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Abstract: The out-of-plane bending problems of functionally graded thin plates with a circular
hole are studied for two-dimensional deformations. The thin plates have arbitrary variations of
elastic properties along the radial direction. The general solutions of the stresses and moments
are presented for the plates subjected to remote bending moments based on the theory of complex
variable functions. Two different cases—a whole functionally graded plate with a circular hole and a
functionally graded ring reinforced in a homogeneous perforated plate—are considered by numerical
examples. The influence of parameters like Young’s modulus and Poisson’s ratio, function types
of these elastic properties, and width of the reinforcing ring on the moments around the hole is
presented. It is shown that the moment concentration, caused by the geometric discontinuity of the
hole in the traditional homogeneous plate, can be well relieved or even eliminated by careful selection
of the above parameters. The results for some special cases are compared with previous literatures
and are found in good agreement.

Keywords: out-of-plane bending; circular hole; moment concentration; graded thin plate; complex
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1. Introduction

Holes exist widely in engineering structures for either design or manufacture reasons, and the
high stress concentration around them has been a serious issue to the engineers and designers for
many years. In order to achieve better machine designs, some classical references such as Norton [1],
Budynas et al. [2,3], and Pilkey and Pilkey [4] summarized and provided various important solutions
of stress concentration factor (SCF) in engineering structures. The effects of stress concentration on
the fatigue strength and life of structures are of great importance, especially when the structures
are designed to carry high loads [5–7]. Therefore, it has been of great concern to reduce the stress
concentration near holes during the structure design and safety maintenance in engineering. Recent
research [8–11] indicates that the stress concentration around the holes can be effectively reduced by
introducing a reinforcing ring made by functionally graded material (FGM).

FGM is an advanced composite material in which the material elements (composition and structure)
change continuously along one or more directions. The continuous elements in FGM can successfully
avoid the mismatch of the material properties at the interface [12]. The introduction of the FGM
reinforcing ring with radially varying material properties can not only reduce the stress concentration
around the hole, but also enhance the connection strength at the interface [13,14]. Therefore, many
studies have been carried out on the analysis of stresses around holes in FGM in the past 20 years.

Inspired by the excellent material distributions near the natural holes in a load-bearing bone,
Huang et al. [15,16] first studied and improved the strength and loading capacity of a plate with a
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circular hole by controlling the radially varying Young’s modulus in the plate. The optimization
designs were carried out on choosing the proper mathematical functions of the axisymmetric Young’s
modulus for increased strength. The stress concentrations in an FGM plate with a center circular hole
or elliptical hole were numerically analyzed by Kubair and Bhanu-Chandar [17] and Wang et al. [18],
respectively, based on the finite element method. They both considered the variations of Young’s
modulus along three different directions: radial direction, x direction, and Y direction. By means
of the complex variable methods, Yang et al. [19,20] presented the semi-analytical solutions of the
stress fields in the infinite and finite FGM plates containing a circular hole under arbitrary in-plane
constant loads. For some specific radial varying functions of Young’s modulus, Mohammadi et al. [21]
obtained the analytical solution of stresses in an FGM plate with a circular hole under uniform tension.
Goyat et al. [22] analyzed the effects of different radial variations of Young’s modulus on the stress
concentration factor (SCF) around the hole in FGM plate with the method of extended finite element.
Considering the cost and difficulty of material preparation, Sburlati [23] proposed a more feasible
method to reduce the stress concentration by inserting a thin FGM ring around the hole. The analytical
solution of the stress fields is presented for the plate subjected to far-field uniaxial tension, and the
effects of the homogeneous ring and FGM ring on the SCF are compared by numerical examples.
Recently, Nie et al. [24] derived the analytical SCF in an FGM plate with a circular hole as Young’s
modulus and Poisson’s ratio change along the radial direction with exponential function or power
function, and they laid emphasis on the tailoring problem of the material. Their results show that the
desired SCF can be obtained by tailoring the radial variation of Young’s modulus, and at the same
time, the hoop stress is almost uniformly distributed in the whole plate.

The previous works cited above primarily focus on the case of an FGM plate subjected to in-plane
loading in the middle surface of the plate, and not much work can be found for the analysis of the case
of out-of-plane loads. Kubair [25,26] studied the SCF and stress-gradients due to a circular hole in a
radial FGM plate subjected to anti-plane shear loading and obtained the closed expressions for the
stresses and displacements. A novel definition is introduced for the SCF in FGM plates with geometrical
discontinuities in general. Shi [27] presented an analytical solution of the elastic stress fields around a
circular elastic inclusion in a radial FGM plate under a uniform anti-plane shear loading at infinity.
Guan and Li [28] analyzed the stress concentration around an arbitrarily shaped hole reinforced with
an FGM layer in an infinite plate under anti-plane shear and performed the optimized analysis of
the SCF. The above works are mainly for anti-plane problems. In fact, in addition to anti-plane shear
loading, structures subjected to out-of-plane bending moments are also very common in engineering.
Thus, it is also very significant to study the bending problems of FGM plates.

Recently, some works have been made on the out-of-plane bending of FGM plates through
thickness material property variation. For example, Yang et al. [29,30] investigated the resultant force
concentration around holes in a transversely isotropic FGM plate with the material properties varying
along the thickness direction under concentrated loads and moments. Dave and Sharma [31] provided
a solution of stresses and moments around circular and elliptical holes in FGM infinite plates with
material property variation along the thickness using a complex variable approach. However, to the
best of the author’s knowledge, the bending of FGM plates with radially varying material properties
has not yet been addressed.

In this paper, the bending stress concentration around a circular hole in an FGM thin plate,
which has arbitrary variations of elastic properties along the radial direction, is investigated based
on the theory of complex variable functions. Following the introduction, the general solutions of the
stresses and moments are presented for the plate subjected to out-of-plane bending moments by means
of the method of piece-wise homogeneous layers. Then, numerical examples are given to discuss the
effect of different radial variations of elastic parameters on the distribution of the moments for two
different cases: a whole FGM plate with a circular hole and an FGM ring reinforced in a homogeneous
perforated plate. Finally, conclusions of the present work are summarized.
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2. Problem Formulations

A functionally graded thin plate with a circular hole is deflected under remote bending moments
Mx and My applied per unit length of the plate, as shown in Figure 1. The radius of the hole r0 is taken
to be small in comparison with the length of the sides and sufficiently large compared to the thickness
of the plate h. The Young’s modulus E and Poisson’s ratio ν change continuously along the radial
direction with arbitrary function forms.
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It is very hard to solve the problem by the analytical method due to the continuous and arbitrary
changes of elastic parameters; hence, a semi-analytical method that is the piece-wise homogeneous
layers is used here. The FGM plate is approximately divided into a homogenous plate containing a
series of homogeneous concentric rings with equal width. As long as the number of rings is taken
to be large enough, the elastic parameters in each ring could be regarded as unchanged. In this case,
the problem can be solved by means of Muskhelishvili’s complex variable methods. The number of
concentric rings is assumed as s, and their located domains are symbolized by K1, K2, . . . , Ks. Ks+1

is taken to represent the domain of the outer homogenous plate. The inner and outer radii of each
circular ring K j( j = 1, 2, · · · s) are denoted by r j−1 and r j, respectively.

3. General Solutions

For convenience, we introduce a cylindrical coordinate (r,θ) in the plane xoy with the application of
the hole center as the pole, the x-axis and θ as the polar axis and polar angle, respectively. The moments
and transverse shear forces in the cylindrical coordinate can be expressed with two complex potential
functions, ϕ(z) and ψ(z), by formulas [32] (1) and (2):

Mθ −Mr + 2iHrθ = 2D(1− v)e2iθ[zϕ′′ (z) +ψ′′ (z)], (1)

Mθ + Mr = −4D(1 + v)Re[ϕ′(z)], (2)

where Mθ, Mr, and Hrθ are the bending moments and twisting moments, respectively, and the bending
rigidity of the plate D = Eh2/

[
12

(
1− ν2

)]
.

The complex potential functions ϕ(z) and ψ(z) can be determined by the following boundary
conditions when the components of force f1, f2, components of displacement u, v and deflection w
are given

D
{
(1− v)

[
zϕ′(z) +ψ(z)

]
− (3 + v)ϕ(z)

}
= f1 − i f2, (3)

ψ(z) + zϕ′(z) + ϕ(z) = u− iv, (4)

Re[χ(z) + zϕ(z)] = w(x, y). (5)
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Here, χ(z) is a new complex potential function defined asχ(z) =
∫
ψ(z)dz. f1 and f2 are dependent

on the bending moments and forces applied per unit length at the boundary

f1 − i f2 = −R
∫ θ

0

[
im(θ) + R

∫ θ

0
p(θ)dθ

]
e−iθdθ. (6)

In the domain of the plate Ks+1, the complex potential functions ϕs+1(z) and χs+1(z) can be
expressed in the following manner [32]:

χs+1(z) = R

 ∞∑
k=0

Ak
zk

Rk
+ α ln z +

∞∑
k=1

α−k
Rk

zk

, (7)

ϕs+1(z) =
∞∑

k=1

Bk
zk

Rk
+
∞∑

k=0

β−k
Rk

zk
, (8)

where α, α−k, β−k (k = 1, 2, · · · , m + 1) are unknown coefficients while Ak, Bk are known coefficients
dependent on the applied bending moments Mx and My at infinity; R is the reference radius.

The complex potential functions ϕ j(z) and χ j(z) in each ring K j( j = 1, 2, · · · , s) can be expressed
in the following manner [32]:

χ j(z) = R

a( j) ln z +
+∞∑
−∞

a( j)
k

zk

Rk

, (9)

ϕ j(z) =
+∞∑
−∞

b( j)
k

zk

Rk
, (10)

where a( j), a( j)
k , b( j)

k (k = 1, 2, · · · , m + 1) are unknown coefficients.
Since there is no load at the edge of the hole, it is easy to get f1 − i f2 = 0 in Equation (6). According

to Equation (3), the equation of boundary condition at the edge of the hole r = r0 will be written as

D1
{
(1− v1)

[
zϕ′1(z) +ψ1(z)

]
− (3 + v1)ϕ1(z)

}
= 0. (11)

Substituting Equations (9) and (10) with j = 1 and z = r0eiθ into Equation (11), and instead of
n0 = r0/R, we obtain the following equation after simplifications

D1 ·

(1− v1)

a(1)e−iθn−1
0 +

+∞∑
k=−∞

a(1)k kei(k−1)θnk−1
0 +

+∞∑
k=−∞

b(1)k kei(k−2)θnk
0

 −(3 + v1)
+∞∑

k=−∞

b(1)k e−ikθnk
0

 = 0. (12)

By comparing the coefficients of the same power of −2, −1, 0 k and −k of eiθ in Equation (12), we
can get a set of 2m + 3 linear equations listed as Equations (A1)–(A5) in Appendix A.

On the other hand, forces, displacements, and deflections satisfy the continuous conditions at the
interface r = r j( j = 1, 2, · · · , s− 1) between each adjacent rings K j and K j+1. Hence, the equations of
continuous condition can be written as follows on the basis of Equations (3)–(5)

D j
{(

1− v j
)[

zϕ′ j(z) +ψ j(z)
]
−

(
3 + v j

)
ϕ j(z)

}
= D j+1

{(
1− v j+1

)[
zϕ′ j+1(z) +ψ j+1(z)

]
−

(
3 + v j+1

)
ϕ j+1(z)

}
, (13)

ψ j(z) + zϕ′ j(z) + ϕ j(z) = ψ j+1(z) + zϕ′ j+1(z) + ϕ j+1(z), (14)

Re
[
χ j(z) + zϕ j(z)

]
= Re

[
χ j+1(z) + zϕ j+1(z)

]
. (15)
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Introducing Equations (9) and (10) with j = 1, 2, · · · , s− 1 and z = r jeiθ into Equations (13)–(15),
and instead of n j = r j/R , we obtain the following lengthy equations after a series of somewhat
arduous simplifications

D j ·

(1− v j
)a( j)e−iθn−1

j +
+∞∑
k=2

a( j)
−(k−1)

(1− k)e−ikθn−k
j +

+∞∑
k=0

a( j)
k+1(k + 1)eikθnk

j

+
+∞∑
k=3

b( j)
−(k−2)

(2− k)e−ikθn−(k−2)
j +

+∞∑
k=−1

b( j)
k+2(k + 2)eikθnk+2

j


−

(
3 + v j

)+∞∑
k=1

b( j)
−k eikθn−k

j +
+∞∑
k=0

b( j)
k e−ikθnk

j




= D j+1 ·

(1− v j+1
)a( j+1)e−iθn−1

j +
+∞∑
k=2

a( j+1)
−(k−1)

(1− k)e−ikθn−k
j +

+∞∑
k=0

a( j+1)
k+1 (k + 1)eikθnk

j

+
+∞∑
k=3

b( j+1)
−(k−2)

(2− k)e−ikθn−(k−2)
j +

+∞∑
k=−1

b( j+1)
k+2 (k + 2)eikθnk+2

j


−

(
3 + v j+1

)+∞∑
k=1

b( j+1)
−k eikθn−k

j +
+∞∑
k=0

b( j+1)
k e−ikθnk

j


, (16)

a( j)e−iθn−1
j +

+∞∑
k=2

a( j)
−(k−1)

(1− k)e−ikθn−k
j +

+∞∑
k=0

a( j)
k+1(k + 1)eikθnk

j+

+∞∑
k=3

b( j)
−(k−2)

(2− k)e−ikθn−k
j +

+∞∑
k=−1

b( j)
k+2(k + 2)eikθnk

j +
+∞∑
k=1

b( j)
−k eikθn−k

j +
+∞∑
k=0

b( j)
k e−ikθnk

j

= a( j+1)e−iθn−1
j +

+∞∑
k=2

a( j+1)
−(k−1)

(1− k)e−ikθn−k
j +

+∞∑
k=0

a( j+1)
k+1 (k + 1)eikθnk

j+

+∞∑
k=3

b( j+1)
−(k−2)

(2− k)e−ikθn−k
j +

+∞∑
k=−1

b( j+1)
k+2 (k + 2)eikθnk

j +
+∞∑
k=1

b( j+1)
−k eikθn−k

j +
+∞∑
k=0

b( j+1)
k e−ikθnk

j , (17)

Ra( j)
· ln r j + Ra( j)

0 + r jb
( j)
1 n j = Ra( j+1)

· ln r j + Ra( j+1)
0 + r jb

( j+1)
1 n j. (18)

Similar to the calculations at the edge of the hole, we can get a set of 4m(s− 1) + 7(s− 1) linear
equations listed as Equations (A6)–(A16) in Appendix A by comparing the coefficients of the same
power of −2, −1, 0 k and −k of eiθ in Equations (16)–(18).

Finally, there are also the same continuous conditions of Equations (13)–(15) at the interface r = rs

between the ring Ks and the outer plate Ks+1. Substituting Equations (7)–(10) with z = rseiθ into
Equations (13)–(15), and using ns = rs/R, we can get another set of lengthy equations.

Ds ·

(1− vs)

a(s)e−iθn−1
s +

+∞∑
k=2

a(s)
−(k−1)

(1− k)e−ikθn−k
s +

+∞∑
k=0

a(s)k+1(k + 1)eikθnk
s

+
+∞∑
k=3

b(s)
−(k−2)

(2− k)e−ikθn−(k−2)
s +

+∞∑
k=−1

b(s)k+2(k + 2)eikθnk+2
s


−(3 + vs)

+∞∑
k=1

b(s)
−k eikθn−k

s +
+∞∑
k=0

b(s)k e−ikθnk
s
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= Ds+1 ·

(1− vs+1)

m+1∑
k=0

Akkei(k−1)θnk−1
s + αe−iθn−1

s +
∞∑

k=1

α−k(−k)e−i(k+1)θnk+1
s

+
m∑

k=1

Bkkei(k−2)θnk
s +

m∑
k=1

β−k(−k)e−i(k+2)θn−k
s


−(3 + vs+1)

 m∑
k=1

Bke−ikθnk
s +

∞∑
k=0

β−keikθn−k
s


, (19)

a(s)e−iθn−1
s +

+∞∑
k=2

a(s)
−(k−1)

(1− k)e−ikθn−k
s +

+∞∑
k=0

a(s)k+1(k + 1)eikθnk
s+

+∞∑
k=3

b(s)
−(k−2)

(2− k)e−ikθn−k
s +

+∞∑
k=−1

b(s)k+2(k + 2)eikθnk
s +

+∞∑
k=1

b(s)
−k eikθn−k

s +
+∞∑
k=0

b(s)k e−ikθnk
s

=
m+1∑
k=0

Ak+1(k + 1)eikθnk
s + αe−iθn−1

s +
∞∑

k=2

α−(k−1)(1− k)e−ikθn−k
s +

m−2∑
k=−1

B(k+2)(k + 2)eikθnk+2
s +

∞∑
k=3

β−(k−2)(2− k)e−ikθn−(k−2)
s +

m+1∑
k=0

Bke−ikθnk
s+

∞∑
k=0

β−keikθn−k
s , (20)

Ra(s) · ln rs + Ra(s)0 + rsb
(s)
1 ns = RA0 + Rα ln rs + rsB1ns. (21)

Then another set of 4m+ 7 linear equations are obtained (see Equations (A17)–(A27) in Appendix A)
by comparing the coefficients of the same power of eiθ in Equations (19)–(21).

In the appendix, there are 4m · s + 7s + 2m + 3 equations in total derived from the boundary
conditions at the edge of the hole and the continuous conditions at the interface of rings. These

equations just contain 4m · s + 7s + 2m + 3 unknown coefficients a( j)
k , b( j)

k , a( j)
−k , b( j)

−k , a( j), α−k, β−k, α;
hence, all these unknown coefficients can be determined by solving the system of equations according
to programming in the business software Matlab. Then the field variables in the plate and each
concentric ring can be derived from Equations (1) and (2). Based on the theory of plate and shell, it is
easy to obtain the bending stresses in the FGM plate.

4. Numerical Examples

In this section, the functionally graded thin plate subjected to uniaxial bending and balanced
biaxial bending are considered as follows.

Uniaxial bending: Mx = M0, My = 0.
Balanced biaxial bending: Mx = My = M0.
Here M0 is the remote bending moment applied per unit length of the plate. For the case

of uniaxial bending, the known coefficients in Equations (7) and (8) have A2 = −M0/[4D(1− v)],
B1 = −M0/[4D(1 + v)], and other Ak, Bk equal to zero. For biaxial bending, the corresponding
coefficients are B1 = −M0/[2D(1 + v)], and all Ak and other Bk equal to zero.

4.1. The Case for a Whole FGM Plate with a Circular Hole

It is assumed that the Young’s modulus and Poisson’s ratio in the FGM plate have three varying
forms as decreasing, unchanged, and increasing, respectively, along the radial direction. The varying
functions of Young’s modulus and Poisson’s ratio are listed in Table 1, and their varying characteristics
can be clearly seen in Figure 2. The unchanged elastic parameters correspond to the case of a
homogeneous plate with a circular hole. For the decreasing and increasing Young’s modulus and
Poisson’s ratio, it can be seen they vary obviously near the hole but change slowly and ultimately tend
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to constants after a radius larger than about 5r0. In the following, we will discuss the distribution of
bending moments in the FGM plate under uniaxial bending and balanced biaxial bending, for the
above three functions of Young’s modulus and Poisson’s ratio in Table 1.

Table 1. Three different functions of Young’s modulus and Poisson’s ratio in the functionally graded
material (FGM) plate.

Varying Forms The Functions of Young’s Modulus The Functions of Poisson’s Ratio

Decreasing E−(r) = E0
(
1 + 0.5e1−r/r0

)
1 ν−(r) = ν0

(
1 + 0.5e1−r/r0

)
1

Unchanged E0(r) = E0 ν0(r) = ν0

Increasing E+(r) = E0
(
1− 0.5e1−r/r0

)
ν+(r) = ν0

(
1− 0.5e1−r/r0

)
1 E0 and ν0 are constants.
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Firstly, the effects of different varying Young’s modulus on the distribution of normalized bending
moments Mθ/M0 in the plate are discussed, and the results are shown in Figure 3, where the Poisson’s
ratio is assumed to remain unchanged ν(r) = ν0 = 0.3. The solid lines in the figure represent the
results of the homogeneous perforated plate. For the case of uniaxial bending in Figure 3a,b, it is
found the maximum values of the moments are at the points θ = ±900 at the edge of the hole and
equal to 1.79M0. For the balanced biaxial bending in Figure 3c,d, the value of moments around the
hole is a constant, and identically equal to 2M0. As shown in the figure, these results agree with those
of Savin [5] and Lekhnitskii [6]. In addition, it is most important to find from Figure 3 that the bending
stress concentration near the hole significantly increases as the Young’s modulus decreases in radial
direction, while it reduces with the Young’s modulus increasing under both uniaxial bending and
biaxial bending. The normalized bending moment Mθ/M0 is close to 1 in the whole plate for E+(r).
That means the phenomenon of bending stress concentration around the hole is almost eliminated in
this case. Therefore, it can be concluded that the problem of bending stress concentration, caused by
the geometric discontinuity of the hole in the traditional homogeneous plate, can be well relieved or
even eliminated by properly choosing the radially increasing Young’s modulus in the plate.
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The distribution of circumferential bending moments Mθ/M0 for different radially varying
Poisson’s ratios are shown in Figure 4, where the Young’s modulus is taken as constant. It is clear to
see that the effect of a varying Poisson’s ratio on the bending moments is very slight in comparison
with that of Young’s modulus. Three curves of the moments for different varying Poisson’s ratios
almost overlap under uniaxial bending in Figure 4a. The influence of the radial variations of Poisson’s
ratio on the bending moments is so small that it can be ignored.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 16 
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4.2. The Case for an FGM Ring Reinforced in a Homogeneous Plate

There is an important theoretical significance of the above conclusions on the bending stress
concentration in a whole FGM plate. However, considering the feasibility of material preparation and
engineering application, it would be better to reinforce a thin FGM ring around the hole to reduce the
stress concentration, in comparison with manufacturing a whole FGM perforated plate [23]. Hence,
the bending moments in a homogeneous plate with a circular hole reinforced with an FGM ring are
further analyzed here. The schematic diagram of the structure is displayed in Figure 5a. The solution
of the bending moments for this case can be easily derived by taking rs in Section 3 as the outer radius
of the reinforcing ring.
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Figure 5. (a) A homogeneous thin plate with a circular hole reinforced with a ring; (b) variation of
Young’s modulus along the radial direction for four types of the ring.

Since the varying Poisson’s ratio has little effect on the bending moments, Poisson’s ratio is
assumed as constant ν(r) = ν0 = 0.3 in the next discussions. Two Young’s moduli, Eh at the edge of the
hole and Ep in the plate, are taken as the main parameters. Meanwhile, four types of the reinforcing ring
listed in Table 2 are considered. The varying curves of Young’s modulus in four different reinforcing
rings are presented in Figure 5b. The solid line in the figure represents a special case of a homogeneous
plate with a circular hole with no ring. The dash-dotted line, dotted line, and dashed line mean the
edge of the hole reinforced by, respectively, a homogeneous ring with unchanged Young’s modulus,
FGM ring with linearly varying Young’s modulus, and FGM ring with exponentially varying Young’s
modulus. It is obvious that Young’s modulus is always decreasing as Eh > Ep, but increasing as Eh < Ep

in Figure 5.

Table 2. Four types of the reinforcing ring with different functions of Young’s modulus.

The Types of Ring The Functions of Young’s Modulus

Non-ring E(r) = Eh = Ep
Homo-ring E(r) = Eh , Ep

FGM-ring (linear) E(r) =
(
Ep − Eh

)
(r− r0)/(rs − r0) + Eh

FGM-ring (exponential) E(r) =
(
Ep − Eh

)
/
(
1− e5

)
∗ e5(1−(r−r0)/(rs−r0)) −

(
e5Ep − Eh

)
/
(
1− e5

)
The distribution of bending moments Mθ/M0 for different types of the ring is presented in

Figure 6 for the cases of Eh ≥ Ep and Eh ≤ Ep. The radius ratio of the ring is taken as rN/r0 = 1.5.
It is observed from Figure 6a that the bending moments at the hole for three cases of “with-ring”
are much higher than that of non-ring as Young’s modulus at the edge of the hole Eh larger than
that in the plate Ep. On the contrary, the moments near the hole for “with-ring” are less than that of
non-ring as Eh < Ep in Figure 6b. It is obvious that the moment concentration near the hole can be
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reduced in this case. However, it is also worth noting that the moments in the plate for “with-ring”
are slightly higher than that of non-ring. For this reason, it is found that a sudden change of the
moments occurs at the interface between the homogeneous ring and the plate. The sudden change of
the moments will lead to a seriously interfacial stress concentration, which may promote the crack
initiation and propagation along the interface and ultimately result in the failure of the whole structure.
Therefore, the homogeneous ring can relieve the stress concentration near the hole, but the mismatch
of material properties at the interface between the ring and the plate will cause a new interfacial stress
concentration. The FGM ring can effectively avoid this problem due to continuous variations of elastic
properties from the edge of the hole to the plate. It is clear evidence from the moment distribution
in Figure 6b that the bending moment changes continuously in the ring and the plate with no jump
for both linear FGM ring and exponential FGM ring. Meanwhile, both of them significantly reduce
the moment concentrations near the hole. The only difference of the results between the linear and
exponential FGM ring is the distribution shapes of the moment in the ring. The linear FGM ring causes
the moment to vary along a linear way in the ring, while the exponential FGM ring causes a moment
with a similarly exponential change.
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ring: (a) Eh = 1.5Ep; (b) Eh = 0.5Ep.

Figure 7 shows the influence of the width of the reinforcing ring on the distribution of bending
moment. It is supposed here the ratio of Young’s modulus Eh/Ep = 0.5. Figure 7a,b show that
the bending moments in the ring and the plate increase steadily as the width of the homogeneous
ring increases. The difference of moments at the interface almost keeps constant. For the linear and
exponential FGM rings in Figure 7c–f, the bending moments at the edge of the hole change very
slightly as the width of the ring increases, but the maximum moment in the ring decreases gradually.
Therefore, the increase of the widths of the ring is beneficial to reduce the overall moments in the
structure. In particular, if the width of the ring is taken large enough in Figure 7f, the result will be
reduced to the case of an infinite FGM plate with a circular hole as shown in Figure 3a.
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Finally, the variations of SCF with the ratio of Young’s modulus Eh/Ep and radius ratio rN/r0 are
analyzed, and the results are shown in Figure 8 where the linear FGM ring is taken as an example.
The SCF Kr0 at the edge of the hole and KrN in plate at the edge of the ring are defined as

Kr0 = (Mr0)max/M0, (22)
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KrN = (Mrs)max/M0, (23)

where (Mr0)max and (Mrs)max are the maximum bending moments at the edge of the hole and in plate
at the edge of the ring, respectively.

It is found from Figure 8a that the SCF Kr0 grows quickly while KrN decreases slowly as the
abscissa Eh/Ep increases. When Eh/Ep > 1, that is the Young’s modulus at the edge of the hole is
larger than that of the plate, the SCF Kr0 is always higher than that of the homogeneous perforated
plate. When Eh/Ep < 1, the SCF in the structure attains the minimum value at the intersections of the
curves of Kr0 and Kr0 . The corresponding abscissas of the intersections are the optimal ratio of Young’s
modulus to realize the minimum stress concentration.

It can be seen from Figure 8b that there is a special case as Eh/Ep =1.0, i.e., the Young’s modulus
in the ring equal to that in the plate. The SCF Kr0 remains constant and equal to 1.79, which is the result
of a homogeneous plate with a circular hole. For other ratios of Eh/Ep, the SCF Kr0 changes slowly
with the abscissa rN/r0 increasing, while the SCF KrN decreases rapidly in the approximate range
rN/r0 = 1 ∼ 2 and then changes slightly as the abscissa rN/r0 increases. Hence, it can be concluded
that the increase of the width of the ring is beneficial to relieve the bending stress concentration, but
the effect will not be obvious after the width reaches a certain value.
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5. Conclusions

Based on Muskhelishvili’s complex variable methods, the bending stress concentration at a circular
hole in a functionally graded thin plate is analyzed. The method of piece-wise homogeneous layers is
used to deal with the arbitrary variation of elastic properties along the radial direction in the plate.
The effects of different variations of elastic parameters on the distribution of bending moments are
discussed for two different cases: a whole FGM plate with a circular hole and an FGM ring reinforced
in a homogeneous perforated plate. The following conclusions can be drawn.

(1) For the case of a whole FGM plate, it is found that the bending stress concentration, caused by the
geometric discontinuity of the hole in the traditional homogeneous plate, can be well relieved or
even eliminated by choosing an appropriate radially increasing Young’s modulus in the plate.
The radial change of Poisson’s ratio has little effect on reducing the bending stress concentration.

(2) For the case of an FGM ring reinforced in a homogeneous plate, it is found the FGM reinforcing ring
with radially increasing Young’s modulus can not only relieve the bending stress concentration
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around the hole, but also avoid the stress concentration at the interface between the ring and the
plate compared with that of the homogeneous reinforcing ring.

(3) The linear and exponential FGM rings can both reduce the stress concentration near the hole, and
their effects are almost equally good. The only difference of their results are the distribution shapes
of the bending moments. The linear FGM ring makes the moment vary along a linear way in the
ring, while the exponential FGM ring brings the moment with a similarly exponential change.

(4) The increase of the width of the reinforcing ring is beneficial to relieve the bending stress
concentration, but the effect will not be obvious after the width reacheds a certain value.
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Appendix A

The following set of 2m + 3 linear equations are derived by comparing the coefficients of the same
power of −2, −1, 0 k and −k of eiθ in Equation (12)

(1− v1)
[
a(1) + b(1)1

]
− (3 + v1)b

(1)
1 = 0, (A1)

(1− v1)
[
a(1) + 2b(1)2

]
− (3 + v1)b

(1)
0 = 0, (A2)

(1− v1)a
(1)
−1 + (3 + v1)b

(1)
2 = 0, (A3)

(1− v1)
[
ka(1)k + (k + 1)b(1)k+1

]
− (3 + v1)b

(1)
−(k−1)

= 0, (A4)

(1− v1)

[
ka(1)
−k + (k− 1)b(1)

−(k−1)

]
+ (3 + v1)b

(1)
k+1 = 0, (A5)

where k = 2, 3, · · · , m + 1.
A set of following 4m(s− 1) + 7(s− 1) linear equations is obtained by comparing the coefficients

of the same power of eiθ in Equations (16)–(18)

D j

{(
1− v j

)[
a( j) + b( j)

1 n2
j

]
−

(
3 + v j

)
b( j)

1 n2
j

}
= D j+1

{(
1− v j+1

)[
a( j+1) + b( j+1)

1 n2
j

]
−

(
3 + v j+1

)
b( j+1)

1 n2
j

}
, (A6)

D j

{(
1− v j

)[
a( j)

1 + 2b( j)
2 n2

j

]
−

(
3 + v j

)
b( j)

0

}
= D j+1

{(
1− v j+1

)[
a( j+1)

1 + 2b( j+1)
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j

]
−

(
3 + v j+1

)
b( j+1)

0

}
, (A7)
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{(
1− v j

)
a( j)
−1 +

(
3 + v j

)
b( j)

2 n4
j

}
= D j+1
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= D j+1
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1− v j+1

)[
ka( j+1)

k n2(k−1)
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k n2(k−1)

j + (k + 1)b( j+1)
k+1 n2k

j + b( j+1)
−(k−1)

, (A14)

ka( j)
−k + (k− 1)b( j)

−(k−1)
n2

j − b( j)
k+1n2(k+1)

j = ka( j+1)
−k + (k− 1)b( j+1)

−(k−1)
n2

j − b( j+1)
k+1 n2(k+1),

j (A15)

a( j)
0 + a( j) ln r j + b( j)

1 n2
j = a( j+1)

0 + a( j+1) ln r j + b( j+1)
1 n2

j , (A16)

where k = 2, 3, · · · , m + 1 and j = 1, 2, · · · , s− 1.
The following set of 4m + 7 linear equations can be derived by comparing the coefficients of the

same power of eiθ in Equations (19)–(21).

Ds

{
(1− vs)

[
a(s) + b(s)1 n2

s

]
− (3 + vs)b

(s)
1 n2

s

}
= Ds+1

{
(1− vs+1)

[
α+ B1n2

s

]
− (3 + vs+1)B1n2

s

}
, (A17)

Ds

{
(1− vs)

[
a(s)1 + 2b(s)2 n2

s

]
− (3 + vs)b

(s)
0

}
= Ds+1

{
(1− vs+1)

[
A1 + 2B2n2

s

]
− (3 + vs+1)β0

}
, (A18)

Ds

{
(1− vs)a

(s)
−1 + (3 + vs)b

(s)
2 n4

s

}
= Ds+1

{
(1− vs+1)α−1 + (3 + vs+1)B2n4

s

}
, (A19)

Ds

{
(1− vs)

[
ka(s)k n2(k−1)

s + (k + 1)b(s)k+1n2k
s

]
− (3 + vs)b

(s)
−(k−1)

}
= Ds+1

{
(1− vs+1)

[
kAkn2(k−1)

s + (k + 1)Bk+1n2k
s

]
− (3 + vs+1)β−(k−1)

}
, (A20)

Ds

{
(1− vs)

[
ka(s)
−k + (k− 1)b(s)

−(k−1)
n2

s

]
+ (3 + vs)b

(s)
k+1n2(k+1)

s

}
= Ds+1

{
(1− vs+1)

[
kα−k + (k− 1)β−(k−1)n

2
s

]
+ (3 + vs+1)Bk+1n2(k+1)

s

}
, (A21)

a(s) + 2b(s)1 n2
s = α+ 2B1n2

s , (A22)

a(s)1 + 2b(s)2 n2
s + b(s)0 = A1 + 2B2n2

s + β0, (A23)

a(s)
−1 − b(s)2 n4

s = α−1 − B2n4
s , (A24)

ka(s)k n2(k−1)
s + (k + 1)b(s)k+1n2k

s + b(s)
−(k−1)

= kAkn2(k−1)
s + (k + 1)Bk+1n2k

s + β−(k−1), (A25)



Appl. Sci. 2020, 10, 2231 15 of 16

ka(s)
−k + (k− 1)b(s)

−(k−1)
n2

s − b(s)k+1n2(k+1)
s = ka−k + (k− 1)β−(k−1)n

2
s − Bk+1n2(k+1),

s (A26)

a(s) · ln Rs + a(s)0 + b(s)1 n2
s = A0 + α ln Rs + B1n2

s , (A27)

where k = 2, 3, · · · , m + 1.
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