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Abstract: The number of publications on acoustic scene classification (ASC) in environmental audio
recordings has constantly increased over the last few years. This was mainly stimulated by the annual
Detection and Classification of Acoustic Scenes and Events (DCASE) competition with its first
edition in 2013. All competitions so far involved one or multiple ASC tasks. With a focus on deep
learning based ASC algorithms, this article summarizes and groups existing approaches for data
preparation, i.e., feature representations, feature pre-processing, and data augmentation, and for data
modeling, i.e., neural network architectures and learning paradigms. Finally, the paper discusses
current algorithmic limitations and open challenges in order to preview possible future developments
towards the real-life application of ASC systems.
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1. Introduction

Recognizing different indoor and outdoor acoustic environments from recorded acoustic signals
is an active research field that has received much attention in the last few years. The task is an essential
part of auditory scene analysis and involves summarizing an entire recorded acoustic signal using
a pre-defined semantic description like “office room” or “public place”. Those semantic entities are
denoted as acoustic scenes and the task of recognizing them as acoustic scene classification (ASC) [1].

A particularly challenging task related to ASC is the detection of audio events that are temporarily
present in an acoustic scene. Examples of such audio events include vehicles, car horns, and footsteps,
among others. This task is referred to as acoustic event detection (AED), and it substantially differs
from ASC as it focuses on the precise temporal detection of particular sound events.

State-of-the-art ASC systems have been shown to outperform humans on this task [2]. Therefore,
they are applied in numerous application scenarios such as context-aware wearables and hearables,
hearing aids, health care, security surveillance, wild-life monitoring in nature habitats, smart cities,
IoT, and autonomous navigation.

This article summarizes and categorizes deep learning based algorithms for ASC in a systematic fashion
based on the typical processing steps illustrated in Figure 1. Section 2, Section 3, and Section 4 discuss
techniques to represent, pre-process, and augment audio signals for ASC. Commonly used neural network
architectures and learning paradigms are detailed in Section 5 and Section 6. Finally, Section 7 discusses
the open challenges and limitations of current ASC algorithms before Section 8 concludes this article. Each
section first provides an overview of previously used approaches. Then, based on the published results of the
the Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 and 2019 challenges, the most
promising methods are highlighted. It must be noted that evaluating and comparing the effectiveness of
different methods is often complicated by the use of different evaluation datasets.
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Figure 1. The flowchart summarizes the article’s structure and lists the typical processing flow of an acoustic
scene classification (ASC) algorithm.

As a complementary read to this article, Barchiesi et al. published an in-depth overview of
ASC methods using “traditional” feature extraction and classification techniques prior to the general
transition to deep learning based methods in [3]. Other related survey articles focus on deep learning
methods for AED [4,5] or summarize algorithms submitted for various machine listening tasks
including ASC for a particular year of the DCASE challenge such as [6]. Methodologies and common
datasets for evaluating ASC algorithms are not further addressed in this article.

2. Signal Representations

Datasets for the tasks of ASC or AED contain digitized audio recordings. The resulting acoustic
signals are commonly represented as waveforms that denote the amplitude of the recorded signal over
discrete time samples. In most cases, ASC or AED systems perform the tasks of interest on derived
signal representations, which will be introduced in the following section.

2.1. Monaural vs. Multi-Channel Signals

ASC algorithms commonly process monaural audio signals. Sound sources in acoustic scenes
are spatially distributed by nature. If multi-channel audio recordings are available, the inherent
spatial information can be exploited to better localize sound sources. The joint localization
and detection of sound events was first addressed in Task 3 of the DCASE 2019 challenge
(http://dcase.community/challenge2019/task-sound-event-localization-and-detection).

In addition to the left/right channels, a mid/side channel representation can be used as
additional signal representation [7,8]. As an example for using a larger number of audio channels,
Green and Murphey [9] classified acoustic scene recordings of fourth-order Ambisonics by combining
spatial features describing the direction of sound arrival with band-wise spectral diffuseness measures.
Similarly, Zirliński and Lee combined spatial features from binaural recordings with spectro-temporal
features to characterize the foreground/background sound distribution in acoustic scenes [10].
Current state-of-the-art ASC algorithms process either mono or stereo signals without a clear trend.

http://dcase.community/challenge2019/task-sound-event-localization-and-detection
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2.2. Fixed Signal Transformations

Most neural network architectures applied for ASC require multi-dimensional input data
(compare Section 5). The most commonly used time-frequency transformations are the short-time
Fourier transform (STFT), the Mel spectrogram, and the wavelet spectrogram. The Mel spectrogram
is based on a non-linear frequency scale motivated by human auditory perception and provides
a more compact spectral representation of sounds compared to the STFT. ASC algorithms process only
the magnitude of the Fourier transform while the phase is discarded.

Wavelets can be computed in a one-step [11,12] or cascaded fashion [13] to decompose time-domain
signals into a set of basis function coefficients. The deep scattering spectrum [13] decomposes a signal
using a sequential cascade of wavelet decompositions and modulation operations. The scalogram [14,15]
uses multiple parallel wavelet filters with logarithmically spaced support and bandwidth to provide
invariance to both time-warping and local signal translations. Time-averaged statistics based on
computer vision algorithms like local binary patterns (LPB) or histogram of oriented gradients
(HOG) can be used to summarize such two-dimensional signal transformations [16]. In addition
to basic time-frequency transformations, perceptually-motivated signal representations are used as
input to deep neural networks. Such representations for instance characterize the distribution (e.g.,
Mel-frequency cepstral coefficients (MFCC) [17], sub-band power distribution [18], and gammatone
frequency cepstral coefficients [19]) and modulation of the spectral energy (e.g., amplitude modulation
bank features [20] and temporal energy variation [21]). Feature learning techniques based on
hand-crafted audio features and traditional classification algorithms such as support vector machines
(SVM) have been shown to underperform deep learning based ASC algorithms [22,23].

High-dimensional feature representations are often redundant and can lead to model overfitting.
Therefore, before being processed by the neural network, the feature space dimensionality can be
further reduced: One approach is to aggregate sub-bands of spectrograms using local binary pattern
(LBP) histograms [24] or sub-band power distribution (SBD) features [18]. A second approach is to
map features to a randomized low-dimensional feature space as proposed by Jimenez et al. [25].

The best performing ASC algorithms from the recent DCASE challenges used almost exclusively
spectrogram representations based on logarithmic frequency spacing and logarithmic magnitude
scaling such as log Mel spectrograms as the network input. Occasionally, end-to-end learning based
on raw waveforms was used.

2.3. Learnable Signal Transformations

Three different approaches have been used to the best of our knowledge in ASC systems to avoid
fixed pre-defined signal transformations. The first approach is to apply end-to-end learning where
neural networks directly process raw audio samples. Examples of such network architectures are
AclNet and AclSincNet[26], as well as SoundNet [27]. As a potential advantage against spectrogram
based methods, the signal phase is not discarded.

The second approach is to interpret the signal transformation step as a learnable function,
commonly denoted as “front-end”, which can be jointly trained with the classification back-end [28].
The third approach is to use unsupervised learning to derive semantically meaningful signal
representations. Amiriparian et al. combined representations learned using a deep convolutional
generative adversarial network (DCGAN) and using a recurrent sequence to sequence autoencoder
(S2SAE) [29]. Similarly, environmental audio recordings can be decomposed into suitable basis
functions using well-established matrix factorization techniques such non-negative matrix factorization
(NMF) [30] and shift-invariant probabilistic latent component analysis (SIPLCA) [31]. Up to this point,
the best-performing ASC algorithms of the recent DCASE challenges still focus on fixed spectrogram
based signal representations instead of learnable signal transformations.
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3. Pre-Processing

Feature standardization is commonly used to speed up the convergence of gradient descent
based algorithms [8]. This process changes the feature distribution to have zero mean and unit
variance. In order to compensate for the large dynamic range in environmental sound recordings,
logarithmic scaling is commonly applied to spectrogram based features. Other low-level audio signal
pre-processing methods include dereverberation and low-pass filtering [32].

Both ASC and AED face the challenge that foreground sound events in acoustic scenes are
often overshadowed by background noises. Lostanlen et al. used per-channel energy normalization
(PCEN) [33] to reduce stationary noise and to enhance transient sound events in environmental audio
recordings [34]. This algorithm performs an adaptive, band-wise normalization and decorrelates
the frequency bands. Wu et al. enhanced edge-like structures in Mel spectrograms using two edge
detection methods from image processing based on the difference of Gaussians (DoG) and Sobel
filtering [35]. The background drift of the Mel spectrogram is removed using median filtering. Similarly,
Han et al. used background subtraction and applied median filtering over time [7] to remove irrelevant
noise components from the acoustic scene background and the recording device.

Several filtering approaches are used as pre-processing for ASC algorithms. For example,
Nguyen et al. applied a nearest neighbor filter based on the repeating pattern extraction technique
(REPET) algorithm [36] and replaced the most similar spectrogram frames by their median prior to
the classification [37]. This allowed emphasizing repetitive sound events in acoustic scenes such as from
sirens or horns. As another commonly used filtering approach, harmonic-percussive source separation
(HPSS) decomposes the spectrogram into horizontal and vertical components and provides additional
feature representations for ASC [7,32,38]. While most of the discussed pre-processing techniques have
been proposed just very recently, logarithmic magnitude scaling is the only well-established method,
which is consistently used among the best performing ASC algorithms.

4. Data Augmentation Techniques

Training deep learning models usually requires large amounts of training data to capture
the natural variability in the data to be modeled. The size of machine listening datasets increased over
the last few years, but lagged behind computer vision datasets such as the ImageNet dataset with
over 14 million images and over 21 thousand object classes [39]. The only exception to this day is
the AudioSet dataset [40] with currently over 2.1 million audio excerpts and 527 sound event classes.
This section summarizes techniques for data augmentation to address this lack of data.

The first group of data augmentation algorithms generates new training data instances from
existing ones by applying various signal transformations. Basic audio signal transformation includes
time stretching, pitch shifting, dynamic range compression, as well as adding random noise [41–43].
Koutini et al. applied spectral rolling by randomly shifting spectrogram excerpts over time [44].

Several data augmentation methods allow simulating overlap between multiple sound events
and the resulting occlusion effects in the spectrogram. Mixup data augmentation creates new training
instances by mixing pairs of features and their corresponding targets based on a given mixing ratio [45].
Another approach adopted from the computer vision field is SpecAugment, where features are
temporally warped and blocks of the features are randomly masked [46]. Similarly, random erasing
involves replacing random boxes in feature representations by random numbers [47]. In the related
research task of bird audio detection, Lasseck combined several data augmentation techniques
in the time domain (e.g., mosaicking random segments, time stretching, time interval dropout)
and time-frequency domain (e.g., piece-wise time/frequency stretching and shifting) [48].

A second group of data augmentation techniques synthesizes novel data instances from scratch.
The most common synthesis approaches are based on generative adversarial networks (GAN) [49],
where class-conditioned synthesis models are trained using an adversarial training strategy by
imitating existing data samples. While data synthesis is usually performed in the audio signal
domain [15,50], Mun et al. instead synthesized intermediate embedding vectors [51]. Kong et al.
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generated acoustic scenes using the SampleRNN model architecture [52]. Recently proposed ASC
algorithms use either mixup data augmentation or GAN based methods to augment the available
amount of training data.

5. Network Architectures

ASC algorithms mostly use CNN based network architectures since they usually provide
a summarizing classification of longer acoustic scene excerpts. In contrast, AED algorithms commonly
use convolutional recurrent neural networks (CRNN) as they focus on a precise detection of sound
events [4]. This architecture combines convolutional neural networks (CNN) as the front-end for
representation learning and a recurrent layer for temporal modeling. State-of-the-art ASC algorithms
almost exclusively use CNN architectures. Hence, the main focus is on CNN based ASC methods
in Section 5.1. Other methods using feedforward neural networks (FNN) and CRNN are briefly
discussed in Section 5.2 and Section 5.3, respectively. Network architectures and the corresponding
hyper-parameters are usually optimized manually. As an exception, Roletscheck et al. automated
this process and compared various architectures, which were automatically generated using a genetic
algorithm [53].

5.1. Convolutional Neural Networks

Traditional CNN architectures use multiple blocks of successive convolution and pooling
operations for feature learning and down-sampling along the time and feature dimensions, respectively.
As an alternative, Ren et al. used atrous CNNs, which are based on dilated convolutional kernels [54].
Such kernels allow achieving a comparable receptive field size without intermediate pooling operation.
Koutine et al. showed that ASC systems can be improved if the receptive field is regularized by
restricting its size [55].

In most CNN based architectures, only the activations of the last convolutional layer are connected
to the final classification layers. As an alternative, Yang et al. followed a multi-scale feature approach
and further processed the activations from all intermediate feature maps [56]. Additionally, the authors
used the Xception network architecture, where the convolution operation is split into a depthwise
(spatial) convolution and a pointwise (channel) convolution to reduce the number of trainable
parameters. A related approach is to factorize two-dimensional convolutions into two one-dimensional
kernels to model the transient and long-term characteristics of sounds separately [19,57]. The influence
of different symmetric and asymmetric kernel shapes were systematically evaluated by Wang et al. [58].

Several extensions to the common CNN architecture were proposed to improve the feature learning.
Basbug and Sert adapted the spatial pyramid pooling strategy from computer vision, where feature maps
are pooled and combined on different spatial resolutions [59]. In order to learn frequency-aware filters in
the convolutional layers, Koutini et al. proposed to encode the frequency position of each input feature
bin within an additional channel dimension (frequency-aware CNNs) [44]. Similarly, Marchi et al. added
the first and second order time derivative of spectrogram based features as additional input channels in
order to facilitate detecting transient short-term events that have a rapid increase in magnitude [60].

5.2. Feedforward Neural Networks

Feedforward neural networks (FNN) are used in several ASC algorithms. Bisot et al. used
an FNN architecture to concatenate features from an NMF decomposition and a constant-Q transform
of the audio signal [61]. Takahashi et al. combined an FNN with multiple Gaussian mixture model
(GMM) classifiers to model the individual acoustic scenes [62].

5.3. Convolutional Recurrent Neural Networks

The third category of ASC algorithms is based on convolutional recurrent neural networks
(CRNN). Li et al. combined in two separate input branches CNN based front-ends for feature learning
with bidirectional gated recurrent units (BiGRU) for temporal feature modeling [13]. In contrast to
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a sequential ordering of convolutional and recurrent layers, parallel processing pipelines using long
short-term memory (LSTM) layers were used in [50,63]. Two recurrent network types used in ASC
systems require fewer parameters and less training data compared to LSTM layers: gated recurrent
neural networks (GRNN) [11,12,64] and time-delay neural networks (TDNN) [20,65].

6. Learning Paradigms

Building on the basic neural network architectures introduced in Section 5, approaches to further
improve ASC systems are summarized in this section. After discussing methods for closed/open set
classification in Section 6.1, extensions to neural networks such as multiple input networks (Section 6.2)
and attention mechanisms (Section 6.3) are presented. Finally, both multitask learning (Section 6.4)
and transfer learning (Section 6.5) will be discussed as two promising training strategies to improve
ASC systems.

6.1. Closed/Open Set Classification

Most ASC tasks in public evaluation campaigns such as the DCASE challenge assume a closed-set
classification scenario with a fixed predefined set of acoustic scenes to distinguish. In real-world
applications however, the underlying data distributions of acoustic scenes is often unknown and can
furthermore change over time with new classes becoming relevant. This motivates the use of open-set
classification approaches, where an algorithm can also classify a given audio recording as an “unknown”
class. This scenario was first addressed as part of the DCASE 2019 challenge in Task 1C “Open-set
Acoustic Scene Classification” [66].

Saki et al. proposed the multi-class open-set evolving recognition (MCOSR) algorithm to tackle
open-set ASC [67]. Unknown samples are first rejected by a recognition model before the algorithm
tries to identify underlying (hidden) classes in these samples in an unsupervised manner. Finally,
the recognition model can be updated using the novel classes. Wilkinghoff and Kurth combined
a closed-set classification algorithm and an outlier detection algorithm based on deep convolutional
autoencoders (DCAE) to recognize unknown samples in an open-set ASC scenario [68]. Lehner et al.
evaluated the model’s classification confidence to identify unknown samples [69]. Therefore,
a threshold was applied on the highest logit value at the input of the final neural network layer.

6.2. Multiple Input Networks

As discussed before, most ASC algorithms use a convolutional front-end to learn characteristic
patterns in multi-dimensional feature representations. As a general difference from image processing,
the time and frequency axes in spectrogram based feature representations do not carry the same
semantic meaning. In order to train networks to detect spectral patterns, which are characteristic for
certain frequency regions, several authors split a spectrogram into two [70] or multiple [71] sub-bands
and used networks with multiple input branches. Using the same idea of distributed feature learning,
other ASC systems individually process the left/right or mid/side channels [8] or filtered signal
variants, which are obtained using harmonic/percussive separation (HPSS) [38] or nearest neighbor
filtering (NNF) [37]. Instead of feeding multiple signal representations to the network as individual
input branches, Dang et al. proposed to concatenate both MFCC and log Mel spectrogram features
along the frequency axis as input features [72]. The majority of state-of-the-art ASC algorithms process
spectrogram based input data using network architectures with a single input and output branch.

6.3. Attention

The temporal segments of an environmental audio recording contribute differently to
the classification of its acoustic scene. Neural attention mechanisms allow neural networks to focus
on a specific subset of its input features. Attention mechanisms can be incorporated at different
positions within neural network based ASC algorithms. Li et al. incorporated gated linear units
(GLU) in several steps of the feature learning part of the network (“multi-level attention”) [13]. GLUs
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implement pairs of mutually gating convolutional layers to control the information flow in the network.
Attention mechanisms can also be applied in the pooling of feature maps [73]. Wang et al. used
self-determination CNNs (SD-CNNs) to identify frames with higher uncertainty due to overlapping
sound events. A neural network can learn to focus on local patches within the receptive field if
a network-in-network architecture is used [74]. Here, individual convolutional layers are extended by
micro neural networks, which allow for more powerful approximations by additional non-linearities.
Up to now, attention mechanisms have been rarely used in ASC algorithms, but often applied in AED
algorithms, where the exact localization of sound events is crucial.

6.4. Multitask Learning

Multitask learning involves learning to solve multiple related classification tasks jointly with one
network [75]. By learning shared feature representations, the performance on the individual tasks can
be improved and a better generalization can be achieved.

A natural approach is to train one model to perform ASC and AED in a joint manner [76]
as acoustic events are the building blocks of acoustic scenes. Sound events and acoustic scenes
naturally follow a hierarchical relationship. While most publications perform a “flat” classification,
Xu et al. exploited a hierarchical acoustic scene taxonomy and group acoustic scenes to the three
high-level scene classes “vehicle”, “indoor”, and “outdoor” [77]. The authors used a hierarchical
pre-training approach, where the network learned to predict the high-level scene class as the main
task and the low-level scene class such as car or tram as the auxiliary task. Using a similar scene
grouping approach, Nwe et al. trained a CNN with several shared convolutional layers and three
three branches of task-specific convolutional layers to predict the most likely acoustic scene within
each scene group [78]. So far, multitask learning is not common in state-of-the-art ASC algorithms.

6.5. Transfer Learning

Many ASC algorithms rely on well-proven neural network architectures from the computer vision
domain such as AlexNet [73,79], VGG16 [12], Xception [56], DenseNet [44], GoogLeNet [79], and
Resnet [38,69]. Transfer learning allows the fine-tuning of models that are pretrained on related audio
classification tasks. For instance, Huang et al. used the AudioSet dataset to pretrain four different
neural network architectures and fine-tune them using a task-specific development set [26]. Similarly,
Singh et al. took a pretrained SoundNet [80] network as basis for their experiments [27,81]. Ren et al.
used the VGG16 model as the seed model, which was pre-trained for object recognition in images [12].
Kumar et al. pre-trained a CNN in a supervised fashion using weak label annotation of the AudioSet
dataset. The authors compared three transfer learning strategies to adapt the model to novel AED
and ASC target tasks [82]. In the ASC tasks of the DCASE challenge, the use of publicly-available
external ASC datasets is explicitly allowed. However, most recently winning algorithms did not use
transfer learning from these datasets, but focused instead on the provided training datasets combined
with data augmentation techniques (see Section 4).

6.6. Result Fusion

Many ASC algorithms include result fusion steps where intermediate results from different time
frames or classifiers are merged. Similar to computer vision, features learned in different layers of
the network capture different levels of abstraction of the audio signal. Therefore, some systems apply
early fusion and combine intermediate feature representations from different layers of the network
as multiscale features [27,56,81]. Ensemble learning is a common late fusion technique where
the prediction results of multiple classifiers are combined [8,12,22,26,37]. The predicted class scores
can be averaged [83] or used as features for an additional classifier [84]. Averaging the classification
results over multiple segments, as well as over multiple classifiers has become an essential part
of state-of-the-art ASC algorithms. However, in real-life applications, using multiple models for
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an averaged decision is often not feasible due to the available computational resources and processing
time constraints.

7. Open Challenges

This section discusses several open challenges that arise from deploying ASC algorithms to
real-world application scenarios.

7.1. Domain Adaptation

The performance of sound event classification algorithms often suffers from covariate shift, i.e.,
a distribution mismatch between training and test datasets. When being deployed in real-world
application scenarios, ASC systems usually face novel acoustic conditions that are caused by
different recording devices or environmental influences. Domain adaption methods aim to increase
the robustness of classification algorithms in such scenarios by adapting them to data from a novel
target domain [85]. Depending on whether labels exist for the target domain data, supervised
and unsupervised methods are distinguished. Supervised domain adaptation usually involves
fine-tuning a model on new target domain data after it was pre-trained on the annotated source
domain data.

One unsupervised domain adaptation strategy is to alter the target domain data such that their
distribution becomes closer to that of the source domain data. As an example, Kosmider used “spectral
correction” to compensate for different frequency responses of the recording equipment. He estimated
a set of frequency-dependent magnitude coefficients from the source domain data and used them for
spectrogram equalization of the target domain data [86]. Despite its simplicity, this approach led to
the best classification results in Task 1B “Acoustic Scene Classification with mismatched recording
devices” of the 2019 DCASE Challenge. However, it required time-aligned audio recordings from
several microphones during the training phase. Mun and Shon performed an independent domain
adaptation of both the source and target domain to an additional domain using a factorized hierarchical
variational autoencoder [87].

As a second unsupervised strategy, Gharib et al. used an adversarial training approach such that
the intermediate feature mappings of an ASC model followed a similar distribution for both the source
and target domain data [85]. This approach was further improved using the Wasserstein generative
adversarial networks (WGAN) formulation [88]. When analyzing the best-performing systems in
the microphone mismatch ASC Task (1B) of the 2019 DCASE challenge, it becomes apparent that
combining approaches for domain adaptation and data augmentation jointly improved the robustness
of ASC algorithms against changes of the acoustic conditions.

7.2. Ambiguous Allocation between Sound Events and Scenes

Acoustic scenes often comprise multiple sound events, which are not class-specific, but instead
appear in a similar way in various scene classes [2,21]. As an example, sound recordings that are
recorded in different vehicle types such as car, tram, or train often exhibit prominent speech from
human conversations or automatic voice announcements. At the same time, class-specific sound
components like engine noises, road surface sounds, or door opening and closing sounds appear at
a lower level in the background. Wu and Lee used the gradient-weighted class activation mappings
(GradCAM) to show that CNN based ASC models in general have the capability to ignore high-energy
sound events and focus on quieter background sounds instead [35].

7.3. Model Interpretability

Despite their superior performance, deep learning based ASC models are often considered as
“black boxes” due to their high complexity and large number of parameters. One main challenge
is to develop methods that allow better interpreting the model predictions and internal feature
representations. As discussed in Section 6.3, attention mechanisms allow neural networks to
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focus on relevant subsets of the input data. Wang et al. investigated an attention based ASC
model and demonstrated that only fractions of long-term scene recordings were relevant for its
classification [74]. Similarly, Ren et al. visualized internal attention matrices obtained for different
acoustic scenes [54]. The results confirmed that either stationary and short-term signal components
were most relevant for particular acoustic scenes.

Another common strategy to investigate the class separability in intermediate feature
representations are dimension reduction techniques such as t-SNE [27]. Techniques such as layer-wise
relevance propagation (LRP) [89] allow interpreting neural networks by investigation the pixel-wise
contributions of input features to classification decisions.

7.4. Real-World Deployment

Many challenges arise when ASC models are deployed in smart city [90,91] or industrial sound
analysis [92] scenarios. The first challenge is the model complexity, which is limited if data privacy
concerns require the classification to be performed directly on mobile sensor devices. Real-time
processing requirements often demand for fast model prediction with low latency. In a related study,
Sigtia et al. contrasted the performance of different audio event detection methods with the respective
computational costs [93]. In comparison to traditional methods such as support vector machines (SVM)
and Gaussian mixture models (GMM), fully-connected neural networks achieve the best performance
while requiring the lowest number of operations.

This often requires a model compression step, where trained classification models are reduced
in size and redundant components need to be identified. Several attempts were made to make
networks more compact by decreasing the number of operations and increasing the memory efficiency.
For instance, the MobileNetV2 architecture is based on a novel layer module, which mainly uses
convolutional operations to avoid large intermediate tensors [94]. A similar approach was followed by
Drossos et al. for AED [95]. The authors replaced the common CNN based front-end by depthwise
separable convolutions and the RNN backend with dilated convolutions to reduce the number of model
parameters and required training time. In the MorphNet approach proposed by Gordon et al., network
layers were shrunk and expanded in an iterative procedure to optimize network architectures in order
to match given resource constraints [96]. Finally, Tan and Lee showed in the EfficientNet approach that
a uniform scaling of the network dimensions depth, width, and resolution of a convolutional neural
network led to highly effective networks [97].

A second challenge arises from the audio recording devices in mobile sensor units. Due to space
constraints, microelectro-mechanical system (MEMS) microphones are often used. However, scientific
datasets used for training ASC models are usually recorded with high-quality electret microphones [98].
As discussed in Section 7.1, changed recording conditions affect the input data distribution. Achieving
robust classification systems in such a scenario requires the application of domain adaptation strategies.

8. Conclusions and Future Directions

In the research field of acoustic scene classification, a rapid increase of scientific publications has
been observed in the last decade. This progress was mainly stimulated by recent advances in the field
of deep learning such as transfer learning, attention mechanisms, and multitask learning, as well as
the release of various public datasets. The DCASE community plays a major role in this development
by organizing annual evaluation campaigns on several machine listening tasks.

State-of-the-art ASC algorithms have matured and can be applied in context-aware devices
such as hearables and wearables. In such real-world application scenarios, novel challenges need to
be faced such as microphone mismatch and domain adaptation, open-set classification, as well as
model complexity and real-time processing constraints. As a consequence, one future challenge is
to extend current evaluation campaign tasks to evaluate the classification performance, as well as
the computational requirements of submitted ASC algorithms jointly. This issue will be first addressed
in this year’s DCASE challenge task “Low-Complexity Acoustic Scene Classification ”.
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The general demand for deep learning based classification algorithms for larger training corpora
can be faced with novel techniques from unsupervised and self-supervised learning, as is shown in
natural language processing, speech processing, and image processing. Another interesting future
direction is the application of lifelong learning capabilities to ASC algorithms [99]. In many real-life
scenarios, autonomous agents continuously process the sound of their environment and need to be
adaptable to classify novel sounds while maintaining knowledge about previously learned acoustic
scenes and events.
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