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Abstract: The term concept has been a prominent part of investigations in psychology and neurobiology
where, mostly, it is mathematically or theoretically represented. Concepts are also studied in
the computational domain through their symbolic, distributed and hybrid representations. The majority
of these approaches focused on addressing concrete concepts notion, but the view of the abstract
concept is rarely explored. Moreover, most computational approaches have a predefined structure
or configurations. The proposed method, Regulated Activation Network (RAN), has an evolving
topology and learns representations of abstract concepts by exploiting the geometrical view of concepts,
without supervision. In the article, first, a Toy-data problem was used to demonstrate the RANs
modeling. Secondly, we demonstrate the liberty of concept identifier choice in RANs modeling and deep
hierarchy generation using the IRIS dataset. Thirdly, data from the IoT’s human activity recognition
problem is used to show automatic identification of alike classes as abstract concepts. The evaluation of
RAN with eight UCI benchmarks and the comparisons with five Machine Learning models establishes
the RANs credibility as a classifier. The classification operation also proved the RANs hypothesis of
abstract concept representation. The experiments demonstrate the RANs ability to simulate psychological
processes (like concept creation and learning) and carry out effective classification irrespective of training
data size.

Keywords: unsupervised machine learning; hierarchical learning; computational representation;
computational cognitive modeling; contextual modeling; classification; IoT data modeling

1. Introduction

Concepts are of great value to humans because they are one of the building blocks of our
recognition process. They enable us to perform cognitive functions such as classification which
is fundamental in decision making and also capacitate us for contextual comprehension. The term
concept has a lot to say about itself. Anything can be seen as a concept, whether it is a living
being, or a thing, or an idea. An individual concept is referred to as a concrete concept (or feature)
whereas a generalized form of a set of concepts (or features) can be perceived as an abstract concept.
The denomination concept immediately coins the need to understand its representations. There are
several conceptual representation theoretical frameworks [1] like modality-specific, localist-distributed,
experience-dependent [2]. Such frameworks not only helps us to understand the various cognitive
processes in humans but also the psychological ones, like creativity. Each theory has a way to
represent concrete concepts through perception (or recognition), action, emotion, and introspection,
but the notion of abstract concepts is debatable [1]. Abstract concepts are largely studied in psychology,
and there are attempts to study them by the computational linguistics research community for Natural
Language Processing (NLP) [3]. However, the representation aspect of abstract concepts is still
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a challenge. In this article, we address this issue of representation of abstract concepts computationally
by simulating and studying the formation of convex abstract concepts.

Computational models provide us algorithmic specificity, conceptual clarity, and precision.
Besides, they empower us to perform simulations that can either be useful to test and validate
psychological theories or to generate new hypotheses about how the mind works—this has turned
them into an indispensable tool to study the human brain. The literature [4–6] shows that this
ambitious goal is not out of reach of computational cognitive modeling. Furthermore, these types of
computational tools with the ability to capture cognitive phenomena also has the potential to simulate
and study some mental states and processes such as those linked to creativity [7].

Several computational modeling techniques (or tools) simulate cognitive states and represent
concepts at symbolic and connectionist levels. Symbols represent information at a symbolic level.
Rules are defined to manipulate symbols. Within a symbolic representation, the meaning is internal
to the description itself; symbols have sense only regarding other symbols, and not regarding any
real-world objects or phenomena they may represent. Adaptive Control of Thought-Rational (ACT-R) [8]
is an example of symbolic approaches, with contributions in, almost, all fields of AI (such as language
processing, perception, attention, decision making, etc.). At the connectionist level, information is
represented by the dynamics over densely connected networks of primitive units. A particular strength of
connectionist networks is their ability to adapt their behavior according to observed data. The weights
among the units of a distributed network represent the learned behavior, they offer limited explanatory
insights into the process, being modeled. Bioinspired Artificial Neural Networks (ANN) such as
Restricted Boltzmann Machine (RBM) [9], autoencoders [10], and deep neural networks [11] are some
excellent examples of connectionist approaches with a significant contribution toward classification,
perception, and recognition.

A third way constitutes a hybrid view of connectionist, and symbolic methods. Connectionist Learning
with Adaptive Rule Induction Online (CLARION) [12] is a methodology that is hybrid, and capable
of simulating scenarios related to cognitive and social psychology. All these methodologies either
require a predefined structure or have a fixed topology that imposes a limitation of having supervision,
and inflexibility while modeling the concepts. Some techniques exhibit dynamic and evolving
behavior while performing computational operations, such as evolving neural networks by using their
genotype-phenotype mapping of cells [13]. The proposed model emulates the behavior of the dynamic
creation of abstract concepts by evolving the computational model upon identifying different groups
in the data.

This article proposes a computational method named Regulated Activation Network (RAN)
which unifies the virtues of symbolic, distributed, and spatial representations to represent concepts
(both concrete and abstract). RAN has a graph-based topology hence it is distributed, every node
in the graph (network) identifies an entity, therefore it is symbolic, and every node (or entity) is
viewed in an n-dimensional feature space, hence it is also spatial. The spatial view of concepts as
points in multidimensional geometric feature space (see Figure 1 for six-dimensional view of concepts)
is inspired by the theory of conceptual spaces [14]. The RAN’s modeling has an evolving topology
that enables it to build a model depicting a hierarchy of concepts. The geometrical associations
among concepts aid in determining the convex abstract concepts. Further, the representatives (nodes)
of the abstract concepts form a new layer dynamically, where each node acts as a convex abstract
concept representative for the underlying category. Symbolically, the concepts at (relatively) lower
levels in the hierarchy are identified as concrete concepts and the concepts at (relatively) higher levels
are seen as abstract concepts.
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Figure 1. A universe of concepts in six-dimensional feature hyper-space. The ovals in the diagram depict
individual concepts. Each individual concept is described by their defining six-dimensions. The cluster
of concepts shows the groups formed by similar concepts represented by a convex cluster of concepts,
and the cluster centers depicts the most generic concept of the cluster.

The model generation process with RAN and the three cognitive functions (i.e., concept creation,
learning and activation propagation) are simulated using a Toy-data problem. The deep hierarchy
generation, automatic generic concept modeling simulations are performed using two University of
California Irvine (UCI) benchmarks: IRIS data; and IoT data from smartphone sensors. The application
of RAN as a classifier is reported along with the proof of concept of classification using eight
UCI benchmark datasets. The generated models were evaluated using metrics precision, recall,
F1-score, accuracy, and Receiver Operating Characteristic (ROC) curve analysis. The article also
reports the RANs classification and feature comparison with five machine learning techniques,
Multilayer Perceptron (MLP) [15], Logistic Regression (LR) [16], K Nearest Neighbors (K-NN) [17],
Stochastic Gradient Descent (SGD) [18] and Restrict Boltzmann Machine [9] pipelined with
Logistic Regression (RBM+).

The article is organized in the following order; Section 2 puts forward the work closely related to
abstract concept representation and models with evolving topology. Section 3 describes the background
associated with principles, theories, and motivations for RAN modeling. RANs methodology is
detailed using Toy-data in Section 4. Section 5 shows the experiments with two datasets acquired
from UCI machine learning repository to exhibit (1) flexibility in choosing a suitable concept identifier,
(2) building a deep hierarchy of abstract concepts, (3) automatic association of input-labels to their
respective abstract concept nodes. Section 6 provides RAN comparisons with five classifiers and proof
of concept with eight benchmark datasets. At last, Section 7 summarizes and concludes the article with
remarks over ongoing and future work.

2. Related Work

Abstract concepts are of immense value because they help in developing unique abilities in
humans such as relative recognition and effective decision-making. In medical science, there have
been significant efforts to study abstract concepts with the help of technology. One such example is
MRI (Magnetic Resonance Imaging), which is being used to inspect the sections of the brain involved
in abstract concept identification [19,20]. Research in psychology has also reported investigations over
abstract concepts, like probing the role of emotional content in processing and representing abstract
concepts [21].

There has been a notable contribution from cognitive, and psycholinguists in studying languages
through abstract concept modeling and representations. Internally representing abstract concepts
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via amodal symbols like a feature list, and frames [22,23] is among the preliminary research work
in linguistics. The association and context were also established, to relating abstract and Concrete
words [22]. Some research reveals that we internally recognize metaphors as abstract concepts [24].
Besides theoretical methods, computational approaches are playing a vital role in comprehending
and representing abstract concepts. Research in NLP addresses computational learning, comprehension
and processing of human-understandable language, and its components. An interesting article
published a work about the representation of abstract, and concrete concepts in daily written language
using a text-based multimodal architecture of NLP [3]. Other than NLP, semantic networks are also
used to study semantic similarity among abstract, and concrete nouns (of Greek, and English) [25]
with the aid of network-based Distributed Semantic Model [26].

Though the aforementioned computational approaches contribute toward abstract concept
modeling and representation, they have a fixed topology (i.e., the modeling process begins with
a fixed structure and configuration). In connectionist computational modeling, there have been efforts
to develop models that evolve. Artificial Neural Networks Adaptation: Evolutionary Learning Of
Neural Optimal Running Abilities (ANNA ELEONORA) [27] demonstrated a way to grow neural
networks with the aid of parallel genetic algorithms. NeuroEvolution of Augmenting Topologies
(NEAT) [28] is another work that reported evolving neural network modeling, showing how nodes
and weights are added to the model when new features emerge as part of the existing population
and CoDeepNEAT [29] is the most recent member of such evolving models. Markov Brains [30] also
belongs to the family of evolving neural networks which uses binary variables and arbitrary logic to
implement deterministic or probabilistic finite state machines. They have been used to investigate
behaviors, character recognition and game theory.

This article communicates an approach which is not only hybrid but also has an evolving
topology. The RANs modeling learns the representation of the convex abstract concepts dynamically,
hence makes it an evolving topology. RANs approach is a connectionist, and each newly created node
corresponds to an abstract concept symbolically, thus portraying its hybrid characteristics.

3. Background

This section provides information about the principles and methodologies related to RANs
modeling. It highlights the significance of each approach, along with their applicability in
RANs modeling.

3.1. Principles of Regulated Activation Networks

The tenets of RANs modeling presented in [31], state that the model should be topologically
connectionist and intend to represent and simulate the dynamic cognitive state of an agent. In the first
version RAN [31] the authors implemented a single-layer version of the model where each node
had a lateral connection to its same-layer companions. It had a simple learning and reasoning
mechanisms, but these showed to be sufficient to simulate several known cognitive phenomena
such as the Priming [32], the False Memory [33,34].

Two principles of Regulated Activation Networks inspired our proposal. First, the model should
be dynamic, and this is achieved by dynamically creating layers (deep representations) of concepts.
Second, the model must be capable of learning and creating an abstract representation of concepts.
This is obtained by viewing associations among the concepts (at the same level) in n-dimensional
geometric space, and learning relationship between the newly created abstract concepts, and input
level concepts.

3.2. Conceptual Spaces

Conceptual Spaces Theory [14] is one of the cognitive approaches that form the basis of RANs
modeling. This theory views the concepts as regions within a multi-dimensional space, with the data
features representing the dimensions. The similarity among the concepts can be identified based upon
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the geometrical distance between the objects. The conceptual spaces thus serve as a natural way or tool
to capture the similarity relationships among concepts, or objects. Under this setting, one data instance
corresponds to a single point in the space. Formally we can say, the quality dimensions, i.e., a set of
D1, .....,Dn, forms the conceptual space S. A point in S is represented by a vector v = 〈d1, ....., dn〉, where
{1,....n} are the indexes of the dimensions. Atomic concepts are convex regions—a convex region C
having point x that falls between points x1 ∈ C and x2 ∈ C also belongs to C. The quality dimension is
the basic requirement for conceptual spaces [35]. An example is a color space with the dimensions
Hue, Saturation, and Brightness. Each quality dimension has a geometrical structure. For example,
Hue is circular, whereas brightness and saturation correspond with finite linear scales (see Figure 2).

Figure 2. The color space [36].

The theory of conceptual spaces also addresses prototype theory of categorization [37–39].
The main idea of prototype theory is that within a category of objects, like those instantiating a concept,
certain members are judged to be more representative of the group than others. For example, robins are
judged to be more representative of the category “bird“ than are ravens, penguins, and emus. If convex
regions of conceptual space describes concepts, then prototype effect is, indeed, expected, i.e., the most
likely central position of a convex region describes an abstract concept. For example, if color concepts
in a convex region identified as subsets of the color space, then the central points of these regions
would be the most prototypical examples of the color.

Clustering is a suitable way of identifying and learning atomic convex concepts in conceptual
spaces. There are several clustering techniques, like hierarchical clustering, subspace clustering [40],
partitioning relocation clustering, density-based clustering, grid-based clustering and many more.
Many are frequently used in the statistical and scientific analysis of data [41,42], and in machine
learning for the identification of concepts/features [43]. On the other hand, the creation of a hierarchy
of sub/super-concepts is a way to represent more abstract concepts and their taxonomic-like relations.
Deep learning techniques [44–48] found in the literature can also be used to create deep hierarchical
representations, but usually do not interpret data as points in conceptual spaces. In the proposed
approach, the clustering techniques enable us to identify categories of concepts in a conceptual space
thus laying the foundation to form a layer of abstract representation of concepts.

3.3. Spreading Activation

Spreading Activation is a theory of memory [49] based on Collins and Quillian’s computer model [50]
which has been widely used for the cognitive modeling of human associative memory and in other
domains such as information retrieval [51]. It intends to capture the information representation
and how it is processing. According to the theory, long-term Memory is represented by nodes
and associative links between them, forming a semantic network of concepts. The links characterized
by a weight denotes the associative or semantic relation between the concepts. The model assumes
activating one concept implies the spreading of activation to related nodes, making those memory
areas more available for further cognitive processing. This activation decays over time as it spreads,
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which can occur through multiple levels [52], and the further it gets the weaker it becomes. That is
usually modeled using a decaying factor for activation. The method of spreading activation has
been central in many cognitive models due to its tractability and resemblance of interrelated groups
of neurons in the human brain [53]. This theory of Spreading Activation inspires the activation
propagation mechanism in our proposal to propagate (spread) activation in the upward direction,
i.e., from the input-to-abstract layer in the network. The method has its significance, i.e., in the creation
of the network, and in understanding the created abstract concepts.

4. Abstract Concept Modeling with RANs

The proposed approach models convex abstract concepts through four core steps (i.e., Concept
Identification, Concept Creation, Interlayer Learning and Upward Activation Propagation), along
with one optional step (i.e., Abstract Concept Labeling). The RAN’s methodology is explained using
a Toy-data problem. Figure 3 shows the plot of Toy-data displaying the Cluster Representative Data
Points (CRDPs) for all five classes of Toy-data (the importance of CRDP is detailed in Section 4.2).
The objective of this experiment is to show how RANs build a hierarchical representation dynamically
and simulate cognitive process of concept creation, learning, and activation propagation. For this
experiment, it was hypothesized that the created abstract concepts symbolically represents the 5 classes
of Toy-data. Classification operations were performed to prove the hypothesis which is reported at
the end of this section. The notations used to describe the RAN’s methodology are listed in Table 1.

Table 1. Notations.

Notation Description

W Inter-Layer weight matrix
A Output Activation
a Input Activation
na Number of elements in input vector at Layer l
nA Number of elements in output vector at Layer l + 1
l l’th Layer representative
d Normalized Euclidean distance
C Cluster center or Centroids
i, j, k Variables to represent node index for input-level, abstract-level, and arbitrary node

index in either of the levels, respectively
t Iterator variable
f (x) Transfer function to obtain similarity relation

Figure 3. Plot of Toy-data, a 2-D artificially generated data. The plot shows five classes along with their
cluster centers.
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4.1. Assumptions and Boundaries

The necessary boundary related to input data is, data value should be between “0‘ and “1“
(both inclusive), this limitation has its inspiration from biological neurons. A value “0“ indicates
neuron (or node) is inactive, whereas “1“ shows the neuron is highly active. The model is, by design,
applicable only to multidimensional data sets where each feature takes A real value between
0 and 1—It works as well for discrete data sets where the variables take either 0 or 1 values. If the user
data is in a different format, the user must define the transformation and inverse transformation of
the data. The following are a few possibilities of such alterations for some of the most common kinds
of data:

• If a variable in the input data is categorical, e.g., blue; green; red, transform the data using
One Hot Coding technique.

• If a variable in the input data is numerical, bounded within a minimum and a maximum value it
can be normalized into [0, 1], e.g., via value−min

max−min ;

The user must implement these and the inverse transformation functions to interpret the results
obtained from our model. Since our technique is designed to work with multi-variate data-sets,
where each data value is a point in conceptual space, we assume that the data being used is compatible
with the requirements. Though images are a form of multivariate data, pictures are not ideal candidates
to be interpreted as points in conceptual spaces, (discussed in Section 3.2). For this reason, our
approach will, most probably, underperform on image processing tasks against other models that are,
individually, designed for these kinds of data, such as deep representations built with Convolutional
Networks [47,54,55]; our technique is preferably suitable for understanding and simulating cognitive
processes like abstract concept Identification. The version of RAN in this article can model data
that consists of convex groups of data points, therefore, the model does not perform well well with
the complex data having non-convex groups of data points. Modeling non-convex concepts is one
of the ongoing research in RAN’s modeling and out of the scope of this article but readers who are
interested in knowing more can refer to the published research work [56].

To use the RANs approach provide the data to the model with an additional header stacked
over the data. The size of the header is the same as the dimension of the input data vector, and each
header element holds the largest value of their corresponding input data attribute. See Appendix A.1
for elaboration.

4.2. Step 1: Concept Identification (CI) Process

Concept identification is the first step in RANs modeling. The objective of the CI procedure
is to appropriately identify each instance within the data as a distinguished member of various
underlying convex groups. This is realized by categorizing the input data based upon their geometrical
relationship, i.e., distance, conforming to the theory of conceptual spaces (see Section 3.2). Here,
we also recognize data points that are the most probable representative of each identified group,
complying with the prototype theory (see Section 3.2). These identified data points are termed as
Cluster Representative Data Points (CRDP) and are used in Step 3 for learning the relationship between
two adjacent layers (see Section 4.4).

The process of CI instantiates after preprocessing the input data. Initially, an input layer is
formed, with dimension equal to the size of the input data feature vector. Step 1 in Figure 4 shows
the Layer-0 with two nodes which is like the magnitude of the input vector of 2-Dimensional Toy-data.
At Layer-0, clustering methods are used to determine geometrical relation among the several input
data instances and identify the underlying categories within the data. Thus, K-means [57] clustering
algorithm is applied to Toy-data to identify five classes (Class-1, . . . , Class-5) by assigning a value 5
to ‘K’ in K-means clustering algorithm (Note: The ‘K’ value in the K-means algorithm is to provided
manually but in unlabeled datasets, the best value of ‘K’ can be determined using the Elbow method).
Figure 3 shows the plot of 2-D data points obtained after performing concept identification operation
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using the K-means algorithm. Figure 3 also displays the centroids (C1, . . . , C5) of all the clusters,
recognized as CRDPs of all five classes and will be used in Inter-Layer Learning (ILL) in Step 3
(see Section 4.4).

Figure 4. Steps in model generation with Regulated Activation Networks.

Any clustering algorithm can act as a concept Identifier in RANs modeling if it suffices two
basic requirements. First, the algorithm can determine convex categories based upon their geometric
relationship among the data instances. Second, the algorithm recognizes CRDPs of all the identified
clusters. This flexibility of choosing a suitable method for the concept Identification process in
RANs modeling is demonstrated by a separate experiment using Affinity propagation [58] clustering
algorithm, in Section 5.1.

4.3. Step 2: Concept Creation (CC) Process

Concept creation is a cognitive process to create a representation of a newly identified concept.
In RAN’s modeling, this cognitive process is simulated by creating a new layer of concepts dynamically.
Each constituent node in the new layer symbolically acts as an abstract representation of their respective
categories identified in the CI process. The Step-2 in Figure 4 shows the newly created layer (Layer-1),
that has five nodes (N1, . . . , N5), corresponding to five classes (see Figure 3), identified in CI operation
with Toy-data.

Besides abstract representation of underlying categories, the activation of nodes in newly created
layer discloses the degree of confidence (DoC) (Calculating DoC of a node is explained in detail with
upward activation propagation operation). indicating the certainty of identification of a class by
its representative node in the new layer (for a given input data instance). For example, if a node
(say N1) gets an activation of 0.85, it can be stated that with a confidence of 85% the input data
belongs to the category being represented by node N1. Thus, for all input data instances, the obtained
〈feature, value〉 pair of 〈abstract-node, Activation-value〉 at new layer adds more meaning. For instance,
in Figure 4, Step-2, at Layer-0 input vector is [0.1, 0.21] it signifies that the dimensions S1 and S2 has
activation 0.1, and 0.21 respectively. For the, aforementioned, input vector, [0.13, 0.32, 0.89, 0.16, 0.05]
vector of activation is observed at all nodes (N1, . . . , N5) respectively, at Layer-1. The observed
activation vector itself describes that the input data belongs to Class-4 with a DoC of 89%.

4.4. Step 3: Inter-Layer Learning (ILL) Process

Learning is an important cognitive process it acts as a relationship to associate concepts. In RANs
modeling, learning is simulated by an assignment operation. The developed Inter-Layer Learning
procedure also fulfills the second objective of RANs modeling (mentioned in Section 3.1). As aforestated
in Section 4.3 that each node in the new layer is an abstract representative of categories identified in
the CI process, thus we learn association among the two-layer such that it substantiates the abstract
representation by the nodes at the new layer. Since CRDPs (see Section 4.2) are the most apparent
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choice as an abstract representative of a cluster (and adhere to the inspiration from prototype theory);
consequently, the CRDPs learned as an association between the two layers.

Equation (1) shows the general learning in the form of a matrix, where W is the learned Inter-Layer
Weight (ILW) between node j at new layer (i.e., Layer-1 in Figure 4) and node i at input layer
(i.e., Layer-0). The set of ILWs, from one node j at new layer to all input nodes i, are the values of
CRDP of jth cluster center (i.e., Cj) identified in CI process. For instance, cluster center C1 (see Figure 3)
forms the weight vector [W1,1, W1,2, W1,3 and W1,4] (ILWs shown by 2 yellow lines in Step 3 Figure 4)
between the node N1 at Layer-1 and all four input nodes S1 and S2 at Layer-0.

W =


W1,1, W1,2, . . . , W1,na

. . .
Wk,1, Wk,2, . . . , Wk,na

. . .
WnA ,1, WnA ,2, . . . , WnA ,na

 =


C1

. . .
Ck
. . .

CnA

 (1)

where j = 1, 2, . . . , nA, and i = 1, 2, . . . , na.
The distance between the learned weight vector of one node j (at Layer-1) and activation of all

input nodes S1 and S2 (at Layer-0), is used to determine how strongly the input vector represents
the node Nj at new layer. Thus, it enables us to identify the convex abstract concepts for the input
instance (elaborated in Section 4.5).

4.5. Step 4: Upwards Activation Propagation (UAP) Process

This upward activation propagation is a geometric reasoning operation, i.e., a non-linear projection
of an i-dimensional input data vector ai, into a j-dimensional output vector Aj (see Step 4 in Figure 4).
The UAP operation is carried out in two stages, in the first stage the geometric distance operation takes
place, and in the second stage, geometric distance is translated to establish a similarity relation.

4.5.1. Geometric Distance Function (GDF)—Stage 1

In the first phase of the UAP mechanism we determine the geometrical distance between
the learned weight vectors (see Equation (1)) and an input instance ai. The numerator of Equation (2)
shows a function to calculate the Euclidean distance between the jth weight vector and input vector ai.
The denominator of Equation (2) shows the relation that normalizes (in RANs modeling the activation
values are, by definition, real values in the [0, 1] interval – in an n-dimensional space the maximal

possible euclidean distance between any two points is
√

∑n
i=1(ai − 0)2 =

√
n, where ai = 1 the calculated

distance between [0, 1].

dj =

√
∑na

i=1(Wj,i − ai)2

√
na

(2)

and consequently, j normalized Euclidean distances dj are obtained between all j weight vectors
and input instance ai.

4.5.2. Similarity Translation Function (STF)—Stage 2

In the second phase the calculated normalized distance is transformed to obtain a similarity
relation such that following requirements are fulfilled:

• f (d = 0) = 1, i.e., when distance is 0 similarity is 100%.
• f (d = 1) = 0 i.e., when distance is 1 similarity is 0%.
• f (d = x) is continuous, monotonous, and differentiable in the [0, 1] interval.

f (x) = (1− 3
√

x)2 (3)
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In RANs modeling Equation (3) is used as the Similarity Translation Function to determine
the similarity relation of the previously calculated distance. The non-linearity of STF is depicted
in Figure 5, indicating that the similarity value reduces drastically when the normalized Euclidean
distance is larger than 0.05 (or 5% dissimilar).

Figure 5. Plot of Similarity Translation Function with respect to varying input values in range [0, 1].

The first three steps generate the RANs model (see Figure 4), later, in the fourth step, this model is
used via UAP operation by propagating the input activation (ai) upward and obtaining activation (Aj)
at convex abstract concept layer (inspired by the theory of spreading activation see Section 3.3).
Algorithm 1 describes the Upward Activation Propagation operation, showing how the inputs
and interlayer learning weights W are used to calculate similarity relation to generating output
activation at each abstract concept representative nodes. The activation Aj in newly created nodes Nj
also indicates the degree of confidence (DoC) of the identification of a class by its representative node
in the new layer (for a given input data instance). For instance, in Figure 4, Step-2, at Layer-0 input
vector is [0.1, 0.21] it signifies that the dimensions S1 and S2 has activation 0.1 and 0.21 respectively.
For the, aforementioned, input vector, a [0.13, 0.32, 0.89, 0.22, 0.01] vector of activation is observed
at all nodes (N1, . . . , N5) respectively, at Layer-1. The observed activation vector itself describes that
the input data belongs to Class-3 (Versicolor) with a DoC of 89%.

4.6. RANs Proof of Hypothesis and Complexity

At the beginning of this Section 4 it was hypothesized that nodes in the newly created
layer symbolically represent abstract concepts of the five classes (Class-1, Class-2, Class-3, Class-4,
and Class-5) of Toy-data. This hypothesis can be proven through classification operation using
the RAN model generated with Toy-data. The classification experiment setup consists of 30 iterations
of an experiment. Each experiment consist of 9 Research Design (RD)(see Table A3 in Appendix A.2),
where, in every RD a 10-fold cross-validation procedure was applied. To carry out the evaluation
operation True-labels, and Test-labels are determined via Abstract Concept Labeling (ACL) operation of
RANs (see Appendix A.3 for ACL’s description). Further, these labels were used to form a multi-class
confusion matrix for the 3 classes of IRIS data and with the aid of this confusion matrix, 4 metrics
(i.e., Precision, Recall, F1-Score, and Accuracy) were calculated.
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Algorithm 1 Upwards Activation Propagation algorithm

Input: Vector [a1, a2, . . . , ana ] as input at layer l.

Output: New activation vector [A1, A2, . . . , AnA ] in layer l + 1.

for Each node Aj in layer l + 1 do

Calculate Normalized Euclidean Distance:

dj =

√
∑na

i=1(Wj,i−ai)2
√

na

Transform dj through STF Equation (3):

Aj = f (d2
j )

end for

Where:

i = [1, 2, ...., na].

j = [1, 2, ...., nA].

Wj,i is ILW see Equation (1).

Multi-class Receiver Operating Characteristics (ROC) curves were also plotted for the five
classes to support the classification experiment with Toy-data. The binary labels corresponding
to the True-labels (obtained via ACL operation) were obtained using the method node-wise binary
transformation of input True-label (see Appendix A.5). Further, the confidence scores for the binary
vectors were calculated using the node-wise confidence-score calculation method (described in
Appendix A.5).

Table 2 not only shows the RAN’s comparison with the other 5 classifiers but also that RAN indeed
performed well in the classification process with a performance of 99% (ca.) for all classification metrics.
Figure 6 shows the ROC-AUC analysis of RANs model with Toy-data, in this graph one can see that
an average AUC for all the five classes is 99% (ca.). These results show the ability of RAN’s modeling
to identify the abstract concept where the three nodes (N1, N2, N3, N4 and N5) in Layer-1 symbolically
represents the 5 classes (Class-1, Class-2, Class-3, Class-4, and Class-5) of Toy-data, respectively, as
abstract concepts, hence proves the hypothesis.

Figure 6. Area Under Curve for five classes of Toy-data for nine Research Designs (RD) of varying Test
and Train data sizes.
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Table 2. RAN’s Comparative Study for Toy-data.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

RBM 90.87 ± 01.26 85.25 ± 2.61 82.34 ± 3.85 85.25 ± 2.61
K-NN 99.96 ± 00.08 99.95 ± 0.11 99.94 ± 0.12 99.95 ± 0.11

LR 99.65 ± 00.07 99.64 ± 0.07 99.64 ± 0.07 99.64 ± 0.07
MLP 95.62 ± 11.18 96.82 ± 7.56 96.02 ± 9.95 96.82 ± 7.56

RANs 99.12 ± 00.09 99.12 ± 0.09 99.12 ± 0.09 99.12 ± 0.09
SGD 96.00 ± 02.81 95.25 ± 2.86 94.57 ±3.76 95.25 ± 2.86

In RAN’s algorithm the four operations have different complexities: (1) the concept
identification process is expressed as O( f (n)) where f (n) is the complexity of the concept identifier
(or clustering algorithm); (1) the concept creation has complexity of O(k) where k is the number
of clusters; (3) the inter layer learning also has complexity of O(k) because it is an assignment
operation and is equal to number of identified cluster centers; (4) the upward activation operation has
the complexity of O(n) when n is the number data instances. The overall complexity of the RAN’s
modeling for creating a single layer is expressed by Equation (4).

T(n) = O(max {O( f (n)), O(n)}) (4)

f (n) = O(n(k+2/p)) (5)

where: k is number of clusters; p is number of features.
The time complexity of the K-means algorithm is given by Equation (5) and when K-means

is chosen to be the concept identifier is, therefore, the T(n) = O(n(k+2/p)). Table 3 lists the time
complexities of all the algorithms used in this article including the RAN’s time complexities with both
K-means and Affinity Propagation algorithms. In Table 3 the complexities of K-means and Affinity
Propagation algorithms, in fact, are the complexities of the RAN’s modeling because their complexities
are greater than O(n).

Table 3. Time Complexities of Models used in the Article.

Algorithm Time Complexity Description Source

K-means O(nk+2/p) n: n_samples; k: n_clusters; p: n_features [59]

Affinity Propagation O(n2) n: n_samples [59]

MLP O(n ·m · hk · o · i)
n: n_samples; m: features; k: no. of hidden layers;
h: number of hidden neurons
o: output neuron; i: no. of iterations

[59]

RBM O(d2) d: max(n_components, n_features) [59]

KNN O(m · n · i) m: n_components; n: n_samples; i: min(m, n) [59]

LR O(n ·m2) n: n_samples; m: n_features [59]

SGD O(k · n · p̄)
n: n_samples; k: n_iterations;
p̄: the average number of non-zero
attributes per sample

[59]

5. Behavioral Demonstration of RANs

This section exhibits two distinct aspects of RANs modeling via separate experiments.
Both investigations present a different view of RANs methodology, highlighting the capabilities
of the RANs approach.
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5.1. Experiment with IRIS Dataset

There are two objectives of this probe, first is to demonstrate flexibility in choosing an appropriate
methodology for concept Identification operation in RANs modeling (see Section 4.2). The second
is to show how RANs modeling can be used to build a deep hierarchy of convex abstract concepts
dynamically. This experiment uses affinity propagation [58] clustering algorithm as a concept identifier
to support the claim of independence in selecting a suitable clustering method for CI process in RANs
modeling. Unlike the K-means algorithm (used to describe the RANs methodology in Section 4),
with the affinity propagation algorithm, the number of clusters within the data need not be known
beforehand. Furthermore, affinity propagation conforms to the basic requirements (see Section 4.2) for
being a concept identifier in RANs modeling.

The second prospect of this experiment is to illustrate the dynamic topology of the RAN’s
approach where the network grows to form several layers representing convex abstract concepts.
For this demonstration, an algorithm is developed, named Concept Hierarchy Creation (CHC)
algorithm (see Algorithm 2). The CHC algorithm streamlines all four steps of RANs modeling
(i.e., CI, CC, ILL and UAP) and uses these steps iteratively to build a hierarchy of convex abstract
concepts as described through Algorithm 2. This experiment was also conducted using the IRIS dataset
obtained from the UCI machine learning repository [60]. In the CHC algorithm the affinity propagation
clustering algorithm was initialized with the following parameters: (1) damping_factor (DF) = 0.94 for
layers below level 3, DF = 0.9679 for the layers at level 3 and above; (2) convergence_iteration = 15;
(3) max_iteration = 1000.

Algorithm 2 Concept Hierarchy Creation algorithm

Input: Multi-variate data with values between [0,1].
Output: Set of layers of concepts—concept hierarchy.

Initialization: Create input layer layer-0 having dimension equal to that of input data.
Set Current-layer-size CLS = i, dimension of input-data vector.
Set Layer-count L = 0.
Set Desired-depth = 6.
Select Clustering algorithm and initialize.
Set current-data = input-data.
repeat

Run clustering algorithm on current-data to identify set of cluster centers C.
Create a new-layer above current-layer, with no nodes.
for each cluster center Cj ∈ C do

Create new node j in new layer l + 1.
for each node i in current-layer do

Create a new weighted connection Wcj ,i
between cj and i such that Wcj ,i is the

coordinate of c along the i dimension.
end for

end for
Set new-data = empty data set.
for each datum in current-data do

Inject datum in current-layer
Propagate activation from current-layer to new-layer using algorithm 1.
Add activation pattern produced in new-layer to new-data.

end for
Set L = L + 1.
Set CLS = number of clusters in current-layer.
Set current-data = new-data.
Set current-layer = new-layer.

until CLS = 1 OR Desired-depth = L.

Input layer-0 was created, with four nodes (equal to the dimension of IRIS data), and the RANs
hierarchy generation was carried out according to Algorithm 2. The model obtained from
the CHC process is depicted by Figure 7, the model was initialized to grow six layers deep.
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Therefore, hierarchy augmentation terminates at Layer-5, with Layer-5 identified as most abstract
layer consisting of three nodes acting as abstract representatives of three categories of flowers
of IRIS dataset. To evaluate the obtained RANs model, True-labels, and Test-labels were
retrieved using an abstract concept labeling procedure (see Appendix A.3). A confusion matrix
(see Figure 8a) was generated using the True and Test labels. With the aid of the confusion matrix,
Precision, Recall, F1-Score, and Accuracy were calculated to evaluate the model. The model performed
quite decently with an observed accuracy of 93.33 (ca.), the results of precision, recall, and F1-Score are
reported in Table 4.

The ROC curve analysis of the RANs model, as shown in Figure 8b, displays the various operating
characteristic and the observed Area Under the Curve for all the classes of IRIS data.

In this experiment, it is worth mentioning the application of RANs modeling for data dimension
transformation and data visualization. In Figure 7 we can observe that the dimension of Layer-0
is four, whereas the size of the other layers either expands or reduces when the network grows.
This dimension transformation operation helps address the issue of the cures of dimensionality.
Besides, the transformed data can be plotted to extract useful information from the data.

Figure 7. The model generated with 90% stratified IRIS data using Concept Hierarchy Creation
(CHC) algorithm. Layer-0 is created while initializing the CHC algorithm. The algorithm grew to
a Desired-depth of six Layers (including input Layer-0), and in each iteration of the CHC algorithm a new
layer is created dynamically and the interlayer weights (ILW) are learned between the existing layer
and a newly created layer above it.
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(a) (b)

Figure 8. Evaluation with IRIS data. (a) Confusion Matrix generated to validate Regulated Activated
Networks (RANs) model with IRIS data (having 9 : 1 train and test data ratio) for Class-0 (Setosa),
Class-1 (Verisicolour), and Class-2 (Virginica); (b) Receiver Operating Characteristics (ROC) curve
analysis with IRIS dataset (having 9 : 1 train, and test data ratio), for Class-0 (Setosa), Class-1
(Verisicolour), and Class-2 (Virginica).

Table 4. Evaluation of RANs Model generated through IRIS data.

Class Precision (%) Recall (%) F1-Score (%) Support

Setosa 100 100 100 5
Versicolour 83.33 100 90.91 5

Virginica 100 80 88.89 5

Avg/Total 94.44 93.33 93.26 15

5.2. Experiment with Human Activity Recognition Data

This experiment aims to show the ability of the RAN’s approach to building the representation
of generic concepts. The experiment uses UCIHAR [61] dataset for home activity recognition using
the smartphone, obtained from the UCI machine learning repository. The data captured six activities:
walking, walking_upstairs, walking_downstairs, sitting, standing, and laying. The hypothesis of
this experiment is that the labels walking, walking_upstairs, walking_downstairs are identified
by an abstract concept (say) mobile and the other three labels sitting, standing, and laying by
abstract concept (say) immobile. In this experiment also classification operation can be used to
prove the hypothesis.

The UCIHAR dataset was normalized and a header was attached. In CHC algorithm K-means is
chosen as a concept identifier and the parameter desired-depth was set to 1 so that model has only
two layers. The K-means was configured with K = 2 because the model was hypothesized to have 2
abstract concepts at Layer-1. Having fulfilled the initialization part of the CHC algorithm modeling
is performed, generating a two-layered model as depicted in Figure 9. In Figure 9 Layer-0 shows
input-layer and Layer-1 corresponds to the abstract concept layer where both nodes (N1, and N2)
represents either of the two abstract concepts (i.e., mobile and immobile abstract concepts).

Among captured six activities (walking, walking_upstairs, walking_downstairs,sitting, standing
and laying), walking, walking_upstairs, and walking_downstairs are the actions of motion, whereas
the remaining three represent static states. Based upon these two facts, we expect that one of the abstract
nodes in Layer-1 conjointly represents walking, walking_upstairs and walking_downstairs as one class.
The other node in Layer-1 stages the other three categories (i.e., sitting, standing and laying) together.
Upon performing the labeling of nodes at Layer-1 through ACL procedure (see Appendix A.3 for
ACL process elaboration), it was observed that walking, walking_upstairs, and walking_downstairs
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classes were mapped to one node of Layer-1. Whereas, the labels sitting, standing and laying traced
to the other node in Layer-1. Interestingly, this outcome commensurate with the expectations from
this experiment and shows the RANs capability to identify abstract concepts in an unsupervised
manner naturally.

Figure 9. Model generated with RANs approach. Nodes N1 and N1 at Layer-1 represents either of
the two abstract concepts, i.e., mobile and immobile. Each node at Layer-0 represents individual
dimensions of input data vector.

The True-label and Test-label obtained through ACL operation were used to form the confusion
matrix, which is later referred to calculate precision, recall, F1-score, and accuracy for evaluating
the generated model. Node-wise binary labels and confidence scores were determined (as described in
Appendix A.5) for both abstract nodes at Layer-1. Figure 10 shows the Area Under the Curve (AUC)
observed during the ROC curve analysis of all 10-folds in different research designs. With both these
evaluations it is deduced that, apart from building the representation of abstract concepts, the model
generated with RANs performed satisfactorily.

Figure 10. Area Under Curve observed during ROC curve analysis of UCIHAR data to determine
operational points of two abstract concepts (i.e., Mobile and Immobile) for all nine Research Designs (RD).

The RANs modeling was compared with five different types of approaches based upon their
classification operation. To carry out the comparative study it was essential to transform the six labels
into binary labels, because RANs modeling was identifying two abstract concepts, and its performance
was measured based upon them. Thus, with these five approaches, the Labels of the dataset were
merged to form two groups, i.e., walking, walking_upstairs, and walking_downstairs in Class-1,
and sitting, standing, and laying in Class-2. Later the modeling was performed followed by validation
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and evaluation. Table 5 displays the comparison of all five approaches with RANs modeling. It is
observed that RANs approach is competent to these five techniques, with an added advantage of being
an unsupervised approach, and ability to build representations of abstract concepts.

Table 5. RAN’s Comparative Study for UCIHAR dataset.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

RBM 99.68 ± 0.14 99.68 ± 0.14 99.68 ±0.14 99.68 ± 0.14
K-NN 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02

LR 99.97 ± 0.02 99.97 ± 0.02 99.97 ± 0.02 99.97 ± 0.02
MLP 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02

RANs 99.85 ± 0.01 99.85 ± 0.01 99.85 ± 0.01 99.85 ± 0.01
SGD 99.98 ± 0.01 99.98 ± 0.01 99.98 ± 0.01 99.98 ± 0.01

6. RANs Applicability and Observations

This section highlights the scope of RANs modeling as a classifier with respect to distinct
domains. To support this ambit of RANs usability, experimental results are reported using eight
datasets concerning different areas. A comparative study was also carried out using these datasets
to match RANs classification ability with five different classifiers. Table A5 in Appendix A.5 shows
configurations of all the models for all the experiments. Table A4 in Appendix A.4 provide the details
about the all the datasets used in this article.

Among the eight datasets (Appendix A.4 lists the description of all the datasets used in the article),
the Mice Protein [62], Mammographic Mass [63], Breast Cancer 569 and 669 [64,65] data pertain to
the medical field, Glass Identification [66] data representing forensic science, Credit Approval [67]
represents economic data, Iris [68] is a botanical data set, and Wine Recognition [69] is a data set
for chemical composition analysis. The experiments performed with these datasets were akin
to the investigations done with Toy-data (in Section 4), and UCIHAR data (in Section 5.2), i.e.,
K-means algorithm used as concept identifier, where ‘K’ is the number of class labels of each dataset,
the hierarchy is set to have a depth of two layers (one Input and one abstract concept layer). For
every dataset, models were generated using thirty iterations in nine Research Designs (RDs) (refer
the Table A3 in Appendix A.2). In every RD 10-Fold cross-validation was applied to determine
the performance of the models. An aggregate of precision, recall, F1-Score, and accuracy of all folds
in all RDs was calculated for all the datasets, as shown in Figure 11a. From the Figure 11a it can be
observed that with Mice Protein data RANs scores 99.99% (ca.) for all evaluation metric, whereas for
Iris, Glass Identification, Breast Cancer, and Wine Recognitions the observations were convincing, i.e.,
above 89.00% (ca.). In all the folds of nine RDs ROC curves were also plotted for each class label of
the eight datasets, the mean AUC for each class of the datasets is shown in Figure 11b. The evaluation
metrics and ROC-AUC analysis (Figure 11a,b respectively) display the RAN’s capability in machine
learning tasks with different kind of datasets.

The same procedure was applied to obtain average Precision, Recall, F1-Score and Accuracy for all
the datasets with five other classifiers (i.e., RBM+, KNN, LR, MLP, and SGD). Table 6 shows the overall
comparison. It is worth noting that being dynamic and unsupervised RANs modeling performed quite
satisfactorily especially with Mice Protein data, where it outperformed SGD and RBM+, was found
competent with LR, KNN and MLP classifiers.
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(a)

(b)

Figure 11. RANs performance with eight datasets using Precision, Recall, F1-Score and Accuracy
along with ROC-AUC analysis with Eight benchmark datasets [Mice Protein (MP), Breast Cancer 669
(BC1), Breast Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM), Wine
Recognition (WR) and Glass Identification (GI)]. (b) shows the plot of percentage AUC for classes 1 to
8. For each dataset class labels of the graph is serially mapped as: Mice protein (c-CS-s [Class-1], c-CS-m
[Class-2], c-SC-s [Class-3], c-SC-m [Class-4], t-CS-s [Class-5], t-CS-m [Class-6], t-SC-s [Class-7] and t-SC-m
[Class-8]); Mammographic Mass (Benign [Class-1] and Malignant [Class-2]); Credit Approval (Postitive
[Class-1] and Negative [Class-2]); IRIS) (Setosa [Class-1], Versicolar [Class-2] and Verginica [Class-3]); Breast
Cancer 569 (Benign [Class-1] and Malignant [Class-2]); Breast Cancer 669 (Benign [Class-1] and Malignant
[Class-2]), Wine Recognition (Class-1, Class-2 and Class-3) Glass Identification (Window Glass [Class-1]
and Non-Window Glass [Class-2]). (a) RANs performance with eight different datasets depicting RANs
appositeness with data belonging to distinct domains; (b) Observed Area Under Curve (AUC) while
performing ROC curve analysis for RANs model generated with eight different datasets.

Figure 12 shows four graphs depicting RANs performance with different benchmark data
sets. These graphs display an important aspect of RANs modeling and its performance behavior
when evaluated to different research design Figure 12. The precision, recall, F1-Score, and accuracy
trajectories of Human Activity Recognition (HAR), Breast Cancer 669 (BC1), Toy-data (TD) and Mice
Protein (MP) Data is almost straight. The evaluation plots of Glass Identification (GI), Wine Recognition
(WR), Mammographic Mass (MM), Breast cancer 569 (BC2) and Mice Protein (MP) datasets show
a minimal decline in observations w.r.t RD-1 and RD-9 Research Design. On the contrary, results



Appl. Sci. 2020, 10, 1994 19 of 28

from IRIS Data (ID) and Credit Approval (CA) dataset depicted a higher value while comparing
the evaluation of RD-1 with RD-9 Research Designs of these data sets. Principally, the results of all
four metrics of evaluation obtained similar results (with marginal variation) irrespective of the Test
and Train data ratio. This is a notable observation because it shows that the RAN’s approach obtains
a satisfactory result even when trained with a small amount of data.

Table 6. RANs comparison with eight datasets belonging to different domains.

Data Algo Precision (%) Recall (%) F1-Score (%) Accuracy (%) Data Algo Precision (%) Recall (%) F1-Score (%) Accuracy (%)

RBM+ 43.45 ±44.07 53.50 ± 38.23 45.46 ± 43.36 53.50 ± 38.23 RBM+ 93.60 ± 2.69 93.51 ± 2.77 93.46 ± 2.86 93.51 ± 2.77

KNN 98.63 ± 3.97 98.34 ± 4.84 98.07 ± 5.65 98.34 ± 4.84 KNN 99.80 ± 0.59 99.79 ± 0.62 99.78 ± 0.63 99.79 ± 0.62

LR 98.99 ± 1.94 98.28 ± 3.38 98.14 ± 3.71 98.28 ± 3.38 LR 99.89 ± 0.07 99.89 ± 0.07 99.89 ± 0.07 99.89 ± 0.07

MLP 98.54 ± 2.19 98.23 ± 2.71 97.83 ± 3.34 98.23 ± 2.71 MLP 98.67 ± 0.94 98.65 ± 0.96 98.64 ± 0.96 99.89 ± 0.07

RAN 99.98 ± 0.06 99.97 ± 0.06 99.89 ± 0.06 99.97 ± 0.06 RAN 93.17 ± 0.36 92.97 ± 0.36 92.87 ± 0.42 92.97 ± 0.36

M
ic

e
Pr

ot
ei

n

SGD 99.11 ± 1.84 98.84 ± 2.46 98.68 ± 2.81 98.84 ± 2.46

B
re

as
t

C
an

ce
r

56
9

SGD 99.87 ± 0.13 99.85 ± 0.18 99.83 ± 0.20 99.85 ± 0.18

RBM+ 95.72 ± 3.62 95.34 ± 4.60 95.13 ± 5.16 95.34 ± 4.60 RBM+ 76.44 ±12.50 75.63 ±12.98 74.04 ±14.59 75.63 ±12.98

KNN 99.46 ± 0.88 99.44 ± 0.93 99.43 ± 0.94 99.44 ± 0.93 KNN 95.48 ± 0.16 95.46 ± 0.17 95.46 ± 0.17 95.46 ± 0.17

LR 99.16 ± 0.17 99.14 ± 0.17 99.15 ± 0.17 99.14 ± 0.17 LR 95.06 ± 0.38 95.04 ± 0.39 95.04 ± 0.39 95.04 ± 0.39

MLP 98.96 ± 0.76 98.95 ± 0.76 98.95 ± 0.77 98.95 ± 0.76 MLP 98.02 ± 1.32 98.00 ± 1.34 97.99 ± 1.34 98.00 ± 1.34

RAN 95.18 ± 0.25 95.15 ± 0.24 95.11 ± 0.25 95.15 ± 0.24 RAN 80.67 ± 1.37 79.58 ± 1.05 79.66 ± 1.13 79.58 ± 1.05

B
re

as
t

C
an

ce
r

66
9

SGD 99.88 ± 0.16 99.88 ± 0.16 99.18 ± 0.16 99.88 ± 0.16

C
re

di
t

A
pp

ro
va

l
SGD 99.77 ± 0.39 99.75 ± 0.40 99.75 ± 0.40 99.75 ± 0.40

RBM+ 82.58 ±10.29 84.19 ± 4.90 80.61 ± 8.42 84.19 ± 4.90 RBM+ 84.85 ±16.54 85.18 ±14.98 82.42 ±20.30 85.18 ±14.98

KNN 94.08 ±12.12 95.97 ± 7.32 94.82 ±10.59 95.97 ± 7.32 KNN 99.65 ± 0.88 99.64 ± 0.89 99.64 ± 0.89 99.64 ± 0.89

LR 99.52 ± 0.18 99.49 ± 0.18 99.49 ± 0.18 99.49 ± 0.18 LR 99.41 ± 0.30 99.40 ± 0.30 99.40 ± 0.30 99.40 ± 0.30

MLP 93.78 ± 1.40 93.28 ± 1.52 92.85 ± 1.64 93.28 ± 1.52 MLP 98.91 ± 2.11 98.79 ± 2.35 98.79 ± 2.35 98.79 ± 2.35

RAN 90.07 ± 0.43 89.18 ± 1.23 89.32 ± 1.10 89.18 ± 1.23 RAN 80.28 ± 0.18 79.20 ± 0.23 79.08 ± 0.24 79.20 ± 0.23

G
la

ss
Id

en
ti

fic
at

io
n

SGD 97.95 ± 0.66 97.87 ± 0.69 97.82 ± 0.70 97.87 ± 0.69

M
am

og
ra

ph
ic

M
as

s

SGD 99.96 ± 0.03 99.94 ± 0.07 99.93 ± 0.09 99.94 ± 0.07

RBM+ 79.81 ±11.91 77.41 ±11.88 70.66 ±16.28 77.41 ±11.88 RBM+ 56.00 ±25.66 67.05 ±16.91 59.07 ±21.91 67.05 ±16.91

KNN 90.41 ±28.77 92.80 ±21.61 91.00 ±27.01 92.80 ±21.61 KNN 90.74 ±26.00 92.88 ±19.48 91.14 ±24.70 92.88 ±19.48

LR 97.38 ± 4.15 96.64 ± 5.65 96.45 ± 6.12 96.64 ± 5.65 LR 94.14 ± 1.55 93.13 ± 1.82 93.00 ± 1.92 93.13 ± 1.82

MLP 97.31 ± 0.71 96.86 ± 1.13 96.81 ± 1.21 96.86 ± 1.13 MLP 97.44 ± 0.51 97.33 ± 0.59 97.32 ± 0.59 97.33 ± 0.59

RAN 95.43 ± 0.67 95.02 ± 0.94 94.98 ± 0.98 95.02 ± 0.94 RAN 94.87 ± 0.91 94.34 ± 1.00 94.29 ± 1.01 94.34 ± 1.00

IR
IS

SGD 94.47 ± 6.40 94.46 ± 5.20 93.31 ± 6.78 94.46 ± 5.20

W
in

e
R

ec
og

ni
ti

on

SGD 98.13 ± 0.70 97.91 ± 0.75 97.91 ± 0.76 97.91 ± 0.75

Besides classification comparison, the RAN’s modeling is compared with the five classifiers
based upon seven features: (1) Whether the modeling in graph-based; (2) whether the modeling has
a dynamic topology; (3) and (4) whether modeling can reduce or expand the dimension of the data;
(5) whether modeling can perform classification; and (7) whether modeling is biologically inspired
or not. Table 7 details this comparative study. It can be observed from this table that RAN is closely
related to the models that are biologically inspired i.e., RBM and MLP.

Table 7. Feature based comparative study of RANs with five modeling techniques.

Features\Models RBM K-NN LR MLP RANs SGD

Graph-Based Yes No No Yes Yes No
Dynamic Topology No No No No Yes No
Dimension Reduction Yes Yes No Yes Yes No
Dimension Expansion May be No No May be Yes No
Unisupervised Yes No No No Yes No
Supports Classification Yes Yes Yes Yes Yes Yes
Bio-inspired Yes No No Yes Yes No
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(a) (b)

(c) (d)

Figure 12. RANs evaluation metric (precision, recall, F1-Score and accuracy) value behavior with
respect to varying test and train data ratio over ten datasets [Mice Protein (MP), Breast Cancer 669
(BC1), Breast Cancer 569 (BC2), Credit Approval (CA), IRIS data (ID), Mamographic Mass (MM),
Human Activity Recognition (HAR), Toy-data(TD), Wine Recognition (WR) and Glass Identification
(GI)] (a) Precision; (b) Recall; (c) F1-Score; (d) Accuracy.

7. Conclusions and Future Work

To comprehend and reasoning for emotions, ideas, etc., it is evident to understand abstract
concepts because they are perceived differently from concrete concepts. There have been notable
efforts to study Concrete concepts (features like walking or ingredients), but progress in investigating
abstract concepts (generic features such as is-moving or recipe) is relatively less. This article proposes
an unsupervised computational modeling approach, named Regulated Activation Networks (RANs),
that has an evolving topology and learns a representation of abstract concepts. The RAN’s methodology
was exemplified through a UCI’s IRIS dataset, yielding a satisfactory performance evaluation of 95%
(ca.) for precision, recall, F1-Score and accuracy metrics, along with an average AUC of 99% (ca.) for
all the three classes in the dataset. These evaluation result not only showed the classification capability
of RANs but also proved the hypothesis of the experiment i.e., the three newly created nodes in
the Layer-1 symbolically represent the three classes of IRIS data as abstract concepts.

Another experiment with IRIS data displayed the characteristic of RAN’s deep hierarchy
generation and independence in choosing the concept Identifier. With the aid of the Concept Hierarchy
Creation algorithm (proposed in Section 5.1), the evolving nature of RAN’s modeling is shown using
the Affinity Propagation clustering algorithm (as an alternate concept Identifier instead of the K-means
algorithm as used in modeling with a Toy-data problem). With the generated model it was shown
that the model dynamically grew to a depth of six layers and performed with Precision of 94.44% (ca.),
Recall of 93.33% (ca.), F1-Score of 93.26% (ca.) and Accuracy of 93.33% (ca.), along with an observed
AUC of 100% (ca.), 92% (ca.) and 94% (ca.) for the three classes of data. This experiment also highlights
the application of RANs modeling in data dimension transformation and data visualization.

Modeling with UCI’s IoT based Home Activity Recognition (UCIHAR) smartphone sensor
dataset exhibited the RAN’s behavior of natural identification of generic concepts. The experiment
hypothesize that six data labels (activity of walking, walking_upstairs, walking_downstairs,
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sitting, standing and laying) of the dataset are to be identified as mobile (walking, walking_upstairs
and walking_downstairs) and immobile (sitting, standing and laying) abstract concepts.
This hypothesis was also proven using classification operation, where, the evaluation of the model
shown a performance of 99.85% (ca.) for all four metrics and AUC of 99.9% (ca.) for both abstract
concepts. The experiment also demonstrates how RAN can be used to model the data from the IoT
domain in an unsupervised manner.

The proof of concept of RAN’s modeling as a Machine Learning classifier was also provided with
eight UCI benchmarks. It was identified that RAN’s approach performed satisfactorily displaying
the best outcome of 98.9% (ca.) with Mice Protein dataset (for all metrics). The comparison of RAN’s
modeling with five classifiers substantiated the effectiveness of the proposed methodology. We also
observed that the RAN’s performance remained similar irrespective of the size of train data. RAN was
also compared with the five classifiers based upon its features and it was observed that RAN was
similar to bio-inspired models. The model presented in this article is capable of modeling data that is
convex which limits the RAN’s performance with non-convex (or complex) datasets. As future work,
we intend to improve RANs modeling that can capture the non-convexity in the data and enhance
the performance of the model with complex datasets.
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Abbreviations

The abbreviations used in this manuscript:

ACL Abstract Concept Labeling
AUC Area Under Curve
BC1 Breast Cancer 669 Dataset
BC2 Breast Cancer 569 Dataset
CA Credit Approval Dataset
CHC Concept Hierarchy Creation
CI Concept Identification
CLS Current Layer Size
CRDP Cluster Representative Data Point
DoC Degree of Confidence
GDF Geometric Distance Function
GI Glass Identification Dataset
HAR Human Activity Recognition Data
ID IRIS Dataset
ILL Inter Layer Learning
ILW Inter Layer Weights
K-NN K Nearest Neighbor
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MLP Multilayer Perceptron
MM Mammography Mass Dataset
MP Mice Protein Dataset
MRI Magnetic Resonance Imaging
RANs Regulated Activation Networks
RBM Restricted Boltzmann Machine
RBM+ RBM pipe-lined with Logistic Regression
ROC Receiver Operating Characteristic
SGD Stochastic Gradient Descent
STF Similarity Translation Function
UAP Upward Activation Propagation

Appendix A

Appendix A.1. Data and Scripts

This section provides links to download the data and python script used to perform RANs
modeling experiments, mentioned in this article. The data and script folders can be downloaded
from the web URL mentioned in Table A1. The data folder contains many files and the direct
path to the files are provided in the Table A1. Similarly, the script folder RAN_V2.0 also contains
many folders where Folder RAN consist of the python scripts. The folder Observations is for storing
the outcome of the experiments, at the beginning of each experiment the empty folder in directory
empty_passes_for_Experiment_Observations must be copied into the Observation directory. The python
script related to RANs modeling is in folder RAN, the description is mentioned in the Table A1.

Table A1. Data and Python Script of RANs modeling.

Type Description File-path

Download link https://www.dropbox.com/sh/3410ozeru3o5opm/AAA24aUGtUS1i7xHKp9kyzRKa?dl=0

IRIS Data data/iris_with_label.csv

Mice Protein data data/Data_cortex_Nuclear/mice_with_class_label.csv

Glass Identification data data/newDataToExplore/new/GlassIdentificationDatabase/RANsform.csv

Wine Recognition data data/newDataToExplore/new/WineRecognitionData/RansForm.csv

Breast cancer 669 data data/newDataToExplore/new/breastCancerDatabases/699RansForm.csv

Breast Cancer 559 data data/newDataToExplore/new/breastCancerDatabases/569RansForm.csv

UCIHAR data data/UCI_HAR_Dataset.csv

Mamographic Mass data data/newDataToExplore/new/MammographicMassData/RansForm1

Credit Approval data data/newDataToExplore/new/CreditApproval/RansForm.csv

Data

Toy-data data data/toydata5clustersRAN.csv

Download Link https://www.dropbox.com/sh/rcw1cj4ce1f3zic/AAAm6wVTj2qsLZ1lbc3kn4MPa?dl=0

RANs classes and methods RAN_V2-0/RAN/RAN_kfold.py

Methods RAN_V2-0/RAN/Layer.py

Utilities like Labeling and plotting RAN_V2-0/RAN/UtilsRAN.py

Script

Python Script for using RANs RAN_V2-0/RAN/RAN_input_T1.py

The implemented RANs modeling tool in python takes input data in a specific format
(shown in Table A2). Besides the data, the inputs require a header as the first row stacked over
the original data. Each header element, [H − 1, H − 2, ......., H − n], is the Maximum value possible for
their respective column (feature, or dimension). It is assumed that the minimum value of the column
is zero, if it is not then the data must be transformed between zero and the maximum positive value as
described in Section 4.1.

https://www.dropbox.com/sh/3410ozeru3o5opm/AAA24aUGtUS1i7xHKp9kyzRKa?dl = 0
https://www.dropbox.com/sh/rcw1cj4ce1f3zic/AAAm6wVTj2qsLZ1lbc3kn4MPa?dl = 0
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Table A2. Input Data Format for implemented RANs Modeling.

Header H-1 H-2 .............. H-n

D-1 D-2 .............. D-n

D-1 D-2 ............... D-n
Data

Instances .
.
.

.

.

.

..............
...............
...............

.

.

.
D-1 D-2 .............. D-n

Appendix A.2. Model Configurations and Research Design

Various experiments, reported in this article, were conducted with several datasets, using
six modeling techniques including the proposed methodology i.e., RANs modeling. Table A5 in
Appendix A.5 shows configurations of all the models for all the experiments. The experiments were
carried out using python programing language, and implementations of Restricted Boltzmann Machine
pipelined with Logistic Regression (RBM+), Logistic Regression (LR), K-Nearest Neighbor (K-NN),
Multilayer Perceptron (MLP), and Stochastic Gradient Descent (SGD) models of Scikit-learn library [59].
It is to be noted that experiments with RBM were carried out, pipelined with the LR algorithm using
the default configuration of its implementation in scikit-learn library. The Table A3 lists the nine
Research Designs (RD) used in the experiments of this article. In every RD the ratio of the Train
and Test data is varied to capture the ability of the classifier being inspected.

Table A3. Train and Test data distributions in nine Research Designs (RDs).

RD-1 RD-2 RD-3 RD-4 RD-5

Train Test Train Test Train Test Train Test Train Test

90% 10% 80% 20% 70% 30% 60% 40% 50% 50%

RD-1 RD-7 RD-8 RD-9

Train Test Train Test Train Test Train Test

40% 60% 30% 70% 20% 80% 10% 90%

Appendix A.3. Abstract Concept Labeling (ACL)

This method is optional and useful when the input data is labeled. With this mechanism,
we associate an identifier to every Abstract concept node Nj. Having generated the RANs model with
CI, then trough CC, ILL, input data is sorted label-wise, and perform UAP operation. The propagated
data is inspected class-wise, and label node Nj with a class-name for which it got the maximum count of
the highest activation. For example, suppose input data for class-X has 100 instances, after inspecting
the propagated data, it is observed that node N1 received highest activation 74-times, whereas,
with remaining 26 cases other nodes experienced maximum activation, therefore, we recognize
node N1 as representative of class-X. True-Labels are identified by mapping each class of the input
instance directly to its respective node representative Observed-Labels are obtained by propagating every
test-instance through UAP operation, inspecting which Abstract node received the highest activation
for that data-unit, and label it with the class represented by that node. True-Labels and Observed-Labels
are used to validate the model’s performance.
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Appendix A.4. Dataset Description

Table A4. Dataset description.

Dataset Attribute Class Source

Name Type Size Balanced Type Size # Name

Mice Protein Multivariate 1080 yes Real 82 8 UCI

Breast Cancer 569 Multivariate 569 yes Real 32 2 UCI

Breast Cancer 669 Multivariate 669 yes Integer 10 2 UCI

Credit Approval Multivariate 690 yes Mixed 15 2 UCI

Glass Identification Multivariate 214 yes Real 10 7 UCI

Mammographic mass Multivariate 961 yes Integer 6 2 UCI

IRIS Multivariate 150 yes Real 4 3 UCI

Wine Recognition Multivariate 178 yes Mixed 13 3 UCI

Human Activity Recognition Multivariate, Time-Series 10299 yes Real 561 6 UCI

Toy-data Multivariate 1500 yes Real 2 5 Self

UCI- University of California Irvine’s Machine Learning Repository; Self- Artificially generated dataset

Appendix A.5. Multi-Class ROC Analysis with RANs Modeling

This study is carried out by two processes, first the input true-labels are transformed into a separate
vector of binary labels, individually for all Abstract nodes (i.e., 1 for class c1, 0 for all other classes),
second, calculating the confidence score for each instance of the input data (or test-data). Both processes
are described as follows:

1 Node-wise binary transformation of True-Labels: For example, suppose there are three classes
(c1, c2, c3) represented by three abstract nodes (n1, n2, and n3) in RANs model at Layer-1,
and let true-label be [c1, c2, c2, c1, c2, c3, c3] for 7 test instances, then for node n1 label will be
[1, 0, 0, 1, 0, 0, 0] where 1 represents class c1, and 0 depicts others (i.e., c2, and c3).

2 Node-wise confidence-score calculation: This is calculated by averaging activation-value
and confidence-indicator of activation for an input instance at an Abstract node. Activation-value
is an individual activation of an activation vector obtained by propagating up the data using
UAP mechanism of RANs whereas, confidence-indicator is calculated by min-max normalization
operation of activation vector. For example, after UAP operation each node (n1, n2, and n3)
receives activation [0.89, 0.34, 0.11] (a vector of activation), and confidence-indicator is min-max
([0.89, 0.34, 0.11]) = [1.0, 0.29, 0.0]. and the confidence-score for nodes n1 = (0.89 + 1.0)/2.0 = 0.95,
n2 = (0.34 + 0.29)/2.0 = 0.32, and n3 = (0.11 + 0.11)/2.0 = 0.05.

Table A5. Dataset specific configuration details of models.

Data Algo Configurations Data Algo Configurations

RBM +
LR

Lr = 0.000001, iter = 500, comp = 20
max_iter = 30, C = 70

RBM +
LR

Lr = 0.06, iter = 500, comp = 10
max_iter = 10, C = 1

K-NN n_neighbors = 30 K-NN n_neighbors = 15

LR max_iter = 10, C = 1 LR max_iter = 30, C = 1

MLP Rs = 1, hls = 10, iter = 250 MLP Rs = 1, hls = 10, iter = 400

RANs CLS = 5, Desired_depth = 1 RANs CLS = 2, Desired_depth = 1

To
y-

da
ta

SGD alpha = 0.0001, n_iter = 5, epsilon = 0.25

U
C

IH
A

R

SGD alpha = 0.1, n_iter = 10, epsilon = 0.25

RBM +
LR

Lr = 0.1, iter = 500, comp = 20
max_iter = 30, C = 30

RBM +
LR

Lr = 0.006, iter = 100, comp = 10
max_iter = 30, C = 1

K-NN n_neighbors = 15 K-NN n_neighbors = 30

LR max_iter = 4, C = 0.00001 LR max_iter = 10, C = 0.001

MLP Rs = 1, hls = 10, iter = 300 MLP Rs = 1, hls = 10, iter = 200

RANs CLS = 8, Desired_depth = 1 RANs CLS = 2, Desired_depth = 1

M
ic

e
Pr

ot
ei

n

SGD alpha = 0.1, n_iter = 10, epsilon = 0.25

B
re

as
t

C
an

ce
r

56
9

SGD alpha = 0.0001, n_iter = 5, epsilon = 0.25
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Table A5. Cont.

Data Algo Configurations Data Algo Configurations

RBM +
LR

Lr = 0.001, iter = 100, comp = 10
max_iter = 30, C = 1

RBM +
LR

Lr = 0.006, iter = 100, comp = 10
max_iter = 30, C = 1

K-NN n_neighbors = 10 K-NN n_neighbors = 30

LR max_iter = 10, C = 0.001 LR max_iter = 10, C = 0.001

MLP Rs = 1, hls = 10, iter = 200 MLP Rs = 1, hls = 10, iter = 200

RANs CLS = 2, Desired_depth = 1 RANs CLS = 2, Desired_depth = 1

B
re

as
t

C
an

ce
r

66
9

SGD alpha = 0.0001, n_iter = 5, epsilon = 0.25

C
re

di
t

A
pp

ro
va

l

SGD alpha = 0.0001, n_iter = 5, epsilon = 0.25

RBM +
LR

Lr = 0.001, iter = 400, comp = 10
max_iter = 30, C = 5

RBM +
LR

Lr = 0.01, iter = 500, comp = 20
max_iter = 30, C = 5

K-NN n_neighbors = 15 K-NN n_neighbors = 30

LR max_iter = 5, C = 0.00001 LR max_iter = 5, C = 1

MLP Rs = 1, hls = 10, iter = 200 MLP Rs = 1, hls = 10, iter = 250

RANs CLS = 2, Desired_depth = 1 RANs CLS = 2, Desired_depth = 1

G
la

ss
Id

en
ti

fic
at

io
n

SGD alpha = 0.01, n_iter = 10, epsilon = 0.25

M
am

og
ra

ph
ic

M
as

s

SGD alpha = 0.0001, n_iter = 5, epsilon = 0.25

RBM +
LR

Lr = 0.01, iter = 1000, comp = 20
max_iter = 30, C = 5

RBM +
LR

Lr = 0.01, iter = 500, comp = 20
max_iter = 30, C = 50

K-NN n_neighbors = 15 K-NN n_neighbors = 15

LR max_iter = 10, C = 1 LR max_iter = 10, C = 0.01

MLP Rs = 1, hls = 10, iter = 400 MLP Rs = 1, hls = 10, iter = 300

RANs CLS = 3, Desired_depth = 1 RANs CLS = 3, Desired_depth = 1

IR
IS

SGD alpha = 0.01, n_iter = 10, epsilon = 0.25

W
in

e
R

ec
og

ni
ti

on

SGD alpha = 0.01, n_iter = 10, epsilon = 0.25

LR-Learning Rate; iter-Iterations; comp-Number of Hidden Components of RBM; RS-Random
State; hls = Hidden Layer Sizes; CLS-Number of clusters at the input layer of RANs.
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