symmetric CH2 stretching
mode of alkyl chain (2916 and 2849 cm−1, respectively) with relative bending (1470–1458 cm−1),
the C=O and C–N stretching of the secondary amide (1737 and 3075 cm−1, respectively) and the C–N
stretching mode (1596 cm−1) [32].

3.4. Morphological Characterizations

All untreated and treated cotton samples were investigated by SEM and AFM microscopy, in order
to characterize the morphology of the coated textile fabric and to underline structural differences before
and after the coating application.
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SEM analysis shows that the two analyzed tissues have two different weaves: COH_UT samples
have a larger weave than COL_UT ones, and the fibers appear less ordered compared with COL_UT ones
and more threadbare (compare Figure 4a,b). Both samples do not show modifications after treatment
and the morphology appears unchanged also at higher magnification (Figure 5). This demonstrates
that, after treatment, no changes at micrometer scale occur.
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Figure 5. SEM analysis of investigated samples at higher magnification: COH_UT (a), COL_UT (b),
COH_GPTES (c), COL_GPTES (d), COH_G-PNPA (e), COL_G-PNPA (f).
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EDS analysis shows Si peak only in samples treated with GPTES (COH_GPTES, COL_GPTES)
and subsequently with PNPA (COH_G-PNPA, COL_G-PNPA) (Figure 6, only two treated samples are
reported for briefness, because the other ones exhibited a similar spectrum). The other peaks refer to
carbon, present in the analyzed tissues but also in graphite adhesive used for SEM analysis, oxygen,
present also in vapor-low vacuum atmosphere, and aluminum, derived from the SEM stub.
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3.5. AFM Characterizations

Figure 7 shows that all the studied sampled are characterized by the typical filamentary structure
of the tissue fibers on the nanoscale.

Thanks to the high resolution achieved by the AFM technique, it is possible to notice that both the
two sample pairs COL_GPTES (Figure 7c), COH_GPTES (Figure 7d) and COL_G-PNPA (Figure 7e),
COH_G-PNPA (Figure 7f) are rougher than the untreated tissues COL_UT (Figure 7a), COH_UT
(Figure 7b), indicating that the GPTES and PNPA intimately and homogeneously wrap the fibers.
This result is in good agreement with the EDS Si mapping. In the lower right corner of Figure 7f, it is
possible to observe the presence of a lack in the coating; the study of the line profiles in that area allows
us to evaluate the thickness of the coating that ranges between 2.5 and 4 nm.
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3.6. PNPA in Vitro Diffusion Studies

In vitro diffusion studies on the developed cotton-based textiles were carried out with the aim of
evaluating their ability to release in a controlled manner the synthesized PEA derivative compared to a
standard solution of the molecule (Scheme 3).
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Scheme 3. Schematic representation on the PNPA controlled release from the functional sol–gel coated
cotton by stimuli effect.

In the performed experiments, Strat-M® membranes were used as a synthetic alternative, which
is predictive of the diffusion process occurring through human skin. The studies involved two
different textiles, such as COL_G-PNPA and COH_G-PNPA, prepared employing the obtained G-PNPA
functional sol. The obtained results are expressed as cumulative diffused amount (%) and the diffusion
profiles for the tested items are reported in Figure 8.
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The two G-PNPA-coated cotton textiles, COL_G-PNPA and COH_G-PNPA, show similar results in
the performed in vitro diffusion studies. In the case of the COL_G-PNPA sample, indeed, the amount of
released PNPA is equal to 5% within the first hour reaching the 48% and 66% in 6 and 24 h, respectively,
while the COH_G-PNPA sample exhibits a value of 7% after the first hour achieving the 53% and 73%
at the time points of 6 and 24 h. On the other hand, the 14% of PNPA is released after the first hour
from the control solution reaching the 69% and 89% at 6 and 24 h. The experimental data confirm the
ability of both the developed textiles to release in a controlled way the synthesized PEA derivative.
These results could be related to the rate-limiting steps in drug release reported in the literature [33,34]:
the drug diffusion within the polymer matrix and the rate of polymer swelling. Depending on the
presence of sweat, simulated with the buffer solution in contact with the PNPA-treated fabric, the weak
interactions between the treated fabric and the antioxidant molecule slowly disappear until the drug is
completely released. The presence of the sol–gel matrix increases the bonding interactions between the
network and the drug, slowing down its release.

4. Conclusions

The N-Palmitoyl-(4-nitro-phenyl)-amine, PNPA, a PEA derivative that already showed good
anti-inflammatory and antioxidant properties, was firmly entrapped in a sol–gel-based matrix obtained
by polymerization reaction of the epoxy-alkoxysilane GPTES, as cross-linker compound. NMR studies
run on the sol evidenced that the GPTES epoxy-ring opening and the subsequent polymerization
give rise to a polyethylene oxide 3D network grafted on textile with the PNPA immobilized into it.
After the textile drying and curing the xerogel was morphologically studied on the treated cotton
samples by SEM and AFM microscopy, revealing that no changes in the fiber morphology occurred
at the micrometer scale, and that GPTES and PNPA intimately and homogeneously wrap the fibers.
Furthermore, SEM mapping revealed a uniform distribution of the silica-based coating on the cotton
fibers. In vitro diffusion studies were realized on the developed functionalized cotton-based textiles in
order to check their ability to release the PEA derivative in a controlled manner in comparison to a
standard molecule solution. As a matter of fact, this functional textile has been shown to be a suitable
system for PNPA release, thanks to the chemical binding weakening of PNPA with the sol–gel polymer
matrix by mean of medium effect, thus opening the way to the design of similar functional hybrid
coatings for biomedical application. Although parameters of sol particles (e.g., hydrodynamic radius
and electrokinetic potential) as well as the porosity of systems were not investigated, the obtained
results confirmed the potential of the nanoengineered procedure as a versatile method for preparing
stable and tunable drug-releasing materials. The combination of the functionality and transparency
provided by the hybrid coating with its easy processability could represent an innovative route
to fabricate biomaterials for healthcare. Future work will focus on the comparison of silica sols
characteristics with release properties of this delivery system.
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