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Abstract: A group of stock markets can be treated as a complex system. We tried to find the financial
market crisis by constructing a global 24 stock market network while using detrended cross-correlation
analysis. The community structures by the Girvan-Newman method are observed and other network
properties, such as the average degree, clustering coefficient, efficiency, and modularity, are quantified.
The criterion of correlation between any two markets on the detrended cross-correlation analysis
was considered to be 0.7. We used the return (rt) and volatility (|rt|) time series for the periods of
1, 4, 10, and 20-year of composite stock price indices during 1997–2016. Europe (France, Germany,
Netherland, UK), USA (USA1, USA2, USA3, USA4) and Oceania (Australia1, Australia2) have been
confirmed to make a solid community. This approach also detected the signal of financial crisis,
such as Asian liquidity crisis in 1997, world-wide dot-com bubble collapse in 2001, the global financial
crisis triggered by the USA in 2008, European sovereign debt crisis in 2010, and the Chinese stock
price plunge in 2015 by capturing the local maxima of average degree and efficiency.

Keywords: global stock market; time series; detrended cross-correlation analysis (DCCA);
complex network; Girvan-Newman method; global financial crisis

1. Introduction

Time series analysis and complex networks in the field of statistical physics are the main research
areas for decades. In particular, non-stationary time series has been considered as a difficult field
to work with and various methods have been developed in an effort to analyze these time series.
R/S analysis, detrended fluctuation analysis (DFA) [1,2], and detrended cross correlation analysis
(DCCA) [3] have been known to detect long-range correlation of time series by applying them to
non-stationary time series. In addition, the complex network enables a new perspective analysis
by expressing a system as nodes and edges. These two analytical methods have been applied in
a variety of fields, such as physics [4], economics [5], biology [6,7], physiology [8], climate science [9],
brain sciences [10], and so on.

Zebende [11] proposed the new correlation coefficient, which is the DCCA correlation coefficient
that quantifies non-stationary time series using the DFA and DCCA methods. Piao and Fu [12]
compared the correlation coefficients of DCCA and Pearson methods. They used temperature and
relative humidity data from stations in Beijing, Jinan, Shijiazhuang, and Zhengzhou to show that the
correlation coefficient of DCCA was more accurate than Pearson in the annual time series.

Newman and Girvan [13] calculated modularity to determine community structures in the
network: modularity is a quantitative measurement of the network’s optimal community structure.
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They calculated the betweenness centrality of an edge of the network to remove the edge with the
highest centrality value and calculate the modularity again. Subsequently, the structure of the network
with the highest modularity value represents the best separation of groups within the network.
Despalatovich et al. [14] developed the Girvan and Newman’s methods as multiple edges.

In addition, Wu et al. [15] analyzed the network community structure of a stock market using the
Girvan-Newman method for 180-index data registered in the SSE (Shanghai Stock Exchange). They used
Pearson correlation coefficients to build the network by varing the thresholds. They found that the
network with a threshold 0.7 was a proper structure than the others. By detecting a community
structure of the network, they found that corporations in the same industry belong to the same
community. Silva et al. [16] built a network using the Pearson correlation coefficient for 348 stocks in
the New York Stock Exchange. They created a network that reflected time evolution, and analyzed the
network structure before, after, and during the Black Monday crisis. They found that, during the crisis,
the modularity values were lower than other network structures. Yan et al. [17] conducted a network
analysis of 710 stocks of the Shanghai Stock Exchange (SSE). They calculated the global efficiency
on a yearly basis for 2005–2011, it was confirmed that the global efficiency sharply decreased when
the subprime crisis occurred. Pereira et al. [18] performed a network analysis of the pre-subprime
crisis period and post-subprime crisis period using the stock market indices of 20 countries for the
period 2001–2017. They used the DCCA method and created a weighted network by connecting stock
markets with a DCCA factor of 0.66 or more. They applied the Louvain method to detect the community
structure. The network created three groups of (Europe), (America), and (Asia, Australia) during the
pre-subprime crisis, and two groups of (Europe, America) and (Asia, Australia) during post-subprime
crisis. There are other previous studies that performed network analysis on the stock market [19,20].
Financial markets are treated as complex systems, so network analysis is an important tool for dealing
with them [21].

The stock market can be seen as an area with both time series and network features. Changes in
stock prices can be characterized by time series, and the network structure is defined by connecting the
correlated stock markets [22].

In this paper, we studied the DCCA method, traditional complex network analysis [5,23], and
Girvan-Newman method to detect the optimal community of global 24 stock markets. We set 24 markets
as nodes, and generated an edge between two markets if the DCCA coefficient between the two
markets is significantly high. We divide the total 20 years data for 1997–2016 into data sets of 1, 4, 10,
and 20-year periods and conducted DCCA and network analysis to examine their network structure.

In Section 2, the types and characteristics of stock market data are introduced. Additionally,
a detailed description of DCCA and network analysis, especially the Girvan-Newman method is
explained in Section 3. Numerical analysis and visualization of community structure and dynamics of
several network properties were performed in Section 4. Finally, a semantic consideration and the
meaning of the research are described and the future research directions are proposed in Section 5.

2. Data

We use closing price of stock market index from July 2, 1997 to December 30, 2016. In this
paper, we used a set of time series that reconstructed the entire 20 years data into periods of 1, 4, 10,
and 20-year. In economic cycle, 3–7 year is Kitchen cycle, 7–11 year is Juglar cycle, and 15–25 is called
the Kuznets cycle [24]. Accordingly, we chose 4, 10, and 20-year in the economic cycle. In addition,
the global efficiency was calculated from Yan et al. [17] on a one-year cycle, so we selected a period
of 1, 4, 10, and 20-years in this paper. That is, 20 sets of one-year (1997, 1998, . . . , 2016), five sets of
four-year (1997–2000, 2001–2004, 2005–2008, 2009–2012, and 2013-2016), two sets of 10-year (1997–2006,
2007–2016), and one set of 20-year time series. We generated two types of data, return (rt) and volatility
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(|rt|), as following [25]. The difference of logarithms for consecutive closing indices is almost identical
to the return. Additionally, the absolute value is approximately same as the volatility.

rt = log(Pt+1) − log(Pt)

|rt| =
∣∣∣log(Pt+1) − log(Pt)

∣∣∣ (1)

Pt is a stock price index at time t and Pt+1 is one at time t + 1.
Table 1 lists the names of surveyed stock markets. There are 24 markets of world-wide 19 countries.

More specifically, 11 in Asia (eight countries), five in Europe (five countries), five in North America (two
countries), three in South America (three countries), and two in Oceania (one country) were surveyed.

Figure 1 shows the time series of stock price indices in 24 stock markets. There are markets that rise
significantly overall, whereas there are markets that repeat rising and falling. It is common that the index
plunged at the midpoint of the period (the 2008 global financial crisis). However, intuitively, it is hard to
understand the correlations between these market indices. In general, the Pearson correlation coefficient
is used to analyze the correlation between the two time series. However, the Pearson correlation
coefficient was extraordinary high for the stock price index between countries, the temperature
distribution between neighboring regions, and so on. Thus, the two time series appear to be
self-evidently correlated.

Table 1. Surveyed global 24 stock market lists.

No Nation Stock Market No Nation Stock Market

1 Argentina MERVALS 13 Korea1 KOSPI
2 Australia1 AORD 14 Korea2 KOSDAQ
3 Australia2 S&P ASX200 15 Mexico IPC
4 Brazil IBOVESPA 16 Netherland AEX
5 Chile IGPA 17 Pakistan KSE100
6 France CAC40 18 Singapore STI
7 Germany DAX 19 Taiwan TAIMEX
8 Hong Kong HANGSENG 20 USA1 DOW
9 Hungary BUX 21 USA2 S&P500

10 India BSE SENSEX 22 USA3 NASDAQ
11 Indonesia IDX 23 USA4 DOW TRANS
12 Japan NIKKEI225 24 UK FTSE100
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Thus, we will analyze the correlation between stock markets while using the detrended cross
correlation analysis (DCCA) method to more strictly judge the correlation. The derived correlation is
used to determine whether to connect the links between two nodes in network analysis.

3. Methodology

3.1. Detrended cross Correlation Analysis (DCCA)

The detrended cross correlation analysis (DCCA) is a method for finding long range cross
correlation properties in the non-stationary time series that were proposed by Podobnik [3]. In fact,
Pearson correlation coefficient is a sum of product that removes 0th order global trend (i.e., average)
for the whole box size. On the other hand, DCCA is a sum of product that removes each local trend
(usually 1st order) for given sized boxes. Therefore, DCCA has advantages that it can analyze the
noise effect by removing various types of trend for various box sizes when compared to Pearson
method [12,26]. Here, we used MATLAB as a simulation tool to apply the DCCA method, and R for
network analysis and visualization.

The first step in the DCCA is to accumulate two different time series {xi} and
{
yi
}

of equal lengths N.

Xk =
k∑

i=1

xi, Yk =
k∑

i=1

yi (k = 1, 2, . . . , N) (2)

Next, the local fluctuations are calculated, as follows.

f 2
DFA(n, i) = 1

n−1

i+n−1∑
k=i

(
Xk − X̃k,i

)2
and

f 2
DCCA(n, i) = 1

n−1

i+n−1∑
k=i

(
Xk − X̃k,i

)(
Yk − Ỹk,i

) (3)

Equation (3) refers to the following process. We divide total time series by a specific box-length n
to create N − n + 1 overlapping boxes and the limit size of the box-lengths is set to 1/5 of the total time
series [27]. Here, X̃k,i and Ỹk,i are linear least squares in the i-th box and they are called ‘local trends’.
Subtracting ’local trends’ X̃k,i from the accumulated data Xk and averaging the sum of squares make
the local fluctuation f 2

DFA(n, i) of i-th box with box-length n + 1. If we want to see the cross fluctuation
of the two time series, we can calculate f 2

DCCA(n, i) by replacing it with the mutual product for Xk and
Yk instead of the square for Xk.

Averaging all of the local fluctuations for N − n overlapping boxes, the fluctuations F2
DFA(n) and

F2
DCCA(n) are induced as in Equation (4).

F2
DFA(n) =

1
N−n+1

N−n+1∑
i=1

f 2
DFA(n, i) and

F2
DCCA(n) =

1
N−n+1

N−n+1∑
i=1

f 2
DCCA(n, i)

(4)

Equation (4) is, in fact, an extended version of variance and co-variance. ’local trend’ can be any
functions as well as a linear function. If the ’local trend’ is a 0-th order monomial of length n = N,
the trend becomes the average value of time series, and F2

DFA(n) and F2
DCCA(n) are exactly same as

variance and co-variance of time series. Therefore, the correlation coefficient ρDCCA(n) of box-length
n can be made as Equation (5). Unlike the Pearson correlation coefficient, ρDCCA(n) can be obtained
several values with varying box-length n.

ρDCCA(n) =
F2

DCCA(n)√
F2

DFA(n)
√

F′2DFA(n)
(5)
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The correlation coefficient has a value of −1 ≤ ρDCCA(n) ≤ 1. If ρDCCA(n) is close to 1, two time
series are strongly correlated. Conversely, if the value is close to -1, they are strongly anti-correlated.
In both cases, we can easily infer information regarding another time series from one. If ρDCCA(n) is
close to 0, there is no correlation between the two time series.

3.2. Complex Network Analysis and Girvan-Newman Method

We will figure out the network properties of 24 stock markets while using the analytical
methodology of complex networks. The network consists of nodes and edges: nodes are the
stock markets that we want to analyze, and the edges will be connected if the correlation coefficient of
Equation (5) is significantly high. That is, ρDCCA(n) of the time series is higher than that of shuffled time
series for all box-length n. We analyzed 24 global stock markets networks by obtaining values, such as
degree, characteristic path length, efficiency, clustering coefficient, betweenness centrality [23,28],
and modularity [13].

3.2.1. Degree

Consider an adjacency matrix A of a network. A component ai j = 1 if two nodes i and j are
connected. Otherwise, ai = 0. In this paper, ai j = 1 if two markets are correlated. Subsequently,
the degree ki of node i is sum of ai j’s.

ki =
∑
j,i

ai j (6)

3.2.2. Characteristic Path Length

Define di→ j be the shortest path length from node i to node j. Then, the characteristic path length
L is defined as the average value of the shortest path length for all node pairs (i, j).

L =
2

N(N − 1)

N∑
i=1

i−1∑
j=1

di→ j (7)

3.2.3. Efficiency

The efficiency of a network represents a measure of information exchange in the network.
Efficiency uses the inverse of the shortest path. That is, shortening the path length increases the
efficiency. There are two types of network efficiency: global efficiency and local efficiency. The global
efficiency is the efficiency of the entire network.

Eglobal =
2

N(N − 1)

N∑
i=1

i−1∑
j=1

1
di→ j

(8)

Elocal =
1
N

N∑
i=1

Eglobal
i (9)

Eglobal
i is the global efficiency of the subgraph of nodes that are directly connected to node i and

Elocal is the average of them.
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3.2.4. Clustering Coefficient

Clustering is a measure of how well a network is aggregated. The clustering coefficient is calculated
while using the local clustering coefficient of the specific node i. The local clustering coefficient is
a measure of how well the neighboring nodes are clustered around the specific node i.

Ci =
number of triangle
number of triplet

=
∆i

ki(ki − 1)/2
(10)

where ∆i is the number of triangles for the sub-network of node i and its neighborhood and ki is the
number of neighboring nodes. Ci denotes the local clustering coefficient of node i, and their average
value is the clustering coefficient of the network.

C =
1
N

N∑
i=1

Ci (11)

3.2.5. Betweenness Centrality

The betweenness centrality of a node indicates how much the node is playing a role as
an intermediate bridge in the network.

cbetween
k =

2
(N − 1)(N − 2)

N∑
i=1

i−1∑
j=1

ni→k→ j

ni→ j
(12)

ni→ j is the number of shortest paths from node i to j and ni→k→ j is the number of shortest paths
from node i to j through node k. Thus, the betweenness centrality cbetween

k of a node k means the
average of ratio ni→k→ j/ni→ j for all node pairs (i, j).

3.2.6. Modularity

Modularity can be considered to be one of the ways to identify community structures in a network.
Suppose that a network is divided into two groups; the nodes in the group are fully connected and
those of intergroup are not connected at all. Subsequently, it is obvious to separate the network into
two groups, and modularity should have the maximum value. Otherwise, if all of the node pairs
are randomly connected of a given probability, it would be difficult to separate the network into
sub-groups. In this case, the modularity should have a minimum value. The modularity Q is defined,
as following.

Q =
NC∑
u=1

(
euu − a2

u

)
= tr(e) − ‖ e2

‖ (13)

where NC is the number of communities, euv is the fraction of edges with one node is in community
u and the other in community v, and au is the fraction of edges that are attached to the vertices in
community u.

3.2.7. Girvan-Newman Method

The Girvan-Newman method uses betweenness centrality, which is defined in Section 3.2.5.
The algorithm first calculates the betweenness centrality for the all edges. Then, remove an edge
with the highest betweenness centrality value and calculate the modularity Q about the new network.
Repeatedly perform this process in descending order of betweenness centrality. The structure of the
network with the highest modularity Q means the most divided network.
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3.2.8. Create Network Structure

The correlation coefficient varies between -1 and 1, according to correlation strength between two
time series. Generally, the criteria of strong correlation are known to be greater than 0.6 and very strong
correlation is greater than 0.8. The threshold of a correlation coefficient for constructing a network was
set to 0.7 by Wu et al. [15] and 0.66 by Pereira et al. [18]. In our results, a fully connected network was
appeared at a threshold of 0.6 and a sparse network at 0.8. Therefore, we set the threshold 0.7, which is
the median value of strong and very strong criteria.

4. Numerical Analysis

The detrended cross correlation analysis (DCCA) was conducted in world-wide 24 stock markets
to obtain correlation coefficients between stock markets. When DCCA was applied, the box-length was
shifted by 10 days. When we formed each network, we obtained θ (threshold) for the stock market by
performing DCCA. The network was defined by connecting the markets where the average of the ρDCCA
for the two stock markets was 0.6 (strong) and 0.8 (very strong), which is over θ = 0.7. Subsequently,
network properties, such as average degree 〈k〉, characteristic path length L, global efficiency Eglobal,
local efficiency Elocal, clustering coefficient C, betweenness centrality cbetween

k , and modularity Q,
were calculated.

We used the newly constructed time series to see how the network changes over time. Figure 2
shows the algorithm of detrended cross correlation analysis and network analysis of this research.
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Figure 2. Schematic diagram of detrended cross correlation analysis and network analysis.

Figure 3 shows the results of DCCA on time series reconstructed into four, 10, and 20 year periods.
(a) return and (b) volatility in Figure 3 are all examples of stock markets that have strongly correlated.
This means that the trends of the two stock markets are almost coupled. If the average of ρDCCA in both
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markets is greater than 0.7, they are connected in the network analysis, as mentioned above. In this
way, the network properties for the 24 nodes were calculated for one, four, 10 and 20-year periods.

We apply the Girvan-Newman method to find the optimal community in the network. Figure 4
shows the network analysis of return for 2013–2016, which shows that the network was divided in
step 3 to find the best community. Here, decreasing Q value gradually after step 3 means that the
network is not divided into communities. We followed the process, as shown in Figure 4, to find the
best community. Figures 5–7 show the dynamics of community structures for global 24 stock market
networks of return and volatility generated by DCCA partitioned by four, 10, and 20 years, respectively.
We have colored nodes to identify communities, and our results show that some stock markets are
scattered in small communities, or they form one large community. The left figures are the community
structures for return and the rights are for volatility. As can be easily compared, the community
structures are similarly formed both return and volatility. The community structure analysis using
DCCA and the Girvan-Newman method showed that more than one huge community was not formed.
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Appl. Sci. 2020, 10, 2171 9 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18 

  

(a) Return network for 1997–2000 (b) Volatility network for 1997–2000 

  

(c) Return network for 2001–2004 (d) Volatility network for 2001–2004 

  

(e) Return network for 2005–2008 (f) Volatility network for 2005–2008 

Figure 5. Cont.



Appl. Sci. 2020, 10, 2171 10 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18 

  

(g) Return network for 2009–2012 (h) Volatility network for 2009–2012 

  

(i) Return network for 2013–2016 (j) Volatility network for 2013–2016 

Figure 5. Community structures of return and volatility for global 24 stock markets of four-year 247 
length time series. The networks are formed by DCCA and the community structure and the 248 
communities are structured by the Girvan-Newman method. The communities are gradually larger to 249 
2005–2008, and then they are divided into small communities. 250 

  

Figure 5. Community structures of return and volatility for global 24 stock markets of four-year length
time series. The networks are formed by DCCA and the community structure and the communities are
structured by the Girvan-Newman method. The communities are gradually larger to 2005–2008, and then
they are divided into small communities.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18 

  

(g) Return network for 2009–2012 (h) Volatility network for 2009–2012 

  

(i) Return network for 2013–2016 (j) Volatility network for 2013–2016 

Figure 5. Community structures of return and volatility for global 24 stock markets of four-year 

length time series. The . 

  

(a) Return network for 1997–2006 (b) Volatility network for 1997–2006 

Figure 6. Cont.



Appl. Sci. 2020, 10, 2171 11 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

  

(c) Return network for 2007–2016 (d) Volatility network for 2007–2016 

Figure 6. Community structures of return and volatility for global 24 stock markets of 10-year length 

time series. It has a huge community compared to four-year and 20-year time series. Additionally, 

the larger communities are formed in the volatility than the return, and in the second half rather 

than the first half. 

  

(a) Return network for 1997–2016 (b) Volatility network for 1997–2016 

Figure 7. Community structures of return and volatility for global 24 stock markets of 20-year length 

time series. The structures of return and volatility are almost identical. The western developed 

countries such that European, North American and Oceanian countries mainly form a community. 

Figure 5 shows the dynamics of community structures from 1997 to 2016 partitioned by four 

years. Here, we can find three interesting properties: First, the community structure of return and 

volatility is similarly formed at each period. In other words, the size of community is similar, and 

the countries that make up the community are nearly common. Second, the size of community 

grows and becomes smaller during the five periods. Third, community is formed the most in the 

period around 2008 when the global financial crisis was triggered. Therefore, we can infer that the 

global stock market cooperates in the event of a financial crisis and it forms a huge community 

according to the Girvan-Newman method. 

Figure 6 shows the dynamics of community structures from 1997 to 2016 that were partitioned 

by 10 years. The context does not change in Figure 6. It is clear that the communities are enlarged 

for the post decade (2007–2016) when compared to the prior decade (1997–2006). However, unlike 

Figures 5 and 7, it can be confirmed that the volatility forms a larger community than return for 

Figure 6. Community structures of return and volatility for global 24 stock markets of 10-year length time
series. It has a huge community compared to four-year and 20-year time series. Additionally, the larger
communities are formed in the volatility than the return, and in the second half rather than the first half.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

(a) Return network for 1997–2006 (b) Volatility network for 1997–2006 

  

(c) Return network for 2007–2016 (d) Volatility network for 2007–2016 

Figure 6. Community structures of return and volatility for global 24 stock markets of 10-year length 251 
time series. It has a huge community compared to four-year and 20-year time series. Additionally, 252 
the larger communities are formed in the volatility than the return, and in the second half rather 253 
than the first half. 254 

  

(a) Return network for 1997–2016 (b) Volatility network for 1997–2016 

Figure 7. Community structures of return and volatility for global 24 stock markets of 20-year length 255 
time series. The structures of return and volatility are almost identical. The western developed 256 
countries such that European, North American and Oceanian countries mainly form a community. 257 

Figure 5 shows the dynamics of community structures from 1997 to 2016 partitioned by four 258 
years. Here, we can find three interesting properties: First, the community structure of return and 259 
volatility is similarly formed at each period. In other words, the size of community is similar, and 260 
the countries that make up the community are nearly common. Second, the size of community 261 
grows and becomes smaller during the five periods. Third, community is formed the most in the 262 
period around 2008 when the global financial crisis was triggered. Therefore, we can infer that the 263 
global stock market cooperates in the event of a financial crisis and it forms a huge community 264 
according to the Girvan-Newman method. 265 

Figure 6 shows the dynamics of community structures from 1997 to 2016 that were partitioned 266 
by 10 years. The context does not change in Figure 6. It is clear that the communities are enlarged 267 

Figure 7. Community structures of return and volatility for global 24 stock markets of 20-year length
time series. The structures of return and volatility are almost identical. The western developed countries
such that European, North American and Oceanian countries mainly form a community.

Figure 5 shows the dynamics of community structures from 1997 to 2016 partitioned by four years.
Here, we can find three interesting properties: First, the community structure of return and volatility is
similarly formed at each period. In other words, the size of community is similar, and the countries
that make up the community are nearly common. Second, the size of community grows and becomes
smaller during the five periods. Third, community is formed the most in the period around 2008 when
the global financial crisis was triggered. Therefore, we can infer that the global stock market cooperates
in the event of a financial crisis and it forms a huge community according to the Girvan-Newman method.

Figure 6 shows the dynamics of community structures from 1997 to 2016 that were partitioned by
10 years. The context does not change in Figure 6. It is clear that the communities are enlarged for the
post decade (2007–2016) when compared to the prior decade (1997–2006). However, unlike Figures 5
and 7, it can be confirmed that the volatility forms a larger community than return for 10-year time
series. Except for Pakistan and Singapore, all stock markets formed a huge community in volatility
network for 2007–2016.
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Figure 7 shows the community structures for 20-year time series, the whole period of this study.
The results of analyzing the time series for the whole period show that the similarity between return
and volatility is the highest as compared to Figures 5 and 6. Only developed countries, such as Europe,
the United States, and Australia, form a community, and the rest of the countries are shown to maintain
independence. To make it more specific in Figure 5, Figure 6, Figure 7, the community structures are
listed in Table 2.

Table 2. Community list of global 24 stock markets of return and volatility

Figure No. Community Stock Market

Figure 5a
Return Network

(1997–2000)

(G1) Europe France, Germany, Netherland, UK
(G2) USA USA1, USA2, USA3, USA4
(G3) Oceania Australia1, Australia2
(G4) C./S. America Argentina, Brazil, Mexico

Figure 5b
Volatility Network

(1997–2000)

(G1) Europe France, Germany, Netherland
(G2) USA USA1, USA2, USA4
(G3) Oceania Australia1, Australia2
(G4) C./S. America Argentina, Brazil, Mexico

Figure 5c
Return Network

(2001–2004)

(G1) Europe France, Germany, Netherland, UK
USA USA1, USA2, USA3, USA4
Oceania Australia1, Australia2

(G2) Asia Korea1, Korea2, Taiwan

Figure 5d (G1) Europe France, Germany, Netherland, UK

Volatility Network USA USA1, USA2, USA3, USA4

(2001-2004) (G2) Oceania Australia1, Australia2

Figure 5e
Return Network

(2005–2008)

(G1) Europe France, Germany, Netherland, UK
USA USA1, USA2, USA3
Oceania Australia1, Australia2
C./S. America Brazil, Mexico
Asia Hong Kong, India, Japan

Figure 5f
Volatility Network

(2005–2008)

(G1) Europe France, Germany, Hungary, UK
USA USA1, USA2, USA3
C./S. America Argentina, Brazil, Mexico
Asia Hong Kong, Korea1

Figure 5g
Return Network

(2009–2012)

(G1) Europe France, Germany, Netherland, UK
USA USA1, USA2, USA3, USA4
Oceania Australia1, Australia2
C./S. America Brazil, Mexico
Asia Korea1

Figure 5h
Volatility Network

(2009–2012)

(G1) Europe France, Germany, Netherland, UK
USA USA1, USA2, USA3, USA4
C./S. America Brazil, Mexico

(G2) Asia Hong Kong, Indonesia, Taiwan

Figure 5i
Return Network

(2013–2016)

(G1) Europe France, Germany, Netherland, UK
(G2) USA USA1, USA2, USA3, USA4
(G3) Oceania Australia1, Australia2
(G4) Asia Hong Kong, Korea1

Figure 5j
Volatility Network

(2013–2016)

(G1) Europe France, Germany, Netherland, UK
(G2) USA USA1, USA2, USA3, USA4
(G3) Oceania Australia1, Australia2
(G4) Asia Korea1, Taiwan
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Table 2. Cont.

Figure No. Community Stock Market

Figure 6a
Return Network

(1997–2006)

(G1) Europe France, Germany, Netherland, UK
USA USA1, USA2, USA3

(G2) C./S. America Brazil, Mexico
(G3) Asia Korea1, Korea2

Figure 6b (G1) Europe France, Germany, Netherland, UK

Volatility Network USA USA1, USA2, USA4

(1997–2006) (G2) Oceania Australia1, Australia2

Figure 6c
Return Network

(2007–2016)

(G1) Europe France, Germany, Hungary,
Netherland, UK

USA USA1, USA2, USA3, USA4
Oceania Australia1, Australia2
C. America Mexico
Asia Hong Kong, Japan, Korea1, Taiwan

Figure 6d
Volatility Network

(2007–2016)

(G1) Europe France, Germany, Hungary,
Netherland, UK

USA USA1, USA2, USA3, USA4
Oceania Australia1, Australia2
C./S. America Argentina, Brazil, Chile, Mexico

Asia Hong Kong, India, Indonesia, Japan,
Korea1, Korea2, Taiwan

Figure 7a
Return Network

(1997–2016)

(G1) Europe France, Germany, Netherland, UK
USA USA1, USA2, USA3
Oceania Australia1, Australia2
(G2) Asia Korea1, Korea2

Figure 7b (G1) Europe France, Germany, Netherland, UK

Volatility Network USA USA1, USA2, USA4

(1997–2016) Oceania Australia1, Australia2

Figure 8 describes macroscopic network properties, i.e., (a) average degree 〈k〉, (b) characteristic
path length L, (c) global efficiency Eglobal, (d) local efficiency Elocal, (e) clustering coefficient C,
(f) modularity Q for return (rt), and volatility (|rt|) of global 24 stock market networks. The time series
are partitioned by one-year length. Table A1 of Appendix A shows the specific values.

Except for modularity Q that is shown in Figure 8f, the remaining five properties have similar
values of return and volatility. In fact, modularity Q is important for macroscopic values, but it
is also important to see the mesoscopic community structures, as mentioned in Figures 5–7 in
detail. As mentioned earlier, community structures showed similarities in return and volatility.
Thus, the network properties of global stock markets have little difference between return and
volatility when we put together Figures 5–8. Therefore, it can be inferred that the results will not
change much, even if we analyze with any terms of return and volatility. However, the network
properties were slightly larger in the return (rt), dealing with the magnitude and direction than the
volatility (|rt|) only dealing with the magnitude.

Looking more closely at each graph, we can see that Figure 8a,c,d have very similar shapes. There
are five local maxima (1997, 2001, 2008, 2010, and 2015) and one global maximum (2008) in common
years. The network properties (〈k〉, Eglobal, Elocal) in 2008 are (8.583, 0.590, 0.768) for return and (7.500,
0.547, 0.759) for volatility. That is the year of the global financial crisis that was triggered by the
subprime mortgage crisis from the United States. This suggests that the global stock markets are more
closely aligned with each other in crisis situations. In addition, there was an Asian liquidity crisis
in 1997, the dot-com bubble collapse in 2001, European sovereign debt crisis in 2010, and Chinese
stock price plunge in 2015. Thus, in our results, average degree 〈k〉, global efficiency Eglobal , and local
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efficiency Elocal are seen as important indicators for analyzing or forecasting major events in the
stock market.

Looking at Figure 8b as an auxiliary indicator, it can be confirmed that characteristic path length
L also makes local maxima in 1997, 2000~2001, 2007, 2010~2011, and 2015~2016. On the other hand,
Figure 8e is fluctuating without prominent maxima. Notable is that, since the 2000s, the values
have oscillated between 0.6 and 1.0. These are very large clustering coefficients when compared to
general networks, which can be inferred that the global stock market network has small-worldness.
Lastly, Figure 8f shows a major difference between return and volatility, as mentioned above. In terms
of return, local maxima occur in 1998, 2005, and 2013, and local minima occur in 2001, 2010 and 2014.
This is similar to the reversed shapes of (a), (c), and (d).
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Table 3 shows average degree 〈k〉, characteristic path length L, global efficiency Eglobal,
local efficiency Elocal, clustering coefficient C, betweenness centrality cbetween

k for return (rt),
and volatility (|rt|) of global 24 stock networks. The unit lengths of the time series are four, 10, and 20
years. As the results of the one-year length analysis in Figure 8 showed that 〈k〉, Eglobal, and Elocal

cooperate in return and volatility for four-year length time series. However, there is a difference in the
maximum periods, 2005–2008 in return and 2009–2012 in volatility. This is due to the boundary of
two periods, 2008–2009 is also the critical period between the US subprime mortgage crisis and the
European fiscal crisis. The maximum properties (〈k〉, Eglobal, Elocal) of four-year length time series are
(6.750, 0.473, 0.620) for return in 2005–2008 and (11.083, 0.619, 0.814) for volatility in 2009–2012.

Table 3. Network properties of global 24 stock markets generated by DCCA methodology

Data Period Year 〈k〉 L Eglobal Elocal C Node of m ax cbetween
k

with Its Value

return

4 years

1997-2000 1.250 1.812 0.079 0.361 0.866 USA2 0.055
2001-2004 3.416 1.327 0.178 0.385 0.794 USA3 0.036
2005-2008 5.916 1.888 0.411 0.558 0.728 Korea1 0.130
2009-2012 6.750 1.726 0.473 0.620 0.787 Hong Kong 0.157
2013-2016 1.416 1.566 0.082 0.295 0.791 Netherland 0.024

10 years 1997-2006 2.083 1.553 0.128 0.327 0.791 UK 0.035
2007-2016 10.500 1.447 0.602 0.805 0.842 Korea1 0.069

20 years 1997-2016 4.833 1.737 0.341 0.508 0.785 Hong Kong 0.123

volatility

4 years

1997-2000 0.833 1.230 0.041 0.222 0.761 France 0.008
2001-2004 1.583 1.379 0.086 0.300 0.808 USA1 0.013
2005-2008 11.083 1.380 0.619 0.814 0.862 Netherland 0.063
2009-2012 5.000 1.921 0.360 0.541 0.698 Korea1 0.165
2013-2016 1.833 1.578 0.105 0.341 0.822 USA1 0.024

10 years 1997-2006 1.667 1.310 0.088 0.268 0.881 USA2 0.028
2007-2016 17.083 1.112 0.789 0.880 0.921 Netherland 0.008

20 years 1997-2016 6.833 1.818 0.542 0.661 0.752 Hong Kong 0.260

5. Conclusions

In this study, we looked for community structures and other network properties of return and
volatility of global 24 stock market networks. First, we performing the detrended cross-correlation
analysis (DCCA) for the return and volatility of the global 24 stock market composite price index
time series for 1997–2016. We analyzed the time series divided into one year, four years, 10 years,
and 20 years to see the dynamics of the network. Second, two markets are linked by considering that
there is a strong correlation if the correlation coefficient of any two markets through DCCA exceeds the
threshold value 0.7. Here, the threshold value 0.7 is the median of the general classification principle,
strong correlation (0.6), and very strong correlation (0.8), which illustrates our analysis results well.
Third, we applied the Girvan-Newman method in the stock market networks to detect the community
structure. Finally, we calculated macroscopic network properties and inferred the association with
international economic events.

Figures 5–7 show the dynamics of optimal community structures for the global 24 stock market
networks using the Girvan-Newman method for four-year, 10-year, and 20-year length time series.
We can find important properties here. The community structure of return and volatility is similarly
formed at each period, and the size of community grows to 2008–2012 (right after the global financial
crisis triggered by USA and European fiscal crisis) and becomes smaller during the five periods.
Therefore, we can infer that the global stock market cooperates in the event of a financial crisis and
forms a huge community according to the Girvan-Newman method. The structures of the return and
volatility are similarly formed. The stock market networks have a huge community that consists
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of Europe (France, Germany, Netherland, UK), USA (USA1, USA2, USA3, USA4), and Oceania
(Australia1, Australia2) for 2001–2004, 2005–2008, and 2009–2012 for four-year length time series
(Figure 5c–h). Additionally, several small communities were found in 1997-2000 and 2013-2016
(Figure 5a,b,i,h). The dynamics of community structures from 1997 to 2016 partitioned by 10 years
does not change the characteristics. The communities are enlarged for the post decade (2007–2016)
compared to the prior decade (1997–2006) and the size of communities of volatility is larger than that
of return (Figure 6).

Pereira et al. [18] analyzed 20 stock markets for subprime crisis. In these results, three groups
were found: (Europe), (America), and (Asia, Australia) in the pre-subprime crisis period. In the
post-subprime crisis period, two groups of (Europe, America) and (Asia, Australia) are detected.

They found the characteristics of the formation of large-scaled intercontinental solidarity after
the financial crisis. We found a similar property in this study. Figure 6 shows the solidarities of
pre-subprime crisis. Figure 6a shows three groups: (Europe, America), (South America), and (Asia),
In Figure 6b, two groups are detected: (Europe, USA) and (Australia). On the other hand, during the
post-subprime crisis period, most of the stock markets formed a huge network. We analyzed 24 stock
markets instead of 20 in Pereira et al. [18].

Comparing and analyzing the global stock market structure from the community perspective
with their research, we can see the similar result that the structure is different before the financial crisis,
but it has a huge community after the financial crisis. On the other hand, in the 20-year length time
series, the community structure for the whole period can be seen as one picture, it is commonly making
a community that consists of Europe, USA, and Oceania in return and volatility (Figure 7). Table 2
shows the detailed list of community.

Additionally, we inferred macroscopic properties of the global stock market networks by
calculating average degree 〈k〉, characteristic path length L, global efficiency Eglobal, local efficiency
Elocal, clustering coefficient C, and modularity Q in Equations (6)–(13) (Figure 8). The remaining
five properties have similar values of return and volatility, except for modularity Q. In conclusion,
we found that there was no superiority between return and volatility in network analysis. We were
able to catch the events that Asian liquidity crisis in 1997, world-wide dot-com bubble collapse in 2001,
global financial crisis triggered by USA in 2008, European sovereign debt crisis in 2010, and Chinese
stock price plunge in 2015. Silva et al. [16] confirmed that the modularity value temporarily plummeted
during the black Monday crisis. On the other hand, Yan et al. [17] showed that the Eglobal value
increased before the subprime crisis and rapidly decreased during the crisis in the SSE (Shanghai Stock
Exchange) network. Both studies show that the network property value increases or decreases rapidly
and sensitively responds to the financial crisis. In this paper, we confirmed that 〈k〉, Eglobal and Elocal

are related to the financial crisis. Thus, the network properties are candidate indicators for predicting
global financial market trends. However, such singularities have not been obtained for other network
properties. In addition, no scientific reason has been found as to whether the three properties 〈k〉,
Eglobal, and Elocal are related to the financial crisis.

In future studies, stock market data from a wider variety of countries will be needed to derive
results that reflect reality. Moreover, we would like to construct a weighted network according
to the magnitude of correlation coefficient of DCCA. Additionally, one can use another method,
e.g., the Louvain algorithm, instead of Girvan-Newman method to detect optimal community in the
network. Also, it is necessary to prove scientific evidence by rigorous statistical test that these network
properties, such as 〈k〉, Eglobal, and Elocal are crucial indicators of financial crisis.
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Appendix A

Table A1. Network properties of global 24 stock markets generated by DCCA methodology partitioned
with 1-year length.

Data Year 〈k〉 L Eglobal Elocal C Node of max cbetween
k

with Its Value

Return

1997 3.333 1.904 0.246 0.557 0.790 USA1 0.109
1998 1.583 1.825 0.099 0.451 0.880 USA2 0.067
1999 0.750 2.172 0.061 0.090 0.433 USA2 0.055
2000 1.083 2.696 0.102 0.093 0.290 Netherland 0.121
2001 4.583 1.445 0.263 0.488 0.819 USA4 0.050
2002 3.000 1.052 0.134 0.366 0.952 Netherland 0.001
2003 1.666 1.400 0.089 0.304 0.825 USA1 0.016
2004 1.833 1.538 0.108 0.298 0.636 USA2 0.022
2005 1.250 1.166 0.059 0.312 0.937 Netherland 0.012
2006 2.416 1.821 0.175 0.320 0.559 USA2 0.090
2007 7.000 1.766 0.437 0.726 0.836 Netherland 0.109
2008 8.583 1.658 0.590 0.768 0.766 Japan 0.128

2009 6.333 1.790 0.461 0.613 0.893 Hong
Kong 0.356

2010 6.750 2.012 0.519 0.662 0.708 Korea1 0.192
2011 5.166 2.384 0.395 0.557 0.678 UK 0.149
2012 2.833 1.418 0.160 0.407 0.804 USA2 0.060
2013 1.500 1.530 0.088 0.297 0.766 UK 0.047
2014 2.083 1.324 0.112 0.357 0.904 USA1 0.024
2015 2.666 1.657 0.179 0.396 0.706 USA3 0.057
2016 1.333 2.500 0.109 0.260 0.667 Netherland 0.095

Volatility

1997 5.750 1.633 0.327 0.605 0.859 France 0.103
1998 0.666 1.384 0.038 0.097 0.583 USA2 0.012
1999 0.166 1.000 0.007 0.000 0.000 - -
2000 0.333 1.200 0.016 0.000 0.000 Netherland 0.004
2001 2.000 2.620 0.152 0.353 0.663 USA1 0.174
2002 1.250 1.166 0.059 0.347 0.851 USA1 0.004
2003 0.667 1.200 0.032 0.222 0.888 France 0.008
2004 0.750 1.357 0.041 0.097 0.583 USA2 0.012
2005 0.750 1.100 0.034 0.277 0.904 Netherland 0.002
2006 0.833 1.000 0.036 0.291 1.000 - -
2007 2.167 3.441 0.182 0.457 0.617 Argentina 0.217
2008 7.500 1.874 0.547 0.759 0.770 Indonesia 0.177
2009 1.167 1.333 0.063 0.243 0.687 USA2 0.020
2010 3.083 1.990 0.238 0.481 0.711 UK 0.162
2011 2.416 1.469 0.139 0.363 0.749 USA2 0.033
2012 0.833 1.000 0.036 0.291 1.000 - -
2013 0.667 1.384 0.038 0.097 0.583 USA2 0.012
2014 1.083 1.000 0.047 0.333 1.000 - -
2015 3.333 2.219 0.233 0.454 0.676 Korea2 0.095
2016 1.083 1.862 0.070 0.281 0.812 USA2 0.049
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