
applied  
sciences

Article

An Integrated Algorithm for Intersection Queue
Length Estimation Based on IoT in a Mixed
Traffic Scenario

Kai Gao 1,2, Shuo Huang 1, Farong Han 1, Shuo Li 3,*, Wenguang Wu 1,* and Ronghua Du 1,2

1 College of Automotive and Mechanical Engineering, Changsha University of Science & Technology,
Changsha 410114, China; kai_g@csust.edu.cn (K.G.); shuohuang00@gmail.com (S.H.);
hanfarong@stu.csust.edu.cn (F.H.); csdrh@csust.edu.cn (R.D.)

2 Hunan Key Laboratory of Smart Roadwasy and Cooperative Vehicle-Infrastructure Systems, Changsha
University of Science & Technology, Changsha 410114, China

3 School of Electrical and Information Engineering, Changsha University of Science & Technology,
Changsha 410114, China

* Correspondence: lishuo@csust.edu.cn (S.L.); wwglq@csust.edu.cn (W.W.)

Received: 4 February 2020; Accepted: 12 March 2020; Published: 19 March 2020
����������
�������

Featured Application: The proposed algorithm and architecture has the capability of estimating
the queue length of waiting vehicles at a signalized intersection, where traffic cameras, edge server,
and some connected vehicles are available. This method can resolve the queue length estimation
problem in a mixed traffic scenario, especially when there are variable types of vehicles. It can
provide key information for traffic lights control and improve the traffic efficiency.

Abstract: Nowadays, traffic infrastructures and vehicles are connected through the network benefiting
from the development of Internet of Things (IoT). Connected automated cars can provide some useful
traffic information. An architecture and algorithm of mobile service computing are proposed for
traffic state sensing by integration between IoT and transport system models (TSMs). The formation
process of queue at this intersection is analyzed based on the state information of connected vehicles
and the velocity of shockwave is calculated to predict queue length. The computing results can
be delivered to the traffic information edge server. However, not all the vehicles are capable of
connecting to the network and will affect the queue length estimation accuracy. At the same time,
traffic cameras transmit the traffic image to the edge server and a deep neuron network (DNN) is
constructed on the edge server to tackle the traffic image. It can recognize and classify the vehicles in
the image but takes several seconds to work with the complex DNN. At last, the final queue length is
determined according to the weight of the two computing results. The integrated result is delivered to
the traffic light controller and traffic monitoring center cloud. It reveals that the estimation from DNN
can compensate the estimation from shockwave when the penetration rate of connected vehicles is
low. A testbed is built based on VISSIM, and the evaluation results demonstrate the availability and
accuracy of the integrated queue length estimation algorithm.

Keywords: queue length; shockwave; DNN; automated vehicles; IoT

1. Introduction

Intelligent transportation systems (ITS) show the ability to address the issues of traffic efficiency
and safety. ITS is an indispensable part of the smart city [1]. To deploy ITS, more and more traffic
infrastructures and cars need to be connected, which is a typical application of IoT [2]. Automated
cars are equipped with many sensors for environment sensing. Benefiting from the development of
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vehicular network, information from sensors and fused sensors’ information can be utilized to ITS
application. For example, traffic signal optimization at intersections is a promising application for ITS
based on vehicular communication networks (vehicle-to-everything, V2X) communication [3,4] and
intelligent camera, which can significantly reduce traffic congestion and emission [5]. The key to traffic
signal optimization is traffic states sensing. Inductive loops and traffic cameras are used to evaluate
the traffic states, such as queue length at intersections and traffic flow, while these equipments have
disadvantages of high installation and maintenance cost and low service life [6]. With the development
of V2X, the intelligent vehicle travelling on the road can act as a powerful mobile detector [7,8]. The
intelligent vehicle with GPS can obtain the real time position and speed of the vehicle. This information
can be collected to the TSMs and utilized to evaluate the traffic states such as delay time, queue length,
etc. [9]. The traffic states can be exchanged among intelligent vehicles, transport infrastructure, and
road users, which is a typical application of IoT-based transportation system [10].

Utilizing connected vehicles to sense the traffic states depends on service computing. Service
computing has been utilized in many applications with the development of the network. It defines a
unified structure of service combined with the computer network [11]. Benefiting from the IoT, the
infrastructures in ITS are connected and intelligent. It seems that the connected vehicles can provide
some service for traffic states sensing when travelling on the road [11]. The connected vehicle can act as
a mobile traffic information sensor [12,13]. In a mixed traffic scenario, the information from connected
vehicle is used in delicate traffic models to estimate the traffic volume at the intersection [14].

The vehicles’ queue length and delay are the most important indicators for traffic signal control
in signalized intersection. There are some traditional approaches to queue estimation and delay at
signalized intersections, such as the Webster theory and highway capacity manual (HCM) method. They
are still the fundamentals and used in the handbook for the traffic signal design and optimization [15].
It reveals that Webster theory cannot be used when the degree of saturation approaches one, while
HCM method can be used under near saturation and over saturation conditions [16]. Both Webster
theory and HCM method are based on statistical data and empirical models. With the development
of artificial intelligence (AI), some researchers compared the performance of Webster theory, HCM
method, and AI-based model [17] and the AI-based model showed more robustness and adaptiveness
than the traditional approaches.

A probability distribution method based on mathematical statistics was developed to estimate the
queue length by utilizing the last connected vehicle’s position in the queue, waiting time, and number
of connected vehicles [18,19]. What is more, the arrival rate of vehicles at the intersection is defined and
valuated, as well as the penetration rate of connected vehicles. Most existing queue length estimation
models can only be applied for an unsaturated scenario at isolated intersections and need to determine
the connected vehicles penetration rate in advance [20]. In order to improve the communication
efficiency of V2X, a mechanism that can reduce transmission times without affecting accuracy of length
estimation is proposed [21]. This mechanism allocates the priority of information transmission to
vehicles near the end of the motorcade and makes other vehicles near the stop line stop transmission.
When the adjacent intersection is far away or the motorcade is a mixed traffic flow, the model cannot
predict queue length. Coinciding with the basic idea proposed in [19], the number of vehicles is used to
predict the queue length. An improved interpolation algorithm is designed to evaluate the estimation
results at different penetration rates [22]. The results revealed that a low penetration rate would lead to
large prediction error. To explore the relationship between the connected vehicle penetration rate and
prediction accuracy, an algorithm about finding the minimum penetration rate is designed in [23,24].
It concluded that the minimum penetration rate that can ensure the estimation accuracy was 1%. In
the practical application, more factors impose on the estimation accuracy, especially the vehicle type,
which leads to relative error. The camera-based model is capable of remedying this disadvantage.

Image and vision-based traffic monitoring is widely used benefiting from the development of
embedding and computer technology [25]. The vehicle recognition algorithm and typical sample data
set are developed in these works. It is relatively difficult to deal with the images. Recently, lots of
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powerful neural networks are introduced by scholars and engineers to deal with the images due to
the improvement of artificial intelligence. Deep learning using DNN has latterly shown encouraging
fitness in object detection and image classification [26]. Deep learning DNN is used to monitor traffic in
ITS applications [25,27]. Deep neural network has the ability of abstracting many characters from the
image. A feature extraction algorithm about traffic flow is designed to recognize the appearance-based
characteristics of traffic images by DNN in [28].

Nowadays, many traffic infrastructures and vehicles can be accessed to the network and
communicate useful information. Infrastructures and vehicles are connected to the road network that
share information between each other. The framework has improved greatly with the development of
IoT [29]. Collection and dissemination of traffic information, management and monitoring of traffic
flow have been investigated widely based on the application of IoT in the transportation system [30].

Many traffic states including traffic flow, jamming, queuing length at intersections can be collected,
abstracted, and fused through the connected traffic infrastructures and vehicles. These traffic states
are of great significance to traffic management and optimization. In this aspect, the development of
connected vehicles and wireless technology has brought revolutionary changes, which makes the
traffic information exchange convenient [31]. Benefiting from the development of embedded devices,
the computing capability of the connected traffic infrastructures’ controller enhances greatly. Moreover,
the cloud [32] and edge computing [33] can be used to serve the traffic states sensing. A framework
of smart city with intelligent IoT, cloud, edge, and 5G is constructed to provide more efficiency and
rationality [34]. It supports a variety of innovative applications and services.

There are some application cases based on IoT to serve for traffic. A predictive maintenance
service is studied for connected cars based on IoT. The status of key parts and of the car as a whole
are transmitted to the cloud and a predictive maintenance plan is given based on the current status,
which will decrease the cost of maintenance and eliminate safety hazards if compared to a traditional
periodical maintenance schedule [35]. Another useful application is parking service for connected
cars based on IoT. A comprehensive review of smart parking research focused on distinguishing their
functionalities and controversial issues is provided in [36]. The parking service is classified as an
information collection system deployment and service dissemination tool, based on the information
exchanged by means of the IoT. The authors of [36] reveal that the parking service needs lots of
computing to complete the whole procedure. Thus, a central solution based on cloud is proposed. The
always best connected and best served paradigm is proposed to develop a general middleware for an
intelligent vehicle parking system based on cloud [37]. These works focus on the drivers’ side and
always include competition for one parking space. An IoT-cloud car parking management system
is developed based on location. The scheme aims to help administrative officers in locating parking
violations quickly [38].

For the ease of algorithm validation for IoT-based traffic service, some simulators are developed.
An integrated road traffic-network-cloud simulator for connected car services is designed, which
links cloud simulation, road traffic, and network to display both the practical states of vehicles [39].
Moreover, a full-stack, cloud-based test bed is developed for connected car service experimentation.
Heterogeneous sensors and vehicular communication and edge servers are integrated based on open
application programming interfaces using microservices philosophy [40].

The service oriented ITS application has been accelerated by utilizing the connected car as a mobile
IoT resource, together with service computing, edge computing, and 5G [31,41]. Distance headway,
number of stops and speed are collected by connected vehicles and an integrated CVT-AI method is
used to estimate the level of service on freeways [42]. It exposes that the accuracy of estimation is
associated with the penetration rate of connected vehicles. Moreover, a comprehensive review gives a
summary of road traffic density estimation methods based on vehicular ad hoc networks [43]. The
infrastructure-based mechanisms mentioned in the paper belong to an IoT-based solution. As service
platforms for smart cities, the deployment of connected cars and edge devices has been studied in
many works [33,34].
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In this paper, a general framework is proposed based on IoT in a mixed traffic scenario. All
devices are connected through networks. By using the computing capacity of the IOT device, a variety
of traffic information are sensed. Especially, the cars are not only traffic participants, but also act as a
mobile traffic status service provider. The main contributions are summarized below:

(1) A paradigm of service computing about traffic application in IoT-based scenario is firstly proposed.
A case for queuing length estimation at traffic intersections is studied.

(2) The connected cars provide computing service based on the shockwave model with considering
the upstream intersection flow change in a cooperative manner.

(3) A queue length estimation is realized with the aid of connected traffic cameras and edge server.
A deep neural network is utilized to classify the queuing cars in the intersection.

2. Materials and Methods

2.1. Architecture of Mobile Service Computing for Traffic Static Estimate in an IoT Scenario

Nowadays, information and communication technology (ICT) and intelligent control technology
make great changes in the transportation system. Advanced technology including edge, cloud, V2X,
and IoT is integrated into the transportation monitor and management. To address the operating
mechanism of the proposed algorithm, a general and sustainable ITS architecture is shown as Figure 1
inspired by [44]. There are four parts in the proposed ITS architecture.
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Figure 1. Architecture of Intelligent Transportation System.

In Part 1—traffic information collection, the IoT nodes, including connected cars, inductive loops,
and traffic cameras can be accessed into the network. Measured data including travelling speed,
number of passing vehicles, pictures of waiting vehicles, etc. can be collected and sent to Part 2—traffic
states sensing and prediction model in upper level. In Part 2, data from Part 1 is received and stored.



Appl. Sci. 2020, 10, 2078 5 of 18

Then, real time, as well as historical traffic information can be utilized in many models to evaluate
and predict abstracted traffic states including volumes, queue length, travelling delay, etc. Then, these
states about traffic are delivered to the transport system control center and transport monitor and
management center to incorporate with the decision support system (DSS). In Part 3—transport system
control and traffic light control algorithm are designed with the overall objectives from transport
monitor and management center, sensing traffic states from Part 2, and basic information from Part 1.
Usually, Part 3 will impose great influence on the behaviors of traffic participants [45,46] by adopting
different control strategies. Part 2 and 3 can be treated as transport system models (TSMs) including
sensing, prediction, and control. The high level of the ITS Part 4—transport monitor and management
can get the whole information and set the objectives and constraints on Part 3. Many new developed
models, algorithms, and equipment could be integrated in the architecture [47,48].

This paper works on Part 2 in the general ITS architecture from the perspective of IoT. It aims to
develop a queue estimation algorithm working in the TSMs. IoT provides information as inputs for
the queue estimation algorithm working in the TSMs. A mixed traffic scenario including connected
vehicles and traditional vehicles is considered, which will be the general case in the near future. The
objective of this paper is to develop an algorithm utilizing the information from Part 2. Connected
vehicles travel on the road and process the data, which can provide mobile service for traffic states
estimate based on the computing of the onboard embedded processor. The cameras installed at the
signal intersection can acquire the images of vehicles in the queue periodically and transmit those back
to the edge server. Cameras are connected to the edge server on the roadside by wired or wireless
networks, and image processing is done in the edge server, which is set in Part 2. Characteristics of the
traffic including congestion, violated traffic regulations, and plate numbers can be obtained accordingly.

From the view of server provider, all the connected devices in the traffic scenario can produce
useful information or work with the edge server to complete more complex tasks. Service computing
gives a unified information exchange and sharing mechanism in the IoT traffic scenario. Some useful
traffic characteristics can be abstracted based on the information from IoT nodes, such as traffic flow
and congestion, which is the key information to traffic management. Some traffic applications need
the IoT nodes to work cooperatively. For example, traffic guidance needs the traffic state of a wide
network of roads and exchanging information with roadside unit or other detection devices. The
cloud server will give some advices based on the real time information. Moreover, the connected cars
can collect much useful information while travelling on the road. The queue length estimate at the
intersections can be used to regulate the signal lights timing and predict the traffic jam. In this paper, a
case for queue length estimate is studied based on the combined result computed from connected cars,
cameras, and edge server.

2.2. Queue Length Estimation Algorithm Design

2.2.1. Basic Conditions

To address the application conditions, without losing generality, the queue length estimation
method proposed in this paper requires the following basic conditions:

(1) GPS and V2X modules are set on the automated vehicles, which can get and deliver the position
and speed of vehicles. Nowadays, these modules are usually integrated in the automotive IoT
module, such as modules supplied by Quectel corporation in China;

(2) The edge computing server in the roadside units can accurately obtain the connected vehicle’s ID
and location;

(3) There is at least one connected vehicle in each entrance lane for a sample cycle;
(4) The length of the vehicles is not assumed to be identical, which is an enormous challenge to V2X-

based traffic states sensing in a mixed traffic scenario.

In our previous work, we proposed an algorithm for queue length estimation assuming that the
length of vehicles is identical by converting according to the vehicle conversion coefficient [43].
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Nowadays, connected automated vehicles are not very popular. Comparing with traditional
unconnected vehicles, the number of connected vehicles is rather few. Therefore, it is more realistic to
consider the queue prediction of all unconnected vehicles for some sample cycles. There are many
types of vehicles with different lengths travelling on the road. For connected vehicles, the characters
including length, ID, weight of the vehicle are stored in the memory on board and can be delivered to
other vehicles and roadside unit (RSU). However, for the unconnected vehicles, it is very difficult to
get this information. Some literature refers to utilizing inductive loops to tackle this situation. The
prediction task is done by information fusion. However, it is much less feasible to use and in addition,
these infrastructures are expensive. To overcome these problems, a framework of IoT-based algorithm
is proposed, that is a camera and V2X-based shockwave model integration to estimate the queue length
at the signalized intersection.

The task of queue length estimate based on IoT framework is achieved according to the following
paradigm. As shown in Figure 2, queue length at the intersection is estimated based on computing
results from the shockwave and image process. Some automated cars queuing at the intersection
connect to the network through V2X, while traditional cars are not able to connect to the network. The
connected car can provide computing service to estimate the queue length by exchanging information
through V2X. Nevertheless, the system assumes that all the vehicles have the same dimension, which
may not be the case in the actual situation. Thus, an image-based computing method is proposed
to amend the result from V2X. It utilizes a DNN to classify the queuing vehicles in the image, and
then calculates the queue length by counting and multiplying the length of every type. Suffering from
the complex structure of DNN and the delivering delay from connected camera to the roadside unit,
the queue length estimate result based on image usually takes a much longer time. Thus, these two
methods are combined to estimate the queue length by the unified computing service framework. The
computing details are shown in the following subsections.
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2.2.2. Shockwave Estimation Model Based on V2X

In this section, we address the shockwave estimation model using information from connected
automated vehicles. During the red-light period, the proposed model can compute the cumulative
queue length of each entrance lane. Queuing vehicles are used to represent the vehicles that arrive at
the intersection stop with speed reduced to zero. To estimate the queue length by means of connect
vehicle sensing technology, the information including vehicle’s ID, location, and waiting time should
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be periodically broadcasted to RSU. In the traffic flow theorem, the vehicles form a queue at the stop
line obeying Poisson distribution. The waiting queue passes back like a wave before the traffic lights
turn green, which is defined as a shockwave.

As shown in Figure 3, n is the total number of connected vehicles in a lane. j is the number of
lanes at a traffic crossing in the same direction. In Figure 3, the lane on the top is numbered j = 1. The
lane on the bottom is numbered j = 4. For the no waiting lane, the queue length is zero. The shockwave
velocity could be calculated according to Equation (1):

vn, j =
1

n−1

n−1∑
i=1

lnp, j−lip, j
tn, j−ti, j

, (n > 1, i = 1, 2, · · · , n− 1)

v1, j =
l1p, j

t1, j−tr
, (n = 1)

(1)

where i (i ≤ n) is the number of a connected vehicle to the stop line. vn,j represents the shockwave
velocity. lip, j (i ≤ n) is denoted as the queue length before the connected vehicle numbered i in the lane j.
ti,j (i ≤ n) represents the stop time of the connected vehicle numbered i in the lane j. tr is denoted as the
beginning time of a red light cycle. tf is denoted as the closing time of red-light cycle. Obviously, tr and
tf are the same for every lane at the intersection.
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As shown in Figure 3, there are traditional unconnected vehicles behind the last connected vehicle.
The length of these vehicles ln,j can be calculated by Equation (2):

ln, j = vn, j
(
t f − tn, j

)
(2)

Therefore, the queue length lj estimation model with considering shockwave in the entrance lane
j at the signalize intersection can be represented by Equation (3):

l j = lnp, j + vn, j
(
t f − tn, j

)
(3)

To regulate the signal light time aiming to optimize the traffic at the intersection, the value of
queue length of every entrance can be calculated by taking the maximum value of lj. Usually, the
value of lj is approximately equal, because it is natural that most of the drivers want to wait as little
as possible and will stop at the shortest queue lane. Therefore, the queue length of the intersection
is denoted as Equation (4), where m is the number of lanes except there is no stop turn right or turn
left lane.

l = max
{
l j
∣∣∣ j ∈ [1, 2, · · ·m]

}
(4)

In [43], the relationship about vehicle arrival and queue length is analyzed. In urban roads,
adjacent intersections’ distance is usually short. The arrival rate at the downstream is related to the
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traffic volume of an adjacent upstream intersection. Therefore, a corrective coefficient r is utilized to
remedy the effect of vehicle arrival rate, which is shown in Equation (5).

r =

qk,k+1
tk+1−tk
qk−1,k

tk−tk−1

(5)

where k is used to number a connected vehicle that crosses the inductive loop at the upstream. qk,k+1 is
denoted as the number of traditional vehicles between adjacent connected vehicles. tk represents the
time of a connected vehicle numbered k that crosses the inductive loop. It reveals that the corrective
coefficient r > 1 when the downstream arrival rate increases and vice versa. The queue length of lane j
after corrective coefficient can be denoted as Equation (6):

l j = lnp, j + vn, jr
(
t f − tn, j

)
(6)

2.2.3. Deep Learning to Compute the Queue Length Based on Traffic Image

Standard traffic surveillance cameras setup at the intersection can get an image of the vehicles
waiting behind the stop lines. Much research has been done to get rich information, including vehicle
classification, vehicle characters, and vehicle numbers [25]. Counting the number of vehicles in the
image is computationally expensive and hardware expensive. However, some simple works can be
done to get basic information about the queue length. In this paper, we construct a DNN to classify the
vehicles in the image.

The detection area is fixed and depends on the camera’s capability. It is also set as the area of
connected vehicles using cooperative estimation by V2X. First, a series of image frames can be acquired
by a traffic camera and sent to the signal light controller. A DNN is constructed to abstract the feathers
of the image including the boundary of vehicles background. It does not need to get a high-resolution
image to count the number of vehicles and the color or the plate number [27]. Through deep learning
proposed in our paper, the vehicles in the images can be analyzed. The structure of DNN is similar to
the one described in [49]. The input and output of DNN is designed according to our work.

A promising work has been done to detect and classify a vehicle by DNN [28]. The passenger
vehicle including sedan, SUV, MPV, can be detected accurately, as well as the other vehicle including a
van and bus. Intuitive and abstract features can be used to describe the vehicles despite the fact that
length, shape, and color are different. The Alexnet model [50] is utilized to model DNN architecture,
which is similar to the work in [49]. The DNN has five convolutional layers and three full connected
layers. A 3D filter is linked to the prior layer’s outputs in the kernels of every convolutional layer. The
image got by traffic cameras is resized to 256 × 256 and becomes the input to DNN. To alleviate the
compute complexity and ensure it works in real time, the second last fully connected layer is used to
extract the features of a vehicle according to the test results in [49]. Figure 4 shows the structure and
function of DNN (Alexnet model) used in our work.
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There are 4096 neurons in Fc6 and Fc7 layers and the feature vector of 4096 dimension is used to
represent the traffic image. The features including the vehicle’s lane location and vehicle’s type can
be described in the deep vector. Benefiting from the government’s management policy, a connected
vehicle can be distinguished by the plate, which is also a deep feature. Then, the penetration rate can
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be calculated in the intersection controller in every phase. There are 10 neurons in the Fc8 layer. The
low-level features including shapes, color, and length to the road bound are contained in the first few
convolutional layers. The high-level features are utilized to describe the specific character of vehicle
type, lane location, and congestion extent, which is contained in higher convolutional layers.

Figure 4 shows that there are many layers in DNN, and the traffic image processing takes a lot of
the computer processor unit time. The DNN training work can be done offline based on the ImageNet
Large Scale Visual Recognition challenge (ILSVRC) 2012 and images from ITS dataset. The real time
online work of DNN takes several seconds to process the traffic image at intersections. The traffic flow
has continuous spatial and temporal characters and will not change very fast. Therefore, DNN is used
to revise the estimation value of a connected vehicle based on V2X in our work.

After training and fine tuning, the DNN is used to process the image from a traffic camera. It sets
that DNN gets information from the images and classifies vehicles into several groups. If DNN gets
queuing vehicles at the intersection, then it calculates the queue length as Equation (7):

l2(t− τ) =
∑
ic∈kc

Lic Qic + (mV − 1)L0 (7)

where l2 is a function of time t, representing the estimation of queue length from camera images. t is
the time when the images are taken. τ is the time used by DNN to process the traffic images. kc is the
total number of vehicle types. Lic is the length of this type of vehicle and Qic is the number of type ic
vehicle in the image. L0 is the space between adjacent vehicles. mv is the sum of all vehicles in the
traffic image and can be calculated by accumulation of Qic .

2.2.4. Weight Calculation of Combined Model

As shown in Figure 1, the queue length computing will be done in the cloud server. It depends on
the results of connected vehicles and edge server. To take advantage of shockwave-based model and
camera-based model, they are combined by a weight to remedy the error induced by different vehicles
length and the error induced by calculation delay. A weight determined by a ratio of last connected
vehicles’ stop time to the red-light period in this intersection is used to combine the shockwave-based
model and camera-based model. The ratio is denoted as Equation (8), where ts is the stop time of the
last connected vehicle. tf and tr is defined in Equations (1) and (2) in Section 2.2.2. Equation (8) implies
that weight α is related to the queue length variety and the distribution condition of connected vehicles.

α =
ts − tr

t f − tr
(8)

Based on the models of shockwave and DNN, the queue length can be calculated by Equation (9):

L = αl + (1− α)l2 (9)

where L is the integrated queue length, l is the queue length estimation based on shockwave, which
is defined in Equation (4). l2 is the queue length estimation based on DNN, which is defined in
Equation (7).

In order to assess the accuracy of the proposed integrated queue length estimation model,
performance indexes including absolute error AE defined as Equation (10) and relative error RE defined
as Equation (11) are shown as follows:

AE =
∣∣∣L∗c − Lc

∣∣∣ (10)

RE =

∣∣∣L∗c − Lc
∣∣∣

L∗c
× 100% (11)
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where L∗c is defined as the actual queue length measured at the intersection in a cycle c. Lc is defined as
the estimation queue length determined by Equation (9) in a cycle c. The integrated vehicle queue
length estimate algorithm depending on the combined computing model is summarized in Algorithm 1.

Algorithm 1 Queue Length Estimate Algorithm at Intersections

Input: l, the predicted queue length based on shockwave; l2, the predicted queue length from DNN based on
image, defined by (7); α, the weight of shockwave model, defined by (8); vn,j, velocity of shockwave for the n-th
connected vehilce in lane j; n is the number of connected vehicles in the queue; j is the number of lanes at the
intersection; lip, j, the queue length before the connected vehicle numbered i in the lane j; tf, the closing time of
red light cycle; tr, the beginning time of a red light cycle; ti,j, the stop time of the connected vehicle numbered i
in the lane j; k, the number of a connected vehicle that crossing the inductive loop at the upstream; kc, the total
number of vehicle types; Lic , the length of type ic of vehicle; Qic , the number of type ic vehicle in the image; L0,
the space between adjacent vehicles; mv, the sum of all vehicles in the traffic image; m, the number of lanes at
the intersection.
Output:
1: L, queue length estimated by combined computing;
2: Algorithm begin:
3: Computing the queue length to estimate l based on shockwave, l = max

{
l j
∣∣∣ j ∈ [1, 2, · · ·m]

}
4: where l j = lnp, j + vn, jr

(
t f − tn, j

)
5: r =

qk,k+1
tk+1−tk
qk−1,k

tk−tk−1

6: vnj can be calculated as follows,
7: if n == 1 then

8: v1, j =
l1p, j

t1, j−tr
, (n = 1)

9: else

10: vn, j =
1

n−1

n−1∑
i=1

lnp, j−lip, j
tn, j−ti, j

, (n > 1, i = 1, 2, · · · , n− 1)

11: end if
12: Deep learning to compute the queue length based on traffic image,
13: Get images from connected camera and resize and classify the vehicles to predefine types by DNN
constructed like Figure 4,
14: then compute the queue length by,
15: l2(t− τ) =

∑
ic∈kc

Lic Qic + (mV − 1)L0

16: compute the combined estimate queue length,
17: L = αl + (1− α)l2
18: where α = ts−tr

t f−tr

19: return L
20: Algorithm end
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3. Results

To evaluate the performance of the queue length estimation computing model proposed in this
paper, a mixed traffic scenario is constructed in a popular platform VISSIM, where a signalized
intersection is set. An architecture of ITS is built according to Figure 1. The signal transformation
scheme is designed and the time used in the model can be delivered to the edge server. The real time
status of connected vehicles and upstream traffic volume are collected by the roadside unit and then
sent to the edge server. At the same time, the data from VISSIM is transferred to MATLAB, where the
proposed algorithm is working and gives the result about the queue length. As shown in [12], the
penetration rates may impose a great effect on the estimate accuracy and can be estimated by V2X [51].
Therefore, several penetration rate levels are validated in the simulation.

Remark 1. The queue length estimation result of the proposed methodology is related to the positions of the
connected vehicles, the penetration rate of connected vehicles, and the types of waiting vehicles, while not related
to the typology and phases of the intersection. It can be concluded by analyzing the mechanism of the proposed
model. Therefore, a traditional orthogonal four bidirectional branches intersection with four phases was used in
this section to validate the performance.

3.1. Shockwave-Based Queue Length Estimation Model Validation

The road network used in the evaluation is set as follows. Two adjacent intersections are considered
with a 500 m distance. The proposed model is used at the downstream intersection. An inductive loop
was placed in the upstream intersection’s exit. The communication transmission cycle of a connected
vehicle is set to 0.2 s. The simulation duration is set as 1 h, and 10 cycles of data are utilized as the
basis for performance evaluation. Different connected vehicles’ penetration rates are used to test the
performance under the same simulation conditions, aiming to assess the effect of penetration rates on
estimation accuracy. Cars and buses arrive stochastically during the simulation.

The queue length estimation results based on shockwave at the intersection, as shown in Figure 3,
are given in Figure 5. The connected vehicles’ penetration rates in Figure 5a–d are respectively 10%,
30%, 50%, and 70%. The actual queue length can be calculated through counting the number of
vehicles waiting in every lane. It reveals that the proposed shockwave-based queue length estimation
results can follow the traffic volume variation trend during the 10 cycles. Obviously, the queue length
prediction accuracy gets higher with the increasing penetration rates of connected vehicles at the same
simulation cycle.

What is more, it is shown that the queue length prediction accuracy is not coincident during
certain connected vehicles’ penetration rates. From an analysis of the queue of vehicles, the last
connected vehicle’s position in the queue may change under the same penetration rate. As shown in
Equation (1), the last connected vehicle’s position would affect the estimation result. To validate the
reason, the traffic conditions in the simulation were checked, especially at the 5th, 6th, and 10th cycles.
In the 5th and 6th cycle, it shows that the last connected vehicle stopped far from the end of the queue,
nearly at the middle position of the queue, which will induce estimation error. In the 10th cycle, the
number of buses in the queue is bigger than other cycles, but the last connected vehicle is near the end
of the queue. Therefore, the shockwave-based algorithm gets worse when there are many different
types of vehicles in the queue. In order to remedy this drawback, the camera-based algorithm needs to
be introduced.
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3.2. Model Validation Based on DNN

Figure 6 shows a structure of intelligent camera-based queue length estimation. A field test in the
campus thoroughfare has been conducted by this platform, whose structure is similar to [52]. Smart
sensors and connected devices are used to communicate with ThingSpeak and workstation, both of
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The cameras were mounted close to one of the campus thoroughfares. The image captured by
cameras is sent to the edge server, which is Raspberry Pi 3b+ with a Broadcom BCM2837B0 SoC with a
1.4 GHz 64-bit quad-core ARM Cortex-A53 processor, GPU, and 1 GB memory. SIMULINK is utilized
to provide a modeling environment that can automatically generate a code that can run on Raspberry
Pi 3b+. With the DNN algorithm deployed on the Raspberry Pi device, the raw data sent by the
Raspberry Pi 3b+ to ThingSpeak is analyzed by fetching it from thingspeak.com. The test reveals that
it takes about 3 s for Raspberry Pi 3b+ to tackle the pictures.

It is obvious that the connected vehicles’ penetration rates will not affect the result based on DNN
but the intensity of illumination. This is the advantage of image-based queue length estimation. In this
work, a normal case is considered, and the light will not affect the classification result of DNN. Aiming
to verify the performance of the model, we set the time usage by DNN to 3 s and the penetration rates
of connected vehicle is 10%. The estimation result based on DNN is depicted in Figure 7. It reveals that
the queue length estimation result of many cycles is not equivalent to queue length at the intersection.
The reason is that the time delay is caused by an image process and the traffic flow is variable. To
classify the vehicles in the image by DNN, it takes some time to compute due to several layers of the
neuron. To promote the estimation accuracy, it is better to combine the DNN with shockwave.
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3.3. Test of Combined Prediction Model

The simulation parameters are set the same as Sections 3.1 and 3.2. The estimation result is
calculated by Equation (9). The simulation results are shown in Figure 8. Compared to Figure 5, it is
evident that the queue length estimation accuracy is developed. When the position of a connected
vehicle is at the later part in the motorcade and the penetration rate is large enough, the shockwave-based
queue length estimation model exhibits better accuracy because the information of connected vehicles
imply the characteristics of queue forming process at the intersection. The well trained DNN model
is capable of accurately estimating the queue length when the connected vehicle is in the front part
of queue with a low penetration rate. Suffering from the stochastic arrival of vehicles and variable
traffic environment, the simulation results reveal that the integrated queue estimation model takes
the advantages of a shockwave-based model and camera-based model, which can be used as input to
traffic signal control and transport monitor.
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To give a full look of the performance of the integrated queue length model, the absolute error
during the simulation is shown in Figure 9a, which shows the error to the actual queue length. The
relative error represents the ratio of error to the actual queue length and is shown in Figure 9b.
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It reveals that the absolute error gets much bigger as the connected vehicles’ penetration rate is
less than 30%. The maximum absolute error value is about 10 m (almost two vehicles). However,
the maximum relative error of queue length is less than 20%, and the average relative error is about
10%. In many cycles, the queue length estimation is near the actual value, which would be useful for
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traffic signal control. Therefore, we can conclude that this method is capable of taking advantage of
the shockwave-based model and camera-based model.

4. Conclusions

To address signal optimization and evaluate the control performance of traffic light in a mixed
traffic scenario, an algorithm of mobile service computing for traffic state sensing based on connected
vehicles and traffic camera is proposed in this paper. The results reveal that the connected vehicles
can provide a queue length sensing service by shockwave-based model, but the penetration rate,
the position of the last connected vehicle in the queue, and types of vehicles affect the queue length
estimation accuracy. The camera-based model can remedy these drawbacks. However, this method
requires that the DNN working on the edge server consumes computing and network resources to
transfer the information, which delays the sensing result. To take advantage of shockwave-based
model and camera-based model, a combined model by a weight shows a better performance in the
evaluation. The weight is designed according to the queue length and the last connected vehicle. The
error analysis showed that the average relative error is about 10%. This method can resolve the queue
length estimation problem in a mixed traffic scenario, especially that there are variable types of vehicles.
It can provide almost real time information for traffic lights control and will provide more chance to
improve the traffic efficiency.

What is more, the queue length estimation method designed in this paper could be studied further
in the following points in the future work:

(1) The delay of information transmission and the loss of data between the on-board unit and the
roadside unit are not considered in this paper. When this situation exists, errors in the prediction
results are possible, which could do some further research.

(2) Additional research is needed on the effect factors of weight α, connected vehicles penetration
rate, and vehicle type difference rate.

(3) The proposed methodology framework will be attempted to apply in computing delay at
unsignalized intersections and even roundabouts with necessary modifications.

(4) The proposed algorithm may be validated by probe vehicles or float car data.
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