
applied  
sciences

Article

Optical Response of an Interacting Polaron Gas
in Strongly Polar Crystals

Serghei Klimin 1,* , Jacques Tempere 1,2, Jozef T. Devreese 1 and Cesare Franchini 3,4

and Georg Kresse 3

1 TQC, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium;
jacques.tempere@uantwerpen.be (J.T.); jozef.devreese@gmail.com (J.T.D.)

2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA
3 Faculty of Physics, Computational Materials Physics, University of Vienna, A-1090 Vienna, Austria;

cesare.franchini@univie.ac.at (C.F.); georg.kresse@univie.ac.at (G.K.)
4 Dipartimento di Fisica e Astronomia, Università di Bologna, 40127 Bologna, Italy
* Correspondence: sergei.klimin@uantwerpen.be

Received: 14 February 2020; Accepted: 12 March 2020; Published: 18 March 2020
����������
�������

Abstract: Optical conductivity of an interacting polaron gas is calculated within an extended random
phase approximation which takes into account mixing of collective excitations of the electron gas
with longitudinal optical (LO) phonons. This mixing is important for the optical response of strongly
polar crystals where the static dielectric constant is rather high, as in the case of strontium titanate.
The present calculation sheds light on unexplained features of experimentally observed optical
conductivity spectra in n-doped SrTiO3. These features appear to be due to dynamic screening
of the electron–electron interaction by polar optical phonons and hence do not require additional
mechanisms for their explanation.
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1. Introduction

Polaron manifestations in the optical response of polar crystals, such as complex oxides
and high-Tc superconductors are the subject of intense investigations [1–7] (for a review, see also [8,9]).
Several features in the infrared optical-absorption spectra of complex oxides have been associated
with large polarons [10] or with a mixture of large and small polarons [11]. The analysis in those
papers was performed using a single-polaron model, so that the concentration dependence of the
optical-absorption spectra could not properly take into account many-polaron effects.

The many-body theory of the optical absorption of a gas of interacting polarons [12,13] allows one
to study the density dependence of the optical-absorption spectra. The calculation [12] was performed
in the single-branch approximation for optical phonons. In Ref. [13], the optical conductivity of n-doped
SrTiO3 was calculated accounting for the electron-phonon interaction with multiple longitudinal optical
(LO) and transverse optical (TO) phonon branches. The calculations of the optical conductivity of
a weak-coupling polaron gas [12,13] compare fairly well with the experimental data [1,2] and therefore
confirm the contribution of large polarons in the optical response. Strontium titanate represents
an especially interesting case due to its unique features, particularly a high static dielectric constant
at low temperatures and essentially non-parabolic shape of the conduction band which consists of
three subbands. This requires a treatment of the optical conductivity beyond the frequently used
lowest-order perturbation approximation.

The first-principle methods are powerful for the theoretical study of both equilibrium and response
properties of polarons. At present, ab initio calculations of the polaron band energies are developed,
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for example, in Refs. [14–18]. Also, the polaron mobility has been calculated from the first principles
(see, for review, [19]). In the present work, we consider a complementary semianalytic approach,
which has its own advantages. First, it is much less time- and memory-consuming for computation.
Second, more important, it allows sometimes a clear physical interpretation of features of obtained
spectra, as they follow from a used model.

The present work is focused on the many-polaron optical response in strongly polar crystals
like SrTiO3. The strong polarity means that the ratio of the static and high-frequency dielectric
constant is large: ε0/ε∞ � 1. This does not necessarily lead to a high electron-phonon coupling
constant: in strontium titanate the effective coupling constant α ≈ 2 as determined in [13].
Even in this moderate-coupling case, electron collective excitations (attributed to plasmons only
in the long-wavelength limit) are substantially mixed with LO phonons [20] and therefore can
result in a non-trivial spectrum of the optical conductivity. Therefore, in this paper, we determine
the optical conductivity of a many-polaron gas taking into account mixing of phonons and electron
collective excitations in the total dielectric function of the electron-phonon system, and taking also
into account the multi-subband structure of the conductivity band. The method is applied to n-doped
strontium titanate.

2. Many-Polaron Optical Conductivity

We consider an electron-phonon system with the following Hamiltonian in the momentum representation:

H = ∑
λ

∑
k

ελ (k) ∑
σ=±1/2

a†
k,σ,λak,σ,λ + ∑

q,j
h̄ωq,j

(
b†

q,jbq,j +
1
2

)
+ ∑

q,j
Vq,j

(
bq,j + b†

−q,j

)
∑
λ

∑
k

∑
σ=±1/2

a†
k+q,σ,λak,σ,λ, (1)

where ελ (k) is the electron energy with the momentum h̄k in the λ-th subband of the conduction band,
a†

k,σ,λ and ak,σ,λ are, respectively, creation and annihilation fermionic operators for an electron with
the spin projection σ, ωq,j is the phonon frequency for the momentum h̄q and the phonon branch j, b†

q,j
and bq,j are, respectively, phonon creation and annihilation operators. The electron-phonon interaction
amplitudes Vq,j are used here neglecting their possible dependence on the electron momentum
and the subband number. This dependence can only be non-negligible when high-energy electrons
bring an important contribution to the many-polaron response, which is not believed to be the case for
strontium titanate.

For the many-polaron optical response, we start from the Kubo formula,

σxx (Ω) =
1

Vz

[
1
h̄

∫ ∞

0
dt eizt 〈[Jx (t) , Jx (0)]〉+ iZ

]
(2)(

β =
1

kBT
, z = Ω + iδ, δ→ +0

)
where V is the system volume, e is the electronic charge, and the constant Z is determined by
the current-current correlator:

Z =
1
h̄

∫ h̄β

0
dτ 〈Jx (τ) Jx (0)〉 , (3)

and Jx is the current operator determined by:

Jx = −evx = − e
h̄ ∑

λ
∑
k

∑
σ=±1/2

∂ελ (k)
∂kx

a†
k,σ,λak,σ,λ. (4)

The constant Z can be calculated explicitly. Substituting (4) to (3) and applying commutation
relations for second quantization operators, we arrive at the result,
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Z =
e2

h̄2 ∑
λ

∑
k

∑
σ

∂2ελ (k)
∂k2

x
fk,σ,λ (5)

with the distribution function of the electrons,

fk,σ =
〈

a†
k,σ,λak,σ,λ

〉
. (6)

Next, we perform twice the integration by parts in the integral over time in (2) and introduce
the force operator,

∂Jx (t)
∂t

≡ eFx (t) . (7)

which is explicitly given by the expression:

Fx =
i
h̄ ∑

q,j
Vq,j

(
bq,j + b†

−q,j

)
B̂q (8)

with

B̂q ≡
1
h̄ ∑

λ
∑
k

∑
σ

(
∂ελ (k + q)

∂kx
− ∂ελ (k)

∂kx

)
a†

k,σ,λak,σ,λ (9)

After these two integrations by parts, the Kubo formula is equivalently rewritten through
the force-force correlation function,

σxx (Ω) =
e2

h̄V (Ω + iδ)3

∫ ∞

0
dt e−δt

(
eiΩt − 1

)
〈[Fx (t) ,Fx (0)]〉+

i
V
Z

Ω + iδ
. (10)

Next, we consider the weak-coupling regime. The weak-coupling optical conductivity can be
expressed in the memory-function form, as, e.g., in Refs. [21,22]:

σxx (Ω) =
i
V

Z
Ω + iδ− χ (Ω) / (Ω + iδ)

. (11)

where the memory function χ (Ω) is:

χ (Ω) = − i
Z

e2

h̄

∫ ∞

0
dt e−δt

(
eiΩt − 1

)
〈[Fx (t) ,Fx (0)]〉0 . (12)

Here, the averaging 〈. . .〉0 is performed with the Hamiltonian of interacting electrons neglecting
the electron-phonon interaction.

We can transform the memory function in an explicitly tractable expression substituting (8) and (9)
in (12). Thus, we obtain the resulting memory function:

χ (Ω) =
2e2

h̄3Z ∑
q,j

∣∣Vq,j
∣∣2 ∫ ∞

0
dt e−δt

(
eiΩt − 1

)
Im
[

T∗
(
ωq,j, t

) 〈
B̂q (t) B̂†

q

〉
0

]
. (13)

where T
(
ωq,j, t

)
is the phonon Green’s function:

T
(
ωq,j, t

)
=
(
1 + n̄q,j

)
eiωq,jt + n̄q,je

−iωq,jt. (14)

and n̄q,j is the Bose distribution of phonons:

n̄q,j =
1

eβh̄ωq,j − 1
. (15)
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The f -sum rule for the optical conductivity reads:∫ ∞

−∞
Re σxx (Ω) dΩ =

π

2
Z
V

. (16)

In the general case the constant Z can be different from the value e2 Ne
mb

obtained in Ref. [23],
which follows from (5) for a quadratic dispersion.

3. Semianalytic Approximations

The optical conductivity of an interacting polaron gas is calculated here within the extended
random phase approximation (RPA), as described below. The memory function χ (Ω) can be expressed
through the polarization function of the electron gas for sufficiently small q. Thus, the RPA can be
applied under the assumption that the long-wavelength phonons bring the dominant contribution to
the polaron optical response. In this approximation, the band energy ελ (k) which enters the operator
B̂q is expanded in powers of the momentum as ελ (k) = h̄2k2/2mb,λ + O (k)4. In SrTiO3, the band
mass obtained within the tight-binding analytic fit as described in Appendix A appears isotropic
with the same value mb ≈ 0.72me (where me is the electron mass in vacuum) for all three subbands
of the conduction band. Thus, the memory function for the optical conductivity is approximated by
the expression:

χ (Ω) =
2e2

3h̄m2
bZ

∑
q,j

∣∣Vq,j
∣∣2 q2

∫ ∞

0
dt e−δt

(
eiΩt − 1

)
Im
[

T∗
(
ωq,j, t

) 〈
ρq (t) ρ†

q

〉
0

]
, (17)

where ρq = ∑k,σ,λ a†
k+q,σ,λak,σ,λ is the Fourier component of the electron density. Please note that

below, when calculating the density-density correlation function, we do not perform this expansion.
The treatment is restricted here to the optical response provided by the Fröhlich electron-phonon

interaction with LO phonons, because this mechanism brings the main contribution to the mid-infrared
optical conductivity in polar crystals. The LO- and TO-phonon frequencies are denoted below as
ωq,j ≡ ωL,j (q) and ωT,j (q), respectively. In the present work, they are not calculated, being input
parameters of the theory.

We use the Fröhlich interaction amplitudes with the partial coupling constants αj for the j-th
LO-phonon branch in a multimode polar crystals as derived in Ref. [13]:

Vq,j =
h̄ωL,j

q

(
4παj

V

)1/2
(

h̄
2mbωL,j

)1/4

, (18)

where ωL,j ≡ ωL,j (q)
∣∣
q=0 are the LO-phonon frequencies in the phonon Brillouin zone center.

The expression (18) does not mean that the phonon dispersion is neglected, because ωL,j enters
Vq,j only as a dimensional parameter, compensated in the coupling constant αj [24]. In terms of Green’s
functions, the memory function (17) takes the form:

χ (Ω) = ∑
j

αjh̄ω2
L,je

2

6π2m2
bZ

(
h̄

2mbωL,j

)1/2

×
∫

dq
{
G
(

q, Ω−ωL,j (q)
)
+G∗

(
q,−Ω−ωL,j (q)

)
−G

(
q,−ωL,j (q)

)
−G∗

(
q,−ωL,j (q)

)
+

1

eβh̄ωL,j(q)− 1

[
GR
(

q, Ω−ωL,j (q)
)
+GR

(
q,−Ω−ωL,j (q)

)∗
−GR

(
q,−ωL,j (q)

)
−GR

(
q,−ωL,j (q)

)∗]}
, (19)
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with

G (q, Ω) ≡ −i
∫ ∞

0
eiΩt 〈ρq (t) ρ−q (0)

〉
0 dt, (20)

GR (q, Ω) ≡ −i
∫ ∞

0
eiΩt 〈[ρq (t) , ρ−q (0)

]〉
0 dt. (21)

In Ref. [13], the Green’s functions were calculated within the RPA for an electron gas.
Here, we apply the RPA extended for an interacting electron-phonon system, which leads to a formula
structurally similar to that obtained within RPA, but with a different (momentum and frequency
dependent) electron–electron interaction matrix element:

4πe2

ε∞q2 →
4πe2

εL (q, ω) q2 , (22)

with the dielectric function of the lattice εL (q, ω), which describes the dynamic lattice polarization.
In the present calculation, we use the model of independent oscillators [25,26] which correspond to
the LO- and TO-phonon modes:

εL (q, Ω) = ε∞

n

∏
j=1

(
Ω2 −ω2

L,j (q)

Ω2 −ω2
T,j (q)

)
. (23)

The extended RPA thus takes into account the dynamic screening of the Coulomb electron–electron
interaction by the lattice polarization. The resulting retarded density-density Green’s function is:

GR (q, Ω) =
h̄VP(1) (q, Ω)

1− 4πe2

εL(q,Ω)q2 P(1) (q, Ω)
, (24)

where P(1) (q, Ω) is the Lindhard polarization function,

P(1) (q, Ω) =
1
V ∑

k,σ,λ

fF (ελ (k + q)− µλ)− fF (ελ (k)− µλ)

h̄Ω + ελ (k + q)− ελ (k) + i0+
(25)

with the Fermi distribution function fF (ε):

fF (ε) =
1

eβ(ε−µ) + 1
. (26)

The function G (q, Ω) is obtained from GR (q, Ω) using the analytic identity,(
1− e−βh̄Ω

)
ImG (q, Ω) = Im GR (q, Ω) , (27)

and then the Kramers–Kronig dispersion relation for ReG (q, Ω).
For a comparison with experiment, the Green’s functions are calculated here accounting for

damping within the Mermin–Lindhard approach [27–30] (where the damping is introduced in
such a way to conserve the local electron number). This leads to the modification of the retarded
density-density Green’s function as follows:

GR (q, Ω)→ GR
M (q, Ω, γ) = GR (q, Ω + iγ)

Ω + iγ

Ω + iγ GR(q,Ω+iγ)
GR(q,0)

. (28)

where γ is the phenomenological damping factor. The values of γ found in the literature are of
the order of the Fermi energy of electrons [31,32]. Here, γ is a fitting parameter of the same order of
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magnitude (the only fitting parameter which is in fact used here). The calculation is performed with
the values γ = 1.2εF,1 for T = 7 K and γ = 2εF,1 for T = 300 K. It should be noted that the results
appear to be only slightly sensitive to chosen values of γ.

The calculation of the Green’s functions for non-parabolic bands requires knowledge of overlap
integrals [33] for the Coulomb and electron-phonon interactions, which is not yet reliably known
and needs a microscopic calculation. In order to simplify the computation keeping main features of
the non-parabolic band dispersion, we perform two approximations.

First, we apply the density-of-states approach already successfully used in Ref. [34].
The approximation consists of the replacement of the true band energy ελ (k) by the model isotropic band
energy ελ (k) which provides the same density of states as that for the true band energy ελ (k). The density
of states νλ (E) in the λ-th subband of the conductivity band is determined using the carrier density:

nλ =
1

4π3

∫
dk f (ελ (k)− µ) =

∫ ελ,max

ελ,min

f (E− µλ) νλ (E) dE. (29)

where ελ,min = ελ (k)|k=0. The model isotropic band energy dispersion is determined through
the function

kλ (E) =
(

3π2
∫ E

ελ,min

νλ (ε) dε

)1/3

, (30)

so that ελ (k) is the inverse function to this kλ (E).
Second, ελ (k) appears to be approximately parabolic in a rather wide range of the momentum.

Therefore, we assume the parabolic conduction band for the calculation of Green’s functions but with
the density-of-states effective masses mλ determined through the density of states from the condition
that the low-momentum expansion of the polarization function P(1) (q, Ω) with the dispersion ελ (k)
coincides with that for a parabolic band dispersion with the mass mλ. This gives us the expression:

mλ = 3π4nλ

(∫ ελ,max

ελ,min

βeβ(E−µ)(
eβ(E−µ) + 1

)2
k4

λ (E)
νλ (E)

dE

)−1

. (31)

In the zero-temperature limit, mλ is analytically expressed through the density of states at
the Fermi energy εF,λ:

mλ = π2 νλ (εF,λ)

kF,λ
. (32)

As mentioned above, this approximation is not a series expansion of the band energy near
the band bottom, and hence the density-of-states mass mλ does not coincide with the band effective
mass mb. An approach which involves the effective band mass and the density-of-states band mass has
been used also in Ref. [13]. Here, the density-of-states band mass is determined in a more rigorous way,
effectively accounting for the realistic band structure of a crystal, electron density and temperature,
as can be seen from (31).

4. Application to SrTiO3

The approach described above is focused mainly on crystals with a high ratio ε0/ε∞ like strontium
titanate, where it can reveal specific features related to the high polarizability. In the previous treatment
of the many-polaron optical conductivity in doped SrTiO3 [13], the pronounced peak for h̄Ω ∼ 130 meV
at a relatively low temperature remains unexplained. It was suggested in [13] that it might be
provided by other (non-polaron) mechanisms, for example, the small-polaron and mixed-polaron [35]
channels for the optical response. As we show below, additional mechanisms are not necessary for the
explanation of this 130-meV feature.

The numeric results for the many-polaron optical conductivity are shown in Figure 1.
In the computation, the following set of electron band and phonon material parameters is used.
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The conduction band shape is simulated by the analytic tight-binding fit as described in Ref. [36]
and here in Appendix A. The optimal values for this analytic approximation are the diagonal matrix
elements tδ, tπ corresponding to the recent results of the microscopic calculation [37] using the GW
method [38]: tδ = 54.2 meV, tπ = 490.9 meV, and the band splitting parameters from Ref. [36]
ξ = 18.8 meV, D = 2.2 meV. The optical-phonon energies at the Brillouin zone center of SrTiO3 are
taken from the experimental data of Ref. [2], the same as described in Ref. [13]. Also, the direct
TO-phonon optical response has been included in the figure in the same way as in Ref. [13]. It is
represented by sharp peaks in the low-energy part of the optical conductivity spectrum.
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Figure 1. Many-polaron optical conductivity of n-doped SrTiO3 in the mid-infrared frequency range
for several values of the doping x and two temperatures (the parameters are indicated in the figure),
corresponding to the experimental conditions of Ref. [2]. The calculated spectra (solid curves)
are compared with the experimental data (dashed curves). Dotted curves show the results of Ref. [13].
The subgraphs correspond to the following cases: in (a,b) doping relative concentration is x = 0.1%,
for T = 7 K (a) and T = 300 K (b). The panels (c,d), (e,f ), (g,h), describe the results for x = 0.2%,
x = 0.9% and x = 2%, respectively.

The calculated many-polaron optical conductivity in SrTiO3 is compared with the experimental
data of Ref. [2] for two temperatures: T = 7 K and T = 300 K and for several values of the carrier
concentration. Also, the earlier calculation the optical conductivity [13] is reproduced in the figure.
As can be seen from the low-temperature results shown in the left-hand panels of the figure,
the 130-meV peak and the dip at h̄Ω ∼ 200 meV (corresponding to twice the highest-energy LO-phonon
mode ion strontium titanate) experimentally observed at the low temperature and at relatively low
concentrations are fairly well revealed in the calculated spectra of the optical conductivity.
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The obtained expression (24) for the retarded density-density Green’s function gives us
a transparent explanation of the shape of the optical conductivity spectrum, which is more complicated
than in the absence of the dynamic screening. The Green’s functions enter the memory function (19)
with the arguments

(
±Ω−ωL,j

)
. Therefore the dynamically screened electron–electron interaction

matrix element (22) contains poles, in particular, at Ω = 2ωL,j (q), which result in dips of the optical
conductivity at these frequencies. The most significant contribution to the dips comes from the highest
LO-phonon energy h̄ωL,3|q=0 ≈ 98 meV. This feature is visible in both the measured and calculated
optical conductivity spectra. The part of the spectrum below 2ωL,3 constitutes the aforesaid 130-meV
peak. The other part of the spectrum, above 2ωL,3, contains the “plasmon-phonon” peak provided by
the response due to undamped plasmons [12,13].

There is still a discrepancy between the present theory and the experiment at T = 300 K
and high doping concentrations in what concerns the shape of the spectrum in the low-energy
range h̄Ω . 600 meV. Also, the small peak near h̄Ω ∼ 100 meV in the spectra for relatively low
concentrations at T = 300 K is not captured by the calculation. These discrepancies can be attributed
to the fact that a long-wavelength approximation is used here for the electron-phonon interaction.
When rising the temperature and/or the carrier concentration, momentum transfers with higher
phonon momenta q bring increasingly important contributions to the optical response. This requires
steps beyond the present approximation. First, more advanced electron-phonon matrix elements can
be relevant, i.e., Vq,j (p) rather than Vq,j, where p is the electron momentum. They can be taken from
a microscopic first-principle theory, e.g., [14–18] as input parameters for the present method. Second, at
a high phonon momentum, intersubband transitions in the conductivity band may be non-negligible.

This needs an extension of the electron-phonon matrix elements as Vq,j (p)→ V(n,n′)
q,j (p) where (n, n′)

denotes different subbands of the conductivity band. This is a subject of the next study.

5. Conclusions

In the present work, we revisit the optical response of a polaron gas in complex polar crystals using
the random phase approximation extended for an interacting electron-phonon system. This extension
results in a modified many-polaron optical conductivity with an effective electron–electron interaction
accounting for the dynamic screening by LO phonons. For a more realistic calculation relevant for
comparison with experiment for strontium titanate, the phonon dielectric function contains several
optical-phonon modes that have been identified in SrTiO3.

A distinctive low-frequency peak of the many-polaron optical conductivity in a polar medium
appears when a crystal is highly polar, ε0/ε∞ � 1, which is realized in strontium titanate. As can be
seen from the obtained spectra of the optical conductivity, the dynamic screening leads to an appearance
of this peak which is close to the experimental “130-meV feature”, except for the highest available
density. Moreover, its width and shape asymmetry are remarkably similar to those of the experimental
peak, including even fine details such a small kink at the shoulder above the maximum. Also, the whole
shape of the spectrum at least for the two lower densities is similar to the experimental results,
containing both the low-frequency peak and the “plasmon-phonon” peak due to undamped plasmons.
This similarity makes the dynamic screening mechanism for the low-frequency peak convincing.
As can be seen from the comparison of the results [13] obtained without account of dynamic screening
with those of the present work, we have achieved now much better agreement with the experiment
remaining completely within a single physical mechanism exploited for the theoretical interpretation
of the many-polaron optical response. Strontium titanate exhibits probably the strongest manifestation
of the effect of dynamic screening with respect to other known polar crystals because of an extremely
large ε0/ε∞ ratio, especially at low temperatures.

There is also a remarkable agreement between the present theory and the experimental results [2]
in what concerns the high-frequency dependence of the optical conductivity (in the range h̄Ω ∼ 1 eV),
achieved without adjustment, using reliable material parameters known from literature. This agreement is
in line with experimentally substantiated conclusion [39] that polarons in SrTiO3 are large rather than small.
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The developed method has of course less predictive accuracy than ab initio calculations
supported by an outstanding progress of the computation power. The semianalytic approaches
have, as shown above, an advantage to give a transparent physical picture of observable features
of the many-polaron response spectra. In this connection, it would be interesting to compare the
obtained results with those calculated from the first principles, fore example, DFT. At present,
such a comparison is still problematic, because the ab initio calculation of the many-polaron optical
conductivity is much more complicated than the semianalytic treatment. It is not yet clear whether
DFT is capable of providing the optical response for many-polaron systems. In the recent review [19],
the Kubo formula for a many-polaron optical conductivity has been derived from the first principles.
However, its practical application has not yet been fully realized. As noted in Ref. [19], “in practice,
the current-current correlation function is seldom evaluated exactly. Instead, it is common to work in
the independent-particle approximation”, which is in fact equivalent to the single-polaron approach
(maybe including many-polaron effects through corrections to single-polaron parameters). Moreover,
the first-principle theory of the polaron response is at present still restricted to the DC mobility.
Consequently, a comparison of our semianalytic approach with the first-principle calculations can be
a subject of the future work.

The present theory can be straightforwardly applied to other complex polar crystals where
large polarons are physically relevant, particularly to doped cuprates. Even an earlier version [12]
of the present method shows a good agreement to experimental data [1]. This confirms independently
the validity of the exploited physical approach for the optical response of crystals where an interacting
large-polaron gas is realized.
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Appendix A. Analytic Model for the Conductivity Band in SrTiO3

For the calculation of the many-polaron response, it is useful to simulate numerical data for
the band structure by an analytic expression. Here, we treat the tight-binding expression similarly to
Refs. [2,13]. In these works, an analytic parametrization of the ab initio band structure is introduced
using the matrix Hamiltonian:

H = 4

 ε1 (k) 0 0
0 ε2 (k) 0
0 0 ε3 (k)

+
1
2

W, (A1)

with the energies which enter the diagonal part of this matrix Hamiltonian,

ε1 = tδ sin2
(

a0kx

2

)
+ tπ sin2

(
a0ky

2

)
+ tπ sin2

(
a0kz

2

)
,

ε2 = tπ sin2
(

a0kx

2

)
+ tδ sin2

(
a0ky

2

)
+ tπ sin2

(
a0kz

2

)
, (A2)

ε3 = tπ sin2
(

a0kx

2

)
+ tπ sin2

(
a0ky

2

)
+ tδ sin2

(
a0kz

2

)
,
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where a0 is the lattice constant. The matrix W describes the mixing of subbands within the conductivity
band, which comes from the spin-orbit coupling in first-principle calculations. For the cubic phase of
SrTiO3, counting the band energy from the G point (i.e., dropping a uniform shift of the whole band),
W is given by:

W =

 0 ξ ξ

ξ 0 ξ

ξ ξ 0

 . (A3)

For the tetragonal phase as reported in Ref. [36], the matrix W is:

W =

 2D ξ ξ

ξ 2D ξ

ξ ξ −4D

 . (A4)

Here, the parameter D at the main diagonal of W describes a uniform shift of each subband due
to the spin-orbit coupling, while the parameter ξ is responsible for mixing between different subbands.
The values of parameters entering the analytic parametrization are determined from the numeric fit to
the ab initio band structure. They are described in Section 4.
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