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Abstract: As the number of controllers and devices increases in Industrial Internet of Things (IloT)
applications, it is essential to provide a secure and usable user authentication system for human
operators who have to manage tens or hundreds of controllers and devices with his/her password.
In this paper, we propose a formally verified certificate-based authentication system using a secondary
network device for such IloT applications. In the proposed system, a user’s sign key is encrypted
with a secret key that can be computed with his/her password and a secret parameter in a secondary
device to securely protect the sign key. To demonstrate the feasibility of the proposed system,
we implemented a prototype with standard cryptographic algorithms (AES-256, RSA-3072, and
ECDSA-256). The experiment results demonstrated that the execution time overhead of the sign
key recovery process was 0.039 and 0.073 s, respectively, for RSA-3072 and ECDSA-256, which was
marginal compared with the total execution time (0.383 s for RSA-3072 and 0.319 s for ECDSA-256)
of the conventional system. We also verified the security of the proposed protocol using a formal
verification tool called ProVerif.
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1. Introduction

One of the key requirements for Industrial Internet of Things (IloT) applications is to establish
trust among things (e.g., industrial controllers, sensors, and actuators) and human operators [1].
Interestingly, secure authentication protocols using cryptographic primitives are generally used for
things, whereas passwords are still popularly used for human operators. This is natural—human
operators cannot remember random cryptographic keys with high entropy.

In IIoT applications, human operators often manage and monitor tens or hundreds of controllers.
Therefore, it is inevitably required for them to create and remember passwords to securely access
those controllers. This authentication burden often leads to bad security practices, such as using a
weak (easy-to-remember) password [2]. Periodically changing passwords (e.g., every three months)
is a further large burden as an operator must access every controller individually to change their
passwords. Moreover, some controllers provide very limited ways of physically entering text (e.g.,
up and down buttons); and operators are expected to scroll up and down a given list of characters to
select their passwords. Such limitations on the physical user interface make it difficult and inefficient
for operators to create, update, and enter passwords.

To overcome the usability and management issues of passwords and authenticate operators in a
secure and user-friendly manner, a certificate-based authentication protocol can also be considered
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for human operators. Basically, a user authentication process can briefly be summarized as follows.
Suppose that a human operator’s sign key is installed on the operator’s client device such as a
smartphone or smartwatch, where a client application for the user authentication process is installed.
To communicate with a controller, a client application (instead of the operator) first obtains the sign key,
computes an authenticated code with the sign key, and sends the authenticated code to the controller
to prove the ownership of the sign key. The controller verifies the authenticated code received from
the client with the corresponding verification key. We note that key protection is very important to
ensure the security of the authentication protocol. However, most client devices do not have hardware
support for protecting the user’s sign key. Again, passwords are still popularly used to encrypt the
sign key (e.g., PBKDEF?2 [3]) and store only the encrypted sign key on the client device. This encryption
key (used to encrypt the user’s sign key) should then only be recovered with the user password. In this
case, the security of the key protection mechanism depends on the strength of the user’s password: an
attacker who has access to the encrypted sign key stored in the client device would be able to perform
an offline dictionary- and rule-based brute-force attack to guess the user’s password and then decrypt
the sign key. If the attacker can obtain the user’s sign key, they can connect to all of the controllers the
user has access to.

In this paper, we present a certificate-based user authentication system where a user’s sign key is
encrypted with a key derived from both the user password and a specific secret value, without relying
on special hardware. The proposed authentication method makes use of a secondary device (e.g.,
an honest-but-curious server or smartphone) that the user can connect to for protecting the user’s sign
key. Our key protection idea works by storing the specific secret value, which is used to generate the
encryption key, in a secondary device—making it infeasible for attackers to perform offline dictionary
attacks even when the primary client device is stolen. To perform an offline dictionary attack against
the proposed scheme, an attacker would have to break into both the primary and secondary devices at
the same time to steal the encrypted sign key, as well as the specific secret value. We argue that such
an attack would be computationally very expensive and difficult to perform. Our key contributions
can be summarized as follows:

o  We propose a formally verified certificate-based user authentication method that does not require
additional secure hardware (e.g., ARM TrustZone) to mitigate offline password guessing attacks.
The user’s sign key is encrypted and the encrypted key can only be decrypted when the primary
device successfully communicates with a network-connected secondary device that assists in the
decryption process. We proved that the proposed protocol is secure using ProVerif that is an
automatic cryptographic protocol verifier in the formal model.

e  We demonstrate the feasibility of the proposed certificate-based authentication method by
implementing a prototype with popularly used cryptographic algorithms (AES-256, RSA-3072,
and ECDSA-256). With this prototype, we analyze its communication overhead and demonstrate
that the execution time overhead of the signing key recovery process is acceptable (0.039 s for
RSA-3072, 0.073 s for ECDSA-256 on average compared with the total execution time of the
conventional system) for the industrial controller application.

The rest of this paper is organized as follows. In Section 2, we provide an overview of the related
work. In Section 3, we explain the conventional authentication method with a digital certificate.
In Section 4, we describe possible attack scenarios against the authentication method. In Section 5,
we present a certificate-based user authentication method using a secondary device. In Section 6,
we analyze the security of the proposed system using a well-known verification tool called ProVerif.
In Section 7, we evaluate the performance of our prototype implementation. Finally, the conclusions of
the study are provided in Section 8.
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2. Related Work

Local storage protection has been actively studied in academia. Most issues relating to the
encryption of local data have been addressed using a key that is derived from a user password [3].
Canetti et al. [4] proposed an approach for limiting offline dictionary attacks by additionally requiring
the user to solve a puzzle, such as CAPTCHA during the process of deriving a key from the user
password. Catuogno et al. [5] proposed a secret key sharing scheme in which a user’s master key
is reconstructed with two partial secrets that are stored and managed, respectively, in two separate
devices. At first glance, this approach seems similar to ours in the sense that a user’s master key
has to be obtained only through the cooperation of multiple devices. However, the proposed system
requires a centralized administration entity’s persistent intervention and management, whereas in our
approach the centralized administration entity is only needed for initial access policy configurations
for industrial controllers. In addition, they presented the design of a system only without the actual
implementation of their system while we implemented a fully working system and evaluated its
performance under various conditions. Catuogno et al. [6] proposed a secure storage architecture
based on the TrustZone technology [7] in mobile devices to protect sensitive files from unauthorized
access. However, the proposed technique can only be used with TrustZone enabled devices. One of
our design goals is to provide a secure certificate-based user authentication scheme without relying
on additional special hardware components such as TrustZone. To achieve this goal, we develop a
secure user authentication scheme and evaluate its efficiency and security through experiments under
various conditions. Unlike previous studies, we formally verified the security of our system.

The National Institute of Standards and Technology (NIST) published a document for securing
Industrial Control Systems (ICS) [8]. This document analyzes potential threats and vulnerabilities to
ICS and recommends suitable countermeasures against the identified threats. In particular, with respect
to user authentication, this document discusses five methods that could be applied to ICS environments
and their pros and cons: password, challenge/response, physical token, smart card, and biometric
authentication. This document also discusses specific considerations of ICS when applying each of
these authentication methods. Borisov et al. [9] proposed a user authentication scheme based on QR
codes and one-time passwords for industrial control systems, and Plaga et al. [10] further improved the
scheme in [9] by taking advantage of the TLS channel binding technique [11]. Huh et al. [1] proposed
generic system architecture for user authentication and access control to industrial controllers in
distributed industrial control systems. In their proposed architecture, a centralized authentication
server and a centralized policy management server are employed for more efficient and flexible access
control. Despite many benefits provided by such architectures with centralized servers, centralized
identity management systems can be attractive targets for attackers, becoming a single point of failure.

Abidin et al. [12] and Peeters et al. [13], respectively, proposed collaborative authentication
protocols based on threshold cryptography, where multiple user devices jointly perform user
authentication to remote verifiers. These approaches commonly use a secret sharing technique to split
a secret key for user authentication into multiple shares and distribute them over multiple user devices.
Due to the nature of the secret sharing technique in these approaches, the security of the collaborative
user authentication process can be improved as the number of user devices sharing the secret key
increases. However, the maintenance cost of secret shares over multiple user devices also increases
because the maintenance operation requires communication among the user devices; according
to [12], the maintenance cost of sharing a secret takes about t? to (n — 1) under the assumption of
(t,n)-threshold scheme, where at least t out of n user devices are required for user authentication.
In this paper, we considered a more realistic and practical deployment achieving a balance between
the security and the convenience. In our system, we particularly design a secret sharing scheme
using PBKDF (Password-based key derivation function). Specifically, our approach encrypts a user’s
sign key and physically separates the secret parameters used to generate the encryption key into the
primary and the secondary user devices. With this simplified system model, the proposed system
can reduce the management cost while achieving a reasonable level of security. In addition, unlike
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previous studies, we implemented a fully working system and evaluated its performance in real
network settings.

Certificate-based authentication has been still widely used in a variety of applications.
Hiltgen et al. [14] presented a certificate-based user authentication method of leveraging smart cards
to mitigate the threats on user authentication in Internet banking applications. Certificate-based
authentication is also commonly used by open source IoT frameworks (e.g., AllJoyn [15], OCF (Open
Connectivity Foundation) specification [16], IoTivity [17], etc.) to establish secure sessions between
devices while minimizing user intervention. To the best of our knowledge, no previous study has
presented an offline guessing attack scheme against certificate-based authentication with the goal of
obtaining a user’s private key from the password-protected private key file. As such, we analyzed
this type of threat in the context of user authentication to industrial controllers, and developed a
countermeasure to mitigate the threat.

3. Certificate-Based Authentication

In this section, we explain how a digital certificate can be used for user authentication in an
industrial controller application. A conventional certificate-based user authentication scheme [18] can
be described at a high level as follows.

Suppose that a user 1 uses a device d (e.g., smartphone or laptop) with a hardware token holding
the digital certificate cert,, and its corresponding sign key sk;, for an industrial controller c. To protect
sky in d, d stores sk, in an encrypted form (i.e., ENC(k, sk;)). An encryption key k is generated by using
a key-derivation function KDF(-) with the user’s password pass,, (i.e., k = KDF(pass,)). Figure 1
shows the basic user authentication procedure.

User Device d Controller c
1. Password pass, J :
> - I
I 2. Transport the certificate cert, o
I gl
I
I I
: 3. Check the validity of cert, :
I
I I
A 4. Transport thenonce n__ _ _ _ J
I

5. Decrypt ENC(KDF(pass,,), sk,)

| |6. SIGN(sk,, id,, n)

7. Transport SIGN(sk,, id,, n)

8. Check the validity of SIGN(sk,,, id,, n)i:|

Figure 1. User authentication using a digital certificate.

To perform the authentication, the user u should enter his/her password through the application
installed on the device d (see Step 1 in Figure 1). Next, d sends a login request message containing
the user’s digital certificate cert, (again containing the user identity id, and its public (verification)
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key pk,) to the controller c (see Step 2 in Figure 1). After receiving the login request message, c
extracts cert, from the message and verifies its validity by checking whether it was issued by a trusted
certificate authority and has not expired or been revoked. If the received cert, is valid, c replies to the
request message by returning a random nonce n (see Steps 3 and 4 in Figure 1). After receiving n, d
computes the encryption key k; if the entered password in Step 1 in Figure 1 is the same as pass,, k is
successfully generated by computing KDF(-) with the entered password, and k is then used to decrypt
ENC(k, sk, ). Therefore, sk is loaded into the memory in d during runtime (see Step 5 in Figure 1).
Next, d digitally signs id, and n with the user’s sign key sk, (i.e., SIGN sk, idy, n)) and replies to c
(see Step 6 and 7 in Figure 1). After receiving SIGN (sky, id,, n) from d, ¢ verifies its validity with the
user’s public key pk,,. If the received message is valid, the user u can login to c for a transaction (see
Step 8 in Figure 1).

4. Threat Model

We consider an attacker who can access the data stored in the user device d, for example,
by stealing d, and the attacker can obtain the encrypted sk, from d. In addition, the attacker can
obtain the nonce 7 from controller ¢ and the corresponding signature generated by device d by
monitoring the traffic between d and c. However, we assume that the attacker does not know the
user’s password pass,. The attacker is also assumed to be computationally bounded to polynomial
time, which in particular prevents the attacker from breaking computationally-secure cryptographic
primitives (e.g., AES [19]). However, the attacker fully understands the description of all procedures
for user authentication and key protection. In practice, such assumptions are often valid (e.g., [20]).

The attacker’s goal is to obtain the user’s sign key sk;,. Since sk, is encrypted with key k, which
is generated with the user’s password pass, alone, the security of sk, is only as good as the user’s
password, pass,, which is inherently susceptible to offline password guessing attacks. That is, if the
attacker holds any password-related data, they can then try to iteratively guess the user’s password
and check whether the guess is correct by trying to calculate the password-related data from the guess.
Even though password complexity policies (e.g., requirements for minimum length, symbols, numbers,
and upper/lowercase letters) or password strength meters are used to encourage users to choose strong
passwords, advanced attackers are still developing methods to efficiently crack such passwords offline
using various forms of hybrid password guessing attacks [21]. The basic attack procedure is as follows:

1. An attacker captures a nonce n and signed message SIGN (sky, id,, n) by observing the traffic
between the device d and controller c.

2. The attacker also accesses d and obtains the user’s certificate cert, and encrypted user’s sign key
ENC(KDF(pass,), sky); the attacker then extracts the user identity id, from cert,.

3.  With a candidate password p, the attacker calculates k = KDF(p) and then tries to decrypt
ENC(KDF(pass,), sk,) with k. We use the notation sk to represent the decrypted result. Finally,
the attacker checks whether SIGN (s7<, id,, n) is the same as SIGN(sk,,, id,, n), which means that
the candidate password p is correctly guessed. This procedure is repeated with a new candidate
password p until SIGN(S?(, id,, n) is the same as SIGN((sky,, id,,, n).

5. Proposed User Authentication System

Under the threat model described in Section 4, we showed that the existing certificate-based
authentication system could be vulnerable to offline password guessing attacks. This is because the
stored key data are encrypted only with the user’s password in such systems.

We suggest a new method to protect the user’s sign key, sk, from offline guessing attacks. The
encryption key can only be generated with the assistance of a secondary device. To develop a fully
working system, we considered two types of secondary devices: (1) an Internet server and (2) another
user device that is nearby via a short-range network channel (e.g., Bluetooth or ZigBee).

We assume that the user device d is connected to the Internet in most cases through Wi-Fi or the
mobile device’s LTE/4G connection. In some situations, however, d cannot be connected directly to
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the Internet. First, even though LTE/4G connection can cover most places in which controllers are
located, the cost of LTE/4G data service plans is not widely in favor of end users; hence, they may
resist using the LTE /4G service. Second, many client devices such as laptops do not directly support
LTE/4G radios and hence rely on Bluetooth or Wi-Fi to send/receive data. Third, the service coverage
is not guaranteed in certain areas (e.g., rural or underground buildings). Therefore, we considered
a secondary device equipped with short-range communication as a backup plan in case an Internet
server is unreachable from device d, for example, while it is being restored.

The proposed user authentication system consists of five components: user u, device d, controller
¢, salt server s, and mobile phone m. Device d could be a mobile phone or laptop of user u and refers
to a separate device from m. Salt server s and mobile phone m in the proposed system provide two
complementary options to obtain the additional parameters, i.e., salt' and salt?, which are required to
generate the encryption keys, i.e., k! and k?, respectively. The only difference between s and m is that s
is connected with d via the Internet and m is connected with d via short-range communication. It is
assumed that d has secure network sessions with s and m via, for example, SSL/TLS and Bluetooth
protocols. The proposed system also has two phases: (1) encryption key generation and (2) user
authentication. We present the detailed procedure of each phase in the following sections.

5.1. Encryption Key Generation

We assume that the user u initially holds his/her digital certificate cert, and its corresponding
sign key sk, for an industrial controller c. To securely protect sk,, we encrypt sk;, which is the same as
conventional certificate-based authentication systems (see Section 3). However, unlike conventional
systems, we introduce an additional secret parameter called random salt that is randomly chosen.
The parameter salt is used together with pass,, to generate the encryption key k = KDF(pass,,, salt).
To securely protect k against offline password guessing attacks, salt is stored in another device (e.g.,
semi-trusted server or smartphone) that the user u can connect to. The steps of this procedure are
illustrated in Figure 2 and are explained as follows:

1. The user u enters his or her password, pass,,, through the application installed on the device d.

2. To register the encryption key, d needs to connect to the salt server s, mobile device m, and

controller c. If any of these are not connected, the encryption key registration process fails.

After d connects to all of the servers, an additional two random salts, salt' and salt?, are generated.

4. u stores salt' and salt? in separate places (e.g., the salt server s and mobile device 1) rather
than their own device d to mitigate offline guessing attacks against the user’s sign key sk;.
For this, d sends the user account registration message to s. The user account registration
message contains the user identity id,,, password pass,,, and system generated (random) parameter

@

salt! (see Step 4a—1 in Figure 2). We assume here that s is available and can be connected
from device d. After receiving the user account registration message, s stores the triple (id,,
HASH (pass,), salt!) into its user database. In a similar manner, the triple (id,, HASH (pass,,),
salt?) is registered to the user’s other mobile device m under the assumption that m is available
and can be connected from device d via short range communication technology (e.g., Bluetooth or
ZigBee). d sends the certificate cert, to controller c (see Step 4c—1 in Figure 2). ¢ then stores the
received certificate cert,,.

5. Using pass, along with the random salts salt' and salt?, the device d generates two encryption
keys k! and k? by calculating k' = KDF(pass,, salt') and k* = KDF(pass,, salt*), respectively
(see Steps 5a and 5b in Figure 2).

6. After generating k! and k2, sk, is encrypted with them, i.e., ENC (kl,sku) and ENC (k2,sku),
respectively, and stored in the device d.

If d fails to connect to both s and m, the proposed system can rollback the committed transactions
for the key generation procedure.
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Figure 2. Encryption key generation procedure.

5.2. User Authentication

After finishing the steps described in Section 5.1, the user authentication procedure can be

performed for the user u to obtain access to the controller c. The user authentication procedure is
illustrated in Figure 3. An explanation of each step of this procedure is as follows:

1.

For the user authentication, the user u should first enter his/her password pass, through the
application installed on the device d (see Step 1 in Figure 3).

To decrypt the encrypted user’s sign key sk, d has to obtain either one of the salts (salt! or salt?)
from the salt server s or mobile device m. Therefore, to obtain a salt, d first tries to connect to s
(See Figure 3). If s does not respond to d, d sequentially tries to connect to m. If any of these are
not connected, the authentication process fails because d cannot decrypt sk;,.

If d is successfully connected with s, d sends the salt request message containing the tuple (id,,
pass,,) to s (see Step 3a in Figure 3). After receiving the salt request message, s retrieves the user
record matching with id,, from its user database and checks the validity of pass, by comparing its
hash value with the stored password hash value in the matching record. To mitigate password
guessing attacks, we recommend the use of a security policy to limit the number of failed password
attempts and/or impose a time interval between failed attempts. After a maximum number of
consecutive salt request attempts with invalid passwords, further attempts are blocked completely.
Thus, this feature ensures that offline password guessing attacks are infeasible, unlike existing
certificate-based authentication methods.

If the received pass,, is valid, s replies to the salt request message by returning the stored salt salt!
(see Step 4 in Figure 3). Here, the communication channel between d and s is assumed to be a
secure and authenticated channel (e.g., SSL/TLS). If s is unavailable, the user’s mobile device m
can be alternatively used instead of s. If the received pass,, is valid, m replies to d with the stored



Appl. Sci. 2020, 10, 1962 80f 16

salt salt?. Without loss of generality, we assume here that s is available because further processes
are the same in both cases.

5. After receiving salt! (or salt?), d computes k! = KDF(pass,, salt') (or k> = KDF(pass,, salt?))
to extract the encryption key k! (or k?) from ENC(k!,sk,) (or ENC(k? sky)). Again, d decrypts
ENC (kl, sk, ) with k! (or ENC (kz, sk, ) with k2) to obtain the user’s sign key sk;, for user authentication.

6. The device d sends a login request message containing the user u’s digital certificate cert, (again
containing user identity id, and its public key pk,) to the controller ¢ (see Step 6a in Figure 3).
After receiving the login request message, ¢ extracts cert, from the message and verifies its validity
by checking whether it was issued by a trusted certificate authority and has not expired or been
revoked. If the received cert, is valid, c replies to the request message by returning a random
nonce 7 (see Steps 6b and 6c in Figure 3).

7. After receiving the nonce n, d digitally signs the user identity id,, and n with the user’s sign
key sk, (i.e., SIGN(sky,idy, n)) and replies to c (see Steps 7a and 7b in Figure 3). After receiving
SIGN(sky, idy, n) from d, c verifies its validity with the user’s public key pk,,. If the received
signed message is valid, the user (1) can login to ¢ for a transaction.

User Device d Sal_t serve_rs / Controller ¢
Mobile device m

1. password pass, I

A J

2a. Client Hello »!
e 2b. ServerHello ________ g
3a. id,, pass,

»
P>

|| 5a Make k! (or k%) from
KDF (pass,,salt') (or KDF(pass,,salt?))

T
i
I
I
|
I
\ I
\ I
i I
I
I 3b. Check the validity of |
! " |id, and HASH(pass,) :
\ i
I
\
\ |
\ I
\ I
|
5b. Decrypt ENC(k',sk,) (or ENC(K?, sk,)) } :
I
J

6a. Transport the certificate cert,

»
Lot

|
} 6b. Check the validity of céa

6¢c. Transport the nonce n |

1
| I I
|| 7a. SIGN(sk,, id,,n) | i
I
I
1

A3

1
7b. Transport SIGN(sk,,id,,n)

»
P

I
T

| I I

: 7c. Check the validity of SIGN(sk,, id,,n)
I <

I

Figure 3. User authentication procedure using either the salt server (with salt!) or the mobile device
(with salt?) in the proposed system.

6. Security Evaluation with ProVerif

We present a brief formal security evaluation of the proposed protocols described in Section 5
by ProVerif [22] that is popularly used for verifying cryptographic protocols (e.g., [23,24]). Under
an active Dolev—Yao adversary [25], ProVerif can verify the confidentiality and authenticity of the
compromised participant, Mallory, that is also allowed to initialize sessions and exchange messages
with network entities.

To simplify our model in ProVerif, we use a private channel to represent secure sessions based on
SSL/TLS and BLE.

6.1. Key Enrollment Procedure

We modeled a set of cryptographic primitives F. that are used in our proposed key protection
system (see the ProVerif code in Listing 1).
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Listing 1. List of functions required for the key enrollment process.

Functions:

F.={HASH, KDF, ENC}

HASH(data) = hashed value.

KDF (data, salt, HASH, iteration) = hashed value.
ENC(Encryption key, data) = ciphertext.

In the salt server s or mobile device m, a random salt value (i.e., either sal 1 or sal tz) is stored along
with the user’s ID and password. The corresponding ProVerif expression is provided in Listing 2.

Listing 2. Procedure performed on the salt server s or mobile device m for the key enrollment.

Store (idy, HASH(passy), salt! or salt?)

In the device d, the user’s sign key sk, is stored after being encrypted with a key-value derived
from the user’s password and random salt value. The corresponding ProVerif expression is provided
in Listing 3.

Listing 3. Procedure performed on device d for the key enrollment.

k! = KDF (pass,, salt', HASH, 10000)
k* = KDF (pass,, salt?, HASH, 10000)
Store ENC(k', sk,), ENC(K*, sk,), cert,

For these settings, the proposed system can successfully defeat an attacker who is unable to
compromise both the user device d and salt server s (or the mobile device m), simultaneously.
For example, if only d is stolen, the attacker can only obtain the ciphertext of the user’s sign key
sky, but neither the user’s password pass, nor a salt value sal t1 (or salt?). Therefore, it is infeasible for
the attacker to obtain sk;, from the ciphertext. Similarly, if only s or m are stolen, the attacker can only
obtain the user id id,, the hash value of the password HASH(pass,), and a salt value salt! (or salt?).
This knowledge is also insufficient for obtaining sk, from the ciphertext.

6.2. User Authentication

When the user tries to access the controller c, the user’s sign key sk, is needed. We modeled a set
of cryptographic primitives F; and F; that are used in our key protection system, and are defined in
Listing 4.

The user’s sign key sk, is encrypted with the key derived from the user’s password and random
salt value, and the encrypted key is then stored in d. The user only knows their ID and password,
but not the salt value. Therefore, d should request the salt value for the salt server s if the device is
connected to the Internet or mobile device m.

After receiving the salt value from s or m, d computes the decryption key by performing the
key-derivation function (KDF) for the user’s password pass, and salt and decrypts the ciphertext of
sk, with the decryption key.

To obtain the access permission to the controller ¢, d receives the nonce n from c, signs the user’s
ID and n with the decrypted user’s sign key sk;, and then sends the signed value to c. If the received
signature is verified successfully, c responds d with the symmetric key which will be used to secure
subsequent communication between them. A brief representation in ProVerif is shown in Listing 5.
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Listing 4. List of functions required for the user authentication process.

Functions:

F.={GetPKey, ENC, SIGN, GenCert, KDF, HASH}
HASH(data) = hashed value.

KDF (data, salt, HASH, iteration) = hashed value.
ENC(Encryption key, data) = cipher text.

GetPKey (Private key) = Public key.

GenCert (Public key, Private key) = Certificate.
SIGN(Private key, data) = signed value.

F;={DEC, CheckSIGN, ExtractPKey}

DEC(Key, cipher text) = data.

CheckSIGN(Signed value, Public key) = True or False.
ExtractPKey (Certificate) = Public key.

Listing 5. Procedure performed on device d for the user authentication.

Stored information:

ENC (k!, sky)

ENC (K*, sky)

Certificate certy

Process: Device=

out (cpm-v, (idy , passy)) .

in (Cprio » salt! or salt?) .

let k = KDF (pass,, salt, HASH, 10000) in
let dec_sk, = DEC(k, ENC(K' or K?, sk,)) in
out (c, Certificate) .

in(c, n).

out (¢, SIGN (dec_sk,, (id,, n))).

in(c, encrypted value) .

let key = DEC(dec_sk,, encrypted value) in
out (¢, ENC(key, m)).

In the salt server s or mobile device m, the user credential information and salt value were
registered in the key enrollment procedure. These are ready to receive the user ID id,, and password
pass, from d. If s or m find a match with the received information from d, they respond to d with the
stored salt value salt! (or salt?). The ProVerif expression is shown in Listing 6.

Listing 6. Procedure performed on the salt server s or mobile device m for the user authentication.

Stored information:

(id,, HASH(pass,), salt' or salt®)
Process: Salt=

in(Cprip, Cidy, passy)) .

if id, = id, then

if HASH(pass,) = HASH(pass,) then
out (Cprip, salt' or salt?) .

In the user authentication process, c receives a certificate from d and checks the validity of the
certificate. If the received certificate is valid, c sends a random nonce 7 to d as a challenge and waits
for a response from d. Once receiving the signature of n from d, c verifies the signature with the
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user’s public key. If the signature is valid, c sends the symmetric key to d for securing subsequent
communication. The brief ProVerif expression is provided in Listing 7.

Listing 7. Procedure performed on controller ¢ for the user authentication.

Stored information:
Certificates

Process: Controller=

in(c, Certificate) .

New n.

out (¢, n).

let Public key = ExractPKey (Certificate) in
in(c, signed value) .

if CheckSIGN (signed value) then
New key.

out (¢, ENC(Public key, key)) .

6.3. ProVerif Results

To verify the security and correctness of our proposed protocols, we ran ProVerif on the codes
described in Sections 6.1 and 6.2. We set the attacker as an active Dolev—Yao adversary [25]. In addition,
to verify that our protocols are safe under the threat model described in Section 4, we assumed four
cases: standard, information leakage from d, information leakage from m, and information leakage
from both d and m.

Standard case. As we mentioned at the beginning of Section 6, we used the private channel
when communicating between the mobile and user devices, and used the public channel when
communicating between the user’s device and controller. As a result, ProVerif showed that the attacker
cannot obtain the user’s sign key sk;,.

Information leakage from the user’s device d alone. In this case, we assumed that an attacker
could access the data stored in d such as id,, encrypted user’s sign key ENC(k, sk,), and cert,.
To mimic this data leakage, we sent the data over the public channel. According to ProVerif results, the
attacker cannot still obtain the user’s sign key sk;,.

Information leakage from the mobile device, 111, alone. In this case, we assumed that an attacker
could access the data stored in m such as id,, HASH(pass,), and salt! or salt?. To mimic this data
leakage, we sent the data over the public channel. The ProVerif results show that the attacker still
cannot obtain the user’s sign key sk;,.

Information leakage from both 4 and m. In this case, we assumed that an attacker can access
the data stored in both d and m, including id,, ENC(k, sk,), HASH(pass,), salt! or salt?, and cert,,.
To mimic this case of data leakage, we sent the data over the public channel. The results of ProVerif
show that the attacker can successfully obtain the user’s sign key sk,,. The detailed process for obtaining
sk, is shown in Listing 8.

Listing 8. Attack trace for information leakage from both the user and mobile devices, d and m,
respectively.

d — ATTACKER : ENC(k, sk;)

m — ATTACKER : HASH(pass,), salt

By dictionary attack, ATTACKER get pass, from HASH (passy,)
ATTACKER : generate k using KDF function with pass, and salt
ATTACKER : With k, get sk, from ENC(k, sk,) using DEC function
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Even without active intervention, the attacker can obtain the user’s sign key sk,, but only if
the attacker can access the data stored in both d and m to obtain ENC(k, sk, ), HASH(pass,), and salt
together. The attacker can use the dictionary attack to successfully guess pass, from HASH(pass,).
Using pass, and salt, the attacker can then make the encrypted key k using the key-derivation function
KDF (pass, , salt, HASH, 10,000). Using sk, the attacker can mimic the user with the user’s digital
certificate and freely access the controller c.

7. Implementation and Evaluation

To show the feasibility and effectiveness of the proposed user authentication system, we
implemented a prototype and performed several experiments with the prototype implementation. The
implementation and performance evaluation of the proposed system is described in this section. As a
baseline for the comparison, we also implemented the conventional system (described in Section 3)
and performed the same experiments.

7.1. Implementation

For digital signature algorithms, we used RSA and ECDSA with SHA-256 and respectively used
3072 bits and 256 bits for the length of a public key pk, which achieve the same level of security
according to the recommendation of NIST [26]. To securely store the user’s sign key sk, sk, was
encrypted using the AES-256 algorithm in Galois/Counter Mode (GCM) without padding. We note
that padding is not required because random keys are encrypted. To derive the AES encryption key,
PBKDF2 with HMAC-SHA256 was used where the number of iterations was 10,000, and the salt
was generated by a cryptographically secure pseudorandom number generator (CSPRNG). Similarly,
CSPRNG was also used to generate the initial vector for the AES encryption in GCM. We used a
SHA3-256 hash function to compute the hash value of the user password.

As shown in Figure 2, the proposed user authentication system consists of three communication
channels between the user device and salt server, 'd — s’, user device and mobile device, 'd — m’; and
user device and controller, 'd — ¢’. For the salt server implementation, we used Spring Boot (https:
/ /spring.io/projects/spring-boot) to build the Representational State Transfer (REST) architecture.
Therefore, HTTPS was used for the channel ‘d — s’. For the channels ‘d — m” and ‘d — c’, short-range
communication based on Bluetooth with Serial Port Profile (SPP) was used.

For further information, the source codes of our implementation are available in the public GitHub
repository (https://github.com/rymuff/keyprotection, see Supplementary Materials).

7.2. Times Taken for Key Enrollment and Authentication

As described in Section 5, our user authentication system consists of four components; user device
d, salt server s, mobile device m, and controller c. In the following experiments, we used a MacBook
Pro with Intel Core i7-7920HQ (3.10 GHz) running on macOS Catalina for the user device, a desktop
with AMD Ryzen Threadripper 1950X (3.40 GHz) running on Windows 10 Pro for the controller,
a desktop with Intel Core i7-9700 (3.00 GHz) running on Ubuntu 18.04 for the salt server, and a Google
Pixel 3a running on Android 9 (Pie) as the mobile device. The evaluation results are presented in the
following sections.

7.2.1. Key Enrollment Overhead

To evaluate the latency caused by the key enrollment procedure in our system, we measured
the execution time of the entire procedure described in Figure 2 including the key generation time.
We also performed the same measurements on the conventional user authentication system described
in Section 3 to compare the overheads. For the key enrollment procedure in the conventional system,
the user’s sign key was generated and simply encrypted with the user’s password. For both systems,
we repeated the same experiments 100 times. Table 1 summarizes the results.
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Table 1. Times (seconds) for key enrollment and authentication (C: Conventional System, P: Proposed
System, S: Salt Server, M: Mobile Device).

Procedure Key Enrollment Authentication
Method C P C P with S P with M

Algorithm RSA ECDSA RSA ECDSA RSA ECDSA RSA ECDSA RSA ECDSA
Avg. 0.326 0.014 0.658 0.279 0.383 0.319 0.422 0.392 0.634 0.437
Std. 0.209 0.002 0.295 0.038 0.140 0.030 0.051 0.038 0.344 0.222
Min. 0.086 0.011 0.324 0.235 0.294 0.270 0.355 0.331 0.303 0.266
Max. 1.133 0.025 1.849 0.469 1.646 0.400 0.688 0.530 1.624 1.278
Med. 0.282 0.013 0.597 0.262 0.359 0.320 0.416 0.393 0.506 0.344

For the proposed system, the average execution times were 0.658 s for RSA-3072 and 0.279 s for
ECDSA-256 with respective standard deviations of 0.295 s and 0.038 s. For the conventional system,
on the other hand, the average execution times were 0.326 s for RSA-3072 and 0.014 s for ECDSA-256 with
respective standard deviations of 0.209 s and 0.002 s. Even though the execution times of our system were
about 2 and 20 times longer than the conventional system, the absolute values of the performance gap
were as small as 0.333 s and 0.266 s on average. Furthermore, the enrollment procedure was performed
only once and can be amortized over the subsequent authentication procedures.

To find a more suitable digital signature algorithm for our system, we implemented both RSA-3072
and ECDSA-256 and compared the execution times of both implementations. As shown in Table 1, the
execution time for the key enrollment procedure of the implementation using ECDSA-256 was 0.379 s
shorter than the implementation using RSA-3072.

7.2.2. Authentication Overhead

We also evaluated the performance of the user authentication procedure in the proposed system.
For the user authentication, the user device, d, tries to obtain the salt value either from the salt server, s,
or mobile device, m, depending on the connectivity to the salt server.

We first assumed that the user device has Internet connectivity so that it can be connected to the salt
server. Under this assumption, we measured the execution time of the authentication procedure using
the salt server described in Figure 3. The ‘P with S’ column of Authentication in Table 1 summarizes the
results of 100 measurements. The average execution times of the proposed system were 0.422 s and 0.392 s
with a standard deviation of 0.051 s and 0.038 s, respectively, for RSA-3072 and ECDSA-256. As shown
in Table 1, the execution time of the user authentication procedure in the proposed method was slower
than that of the user authentication procedure in the conventional system, without requiring any extra
communication to obtain a salt (see Figure 1). However, the execution time overhead incurred by the user
authentication procedure for the proposed system was comparable to that of the conventional system,
indicating that most casual users cannot recognize such a time difference.

Next, we assumed that the user device, d, has no connectivity to the salt server. In this case,
the user device provides the user with a notification that the connection to the salt server has failed,
and then tries to retrieve the salt value salt? from the mobile device, m, via the Bluetooth connection.
The authentication procedure using the mobile device instead of the salt server in Figure 3 corresponds
to this case. In this case, d performs the steps from 2a to 5b with the mobile device in Figure 3. Again,
we measured the execution time of this procedure 100 times. The 'P with M’ column of Authentication
in Table 1 summarizes the measurement results. The execution times of the proposed system were
0.634 s for RSA-3072 and 0.437 s for ECDSA-256 on average, which are slower than the execution times
of the conventional system. In fact, this extra overhead mainly came from the Bluetooth connection
setup time. In addition, this overhead is incurred only when the user device had no connectivity to the
salt server, and we claim that this is a rare case in practice.

Again, for the user authentication procedure, we compared the execution times of both
implementations using RSA-3072 and ECDSA-256. For the proposed system, the ECDSA-256 based



Appl. Sci. 2020, 10, 1962 140f 16

implementation (0.392 s for the salt server case and 0.437 s for the mobile device case) showed a
slightly better performance than the RSA-3072 based implementation (0.422 s for the salt server case
and 0.634 s for the mobile device case). According to these evaluation results, ECDSA-256 would be a
more preferable recommendation for our system.

8. Conclusions

We present a formally verified certificate-based user authentication method using a secondary
network device to protect a user’s sign key. In the proposed method, the user’s sign key is encrypted
and can only be decrypted with the assistance of a secondary device. To show the feasibility of
the proposed method, we implemented a prototype with popularly used cryptographic algorithms
(AES-256, RSA-3072, and ECDSA-256). Through the security evaluation using ProVerif and the
performance evaluation of the prototype implementation, we confirmed that the proposed method can
bring significant benefits with respect to security with only a slight sacrifice in performance (0.073 s
increase with respect to the execution time for the user authentication procedure).

As part of future work, we plan to conduct real-world experiments through the deployment of
the proposed method with a company that is developing industrial controller solutions, and analyze
its usability issues (e.g., user satisfaction and network stability) in real-world settings.

Supplementary Materials: The source code of our implementation and the data files of the evaluation results are
available at a GitHub repository (https://github.com/rymuff/keyprotection). The GitHub repository contains the
URL links to the source codes of the client application, the salt server, the mobile application, and the controller.
The repository also contains the URL links to the following data files of the evaluation results: the data files of the
analysis results of the authentication using a conventional system and the proposed system and the data files of
the execution time and power consumption measurements of the backdoor application.

Author Contributions: Methodology, J.C. (Jusop Chio) and S.H.; Software, J.C. (Junsung Cho); Formal Analysis,
J.C. (Jusop Chio); Data Curation, J.C. (Junsung Cho); Writing—Original Draft Preparation, J.Choi and HK;
Writing—Review & Editing, S.H.; Supervision, H.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MIST (Ministry of Science and ICT), Korea, under the ICT
Consilience Creative program (IITP-2019-2015-0-00742) supervised by the IITP (Institute for Information &
communications Technology Planning & Evaluation) and by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. 2019R1C1C1007118).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard

IoT Industrial Internet of Things

PBKDF2  Password-Based Key Derivation Function 2
SSL Secure Socket Layer

TLS Transport Layer Security

LTE/4G  Long-Term Evolution

ECDSA Elliptic Curve Digital Signature Algorithm

NIST National Institute of Standards and Technology

GCM Galois/Counter Mode

HMAC Hash-based Message Authentication Code

CSPRNG  Cryptographically Secure Pseudorandom Number Generator
SHA3 Secure Hash Algorithm

REST Representational State Transfer
SPP Serial Port Profile
ICS Industrial Control System

QR code  Quick Response code
sky Sign key of user
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idy Identification number of user
pass, Password of user

n Nonce

salt Salt value

k Symmetric key

certy Certificate of user

ENC Encryption

KDF Key Derivation Function
SIGN Signing

HASH Hash algorithm

GetPKey Generate public key from private key
GenCert Generate certificate

DEC Decryption

CheckSIGN  Check the signed data with public key
ExtractPKey  Extract public key from certificate
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