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Abstract: Dense stereo matching has been widely used in photogrammetry and computer vision
applications. Even though it has a long research history, dense stereo matching is still challenging
for occluded, textureless and discontinuous regions. This paper proposed an efficient and effective
matching cost measurement and an adaptive shape guided filter-based matching cost aggregation
method to improve the stereo matching performance for large textureless regions. At first, an efficient
matching cost function combining enhanced image gradient-based matching cost and improved
census transform-based matching cost is introduced. This proposed matching cost function is robust
against radiometric variations and textureless regions. Following this, an adaptive shape cross-based
window is constructed for each pixel and a modified guided filter based on this adaptive shape window
is implemented for cost aggregation. The final disparity map is obtained after disparity selection and
multiple steps disparity refinement. Experiments were conducted on the Middlebury benchmark
dataset to evaluate the effectiveness of the proposed cost measurement and cost aggregation strategy.
The experimental results demonstrated that the average matching error rate on Middlebury standard
image pairs is 9.40%. Compared with the traditional guided filter-based stereo matching method, the
proposed method achieved a better matching result in textureless regions.

Keywords: stereo matching; cost measurement; adaptive shape guided filter; census transform;
textureless regions

1. Introduction

Dense stereo matching is a significant research topic in the field of photogrammetry and computer
vision, greatly benefiting applications like 3D reconstruction, DSM (Digital Surface Model) production,
visual reality and autonomous vehicles [1–4]. A large number of efficient stereo matching algorithms
have been developed in recent years, but it is still a challenging task to handle the stereo matching
problem in occluded, textureless and discontinuous regions. According to the classical taxonomy
method proposed by Scharstein and Szeliski [5], these existing stereo algorithms can be mainly
classified into global and local approaches. Global algorithms explicitly incorporate smoothness
assumption into an energy function that combines data and smoothness terms and estimate disparity
by minimizing the global energy function. Belief propagation [6,7], graph cuts [8], and dynamic
programming [9] are among the most commonly used global stereo matching optimization algorithms.
They usually produce a more accurate disparity map than local methods but with higher computational
complexity. On the other hand, local stereo matching algorithms only use the local information
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within a finite support window to compute disparity. These algorithms have lower complexity and
can be implemented much easier and faster. Thus, they are widely used in real-time applications.
Local methods generally consist of four steps: (1) matching cost computation; (2) cost aggregation;
(3) disparity computation/optimization; and (4) disparity refinement.

In terms of matching cost computation, Hirschuller and Scharstein [10,11] evaluated the
performances of numerous different matching costs including parametric and nonparametric matching
costs. The common parametric costs include pixel-based costs: absolute differences (AD), squared
differences (SD), sampling-insensitive absolute differences, along with window-based matching costs:
the sum of absolute or squared differences (SAD/SSD) and normalized cross correlation (NCC). Since
most of these individual cost functions have its own strengths and weaknesses, combinations of multiple
matching costs are exploited to obtain better performance. The works in [6,12,13] adopted a mixed
cost computation method by combining the sum of absolute difference with gradient. Mei et al. [14]
combined the absolute differences and Census transform to achieve an impressive performance.
In [15–17], a combination of absolute difference, gradient and census transform or the variant versions
were used for initial cost computation. The combination of multiple matching costs provides an
alternative way to improve the performance of stereo matching algorithms.

Cost aggregation plays a decisive role in improving the matching efficiency and accuracy in local
stereo matching algorithms. The initial matching cost is aggregated by summing or averaging over a
support window to reduce image ambiguity. The naivest aggregation approach is to apply a simple
low-pass filter with a fixed-size window, such as box filter or Gaussian filter, to the initial per-pixel
cost. Nevertheless, the matching accuracy is determined on the fixed-size window, which easily leads
to incorrect matching in textureless and discontinuous regions with fattening edges. To address this
problem, a large number of cost aggregation strategies were proposed to achieve a more accurate
disparity map while preserving edges. These improved aggregation methods can be categorized into
two types: variable support window (VSW) and adaptive support weight (ASW). Methods based on
variable support window try to find an appropriate regular or irregular support window to eliminate
more outliers. Veksler [18] selected multiple windows from a number of candidates to produce smaller
matching costs. Zhang et al. [19] proposed a cross-based local support window and dynamically
constructed an adaptive shape region for cost aggregation. Then Mei et al. [14] modified the cross-based
local support region construction by adding two additional thresholds and new constraint rules. On
the contrary, the adaptive support weight approach, which was first presented by Yoon and Kweon [20],
adaptively adjusts the support weights for pixels according to color similarity and spatial distance.
Even though the adaptive support weight approaches achieved an outstanding performance, they
suffered from high computational complexity. Therefore, several fast approximations of the bilateral
filter [21,22] were then developed, but at the price of quality degradation. In order to reduce the
computational complexity without quality degradation, Hosni et al. [13,23] and Rhemann et al. [24]
proposed to aggregate matching cost using the guided image filter (GF). Compared with the bilateral
filter, the guided image filter proposed by He et al. [25,26] can preserve the edges better and can be
implemented with linear computational complexity independent of the window size. The guided
filter has demonstrated great potential in stereo matching applications that have limited computation
resources, especially in the real-time systems [13,27,28]. Even though the guided filter-based cost
aggregation methods can achieve good performance in many cases, it is still not satisfactory enough
for discontinuous regions and textureless regions since its fixed square size support window used by
the traditional guided image filter.

In this paper, a local stereo matching algorithm with effective matching cost computation method
and cost aggregation strategy was proposed. The proposed new matching cost combines enhanced
image gradient-based matching cost with improved census transform-based matching cost and is
proved to be more robust to radiometric changes. In matching cost aggregation step, we construct a
cross-based adaptive shape support window for each pixel and implement a modified guided filter
based on this adaptive shape region to improve the reliability of the disparity map, especially for low



Appl. Sci. 2020, 10, 1869 3 of 17

texture structures. The winner-take-all strategy is then carried out to obtain the optimal disparity for
each pixel. Finally, multi-constraints-based disparity refinement is applied to further improve the
disparity map and eventually get sub-pixel accuracy disparity map.

The remainder of this paper is organized as follows. The proposed matching cost computation
method and matching cost aggregation strategy are first described in Section 2. Section 3 presents the
experimental results and discussions about the method and results. Finally, Section 4 concludes this paper.

2. Methods

The workflow of the proposed method is shown in Figure 1. Similar to a basic local stereo matching
method, the proposed method consists of four steps. (1) Matching cost computation: we propose a new
matching cost computation method that uses a combination of the enhanced image gradient-based cost
and improved census transform-based cost. (2) Cost aggregation: first, a cross-based adaptive shape
support window is constructed for each pixel. Then modified guided filter is implemented based
on the constructed support window to aggregate the matching cost inside the window. (3) Disparity
selection: a winner-take-all (WTA) strategy is used to find the optimal disparity for each pixel according
to the aggregated cost. (4) Multi-constraints-based disparity refinement framework. In order to further
detect the incorrect matching results, a multi-constraints-based disparity refinement framework is
implemented. Outlier detection with left-right consistency checking process, occlusion/mismatch
handling, weighted median filter, and subpixel enhancement are included in this framework.
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2.1. Matching Cost Computation

In this step, cost volume is built by computing per-pixel matching cost at all given disparity values
under consideration. This cost volume is a three-dimensional array with a size of H ×W ×D, and H,
W and D denote the height, width and disparity range of the images respectively. Although absolute
difference on intensity or color channels is very simple and fast, it is too sensitive to radiometric
differences and noises. Stereo matching methods using absolute difference on intensity or color have
lots of errors on the disparity maps especially for outdoor images, in which radiometric changes and
noises are unavoidable. By contrast, gradient similarity [29] and census transform [30] are more robust
to radiometric distortion. To make the matching cost more robust to radiometric changes and noises,
we propose a matching cost function that combines the enhanced image gradient-based cost with
improved census transform-based cost.

In order to obtain stronger edge information, an image enhancement algorithm is first applied to
the input stereo images. Here, the input images are first enhanced using Contrast Limited Adaptive
Histogram Equalization (CLAHE) algorithm [31]. Then the sum of absolute derivative differences of
the left and right enhanced images in the x and y directions is used as a gradient-based cost measure.
The enhanced image gradient-based matching cost CCLAHE

GRAD (p, d) is computed according to Equation (1):

CCLAHE
GRAD (p, d) =

∣∣∣∇xIL(p) −∇xIR(p− d)
∣∣∣+ ∣∣∣∇yIL(p) −∇yIR(p− d)

∣∣∣ (1)
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where IL represents the enhanced left image and IR represents the enhanced right image. ∇xIL(p) and
∇yIL(p) denote the gradients in x and y direction of the enhanced left image at a pixel p. Accordingly,
∇xIR(p− d) and ∇yIR(p− d) denote the gradients in x and y direction of the enhanced right image at
the pixel p− d. d is the disparity.

Besides the gradients-based cost, the census transform-based cost is also computed using the
enhanced left and right images. The original census transform is based on local intensity relations
between the center pixel and its neighbor pixels. It only relies on the relative ordering of intensities and
not their values, and thus it compensates for all radiometric distortions that preserving this ordering.
However, Mei et al. [14] has displayed that the traditional census transform would produce wrong
matches in regions with repetitive local structures in stereo matching. To address the limitations of
traditional census transform, we present an improved census transform using gradients rather than
intensity itself. The improved census transform in this paper is formulated as follows:

CTg(p) = ⊗q∈N(p)ξ
(∣∣∣∇I(p)

∣∣∣, ∣∣∣∇I(q)
∣∣∣) (2)

ξ(p, q) =
{

1, q < p
0, otherwise

(3)

where operator ⊗ denotes a bit-wise catenation and N(p) represents the neighbor pixels of anchor pixel
p. q is a neighbor of p. ∇I(p) and ∇I(q) are the gradient of enhanced images at pixel p and neighbor
pixel q. |.|means the magnitude of gradient. ξ is a function to determine the bit value as described in
Equation (3). Then the Hamming distance is used to calculate the difference between the two bit-strings
in left and right images and used as the improved Census transform-based matching cost.

CCTg(p, d) = Hamming(CTgL(p), CTgR(p− d)) (4)

In Equation (4), CTgL and CTgR are the Census transform bit strings of pixel p and p− d in the left
image and right image respectively, and d denotes the disparity of two pixels in the left and right images.
The final combined matching cost is derived by merging the two cost components mentioned above:

C(p, d) = ρ
(
CCLAHE

GRAD ,λGRAD
)
+ ρ

(
CCTg,λCTg

)
(5)

ρ(c,λ)= 1− exp
(
−

c
λ

)
(6)

Here, λ is a normalizing parameter to control the influence of outliers, and the exponential function
is used to normalize each cost component to the range [0, 1] and ensure that the final matching cost
won’t severely bias to one of the matching costs. C(p, d) is the final used matching cost that combines
the enhanced image gradient-based matching cost (CCLAHE

GRAD ) with the improved census transform-based
matching cost (CCTg).

Figure 2 presents the visual results of stereo matched disparity map using the proposed enhanced
gradient-based matching cost and improved census transform-based matching cost on the Tsukuba of
the Middlebury dataset [32]. The original gradient-based and Census transform-based matching cost
are also shown in Figure 2 for the convenience of comparison. In order to make the result convincing,
we use the same cost aggregation strategy as [23] and no refinement process is applied. The comparison
of results obtained from the original gradient-based and enhanced gradient-based is shown in the
first row. Further, it can be found that the enhanced gradient-based cost produces a better disparity
map than the raw gradient-based cost at image boundaries (red circle mark). In the second row, the
proposed modified census transform-based cost and the original census transform-based cost are
also compared. According to the disparity map, our modified census transform-based matching cost
performs visibly better than the original census transform-based matching cost at repetitive local
structures (blue circle mark in Figure 2).
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Figure 2. Initial disparity maps based on different matching costs for Tsukuba. (a) Absolute difference
in image gradients; (b) proposed enhanced image gradients-based matching cost; (c) traditional census
transform-based matching cost; (d) proposed improved census transform-based matching cost.

Figure 3 compares the proposed combined matching cost computation method with common
individual cost methods, such as the absolute difference of intensity (AD), the absolute difference of
image gradient and traditional census transform-based cost measurement. Tests are implemented
on the two image pairs of the Middlebury stereo dataset (i.e., Tsukuba, Teddy). All of the disparity
maps are initial stereo matching results without any post-processing and generated by the same cost
aggregation method, which would be mentioned in the next section, and the winner takes all disparity
computation strategy. From Figure 3, it can be found that the comprehensive performance of our
proposed cost method obviously outperforms AD, gradient-based matching cost, and traditional
census transform-based matching cost. AD cannot handle large textureless regions effectively, the
gradient-based matching cost cannot do well with tiny boundaries, while the traditional census
transform-based matching cost fails at repetitive or similar local structures.
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2.2. Matching Cost Aggregation Method

Per-pixel-based matching cost is sensitive to noise. Aggregating the matching cost over a local
support window is an effective way to improve the accuracy and robustness of local stereo matching
methods. Matching cost aggregation can be viewed as filtering on the cost volume. Given a cost
volume C, the aggregated matching cost at pixel i with disparity d can be computed according to:
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C′i,d =
∑

j

Wi jC j,d (7)

where C j,d is the matching cost of pixel j with disparity d. pixel j is a neighbor of pixel i. Wi j is the
weight coefficient of the pixel j. C′i,d is the aggregated matching cost at pixel i with disparity d.

As an efficient and effective edge-preserving image filter, guided image filter has been successfully
adopted in local stereo matching algorithms, achieving commendable disparity maps [23,33,34]. After
applying guided filter using guidance image G, the kernel Wi j in Equation (7) can be expressed as:

Wi j(G) =
1

|ω|2

∑
k:(i, j)∈ωk

1 +
(Gi − µk)

(
G j − µk

)
σ2

k + ε

 (8)

where i and j represent pixel indexes. Gi and G j are pixel values of guidance image at pixel i and pixel
j. µk and σ2

k are the mean and variance of kernel window ωk in guided image G, reflecting the statistical
characteristics of pixels inside the support window. |ω| is the number of pixels in the window ωk with
a fixed size r× r. ε is a smooth parameter.

The matching cost aggregation implicitly assumes that the disparity of the pixels inside the
aggregation window are the same, which means that the support window should only contain
neighbor pixels that have the same disparity as the center pixel. However, the support window with
fixed window size in this traditional guided filter can hardly adapt to objects with different sizes
in the scene and guarantee that the pixels inside the window have the same disparity, resulting in
inappropriate aggregation results due to pixels with different disparities are involved especially in
discontinuous regions. Besides, larger support windows are preferred in textureless regions because
more accurate mean value (µk) and variance value (σ2

k) can be estimated and thus improve the matching
cost aggregation performance. In summary, the fixed size window guided filtering is not suitable for
matching cost aggregation of textureless and discontinuous regions.

In order to better aggregate matching cost in discontinuous and textureless regions, adaptive shape
support window is required. In general, the pixels with similar intensities within a constrained area
are more likely captured from the same image structure, and thus have similar disparities. According
to this assumption, Zhang et al. [19] and Mei et al. [14] proposed to construct cross-based support
window. Cross-based support regions are constructed by expanding each pixel p to its neighbor pixels
that have similar intensities with p in the horizontal and vertical directions, expressing as V(p) and
H(p):

V(p) =
{
(x, y)

∣∣∣∣x ∈ [
xp − l−v , xp + l+v

]
, y = yp

}
(9)

H(p) =
{
(x, y)

∣∣∣∣y ∈ [
yp − l−h , yp + l+h

]
, x = xp

}
(10)

where
{
l−v , l+v , l−h , l+h

}
are the four arm lengths. Then the support region S(p) is generated by merging all

of the pixels lying on the horizontal direction for each pixel q which belongs to the vertical direction
V(p), as illustrated in Figure 4.

S(p) =
⋃

q∈V(p)
H(q), (11)

One of the core issues in constructing the cross-based adaptive shape support window is how
to design proper rules to expand the pixel p to its neighbors. Zhang et al. [19] used color similarity
Dc(p, q) and constant color similarity threshold to construct the cross-based support window. This
method cannot perform well in depth-discontinuous regions and low-texture regions at the same
time. In order to perform better in both depth discontinuous and low-texture regions, Mei et al. [14]
used both color similarity Dc(p, q) and spatial distance Ds(p, q) to construct the support window. Two
color similarity thresholds were set according to two spatial distance thresholds, as illustrated in
Figure 5a. If the spatial distance is smaller than threshold L1, a larger color similarity threshold τ1 is
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used. If the spatial distance is between L1 and L2, a smaller color similarity threshold τ2 is used. We
further improve the method in Mei et al. [14] by calculating the color similarity threshold for each
pixel adaptively. As illustrated in Figure 4, if we want to construct the adaptive support region of
pixel p, the color difference Dc(p, q) and the spatial distance Ds(p, q) between pixel p and q are first
calculated. According to the spatial distance Ds(p, q), the pixel q is labeled as textured region pixel or
textureless region pixel. If Ds(p, q) is larger than spatial distance threshold dLim, the pixel q is labeled as
textureless region pixel. Otherwise pixel q is labeled as textured region pixel. In the richly-textured
regions, the color similarity thresholds should be larger and decrease with the increase of the spatial
distance. In the textureless regions, the color similarity thresholds can be smaller and should decrease
with the increase of the spatial distance. Based on these findings, we adaptively calculate the color
similarity threshold for each pixel according to the following two rules:

Rule 1 τlarge(Ds(p, q)) = −
τ1

L1
×Ds(p, q) + τ1, if Ds(p, q) ≤ dLim.

Rule 2 τsamll(Ds(p, q)) = −
τ2

L2
×Ds(p, q) + τ2, otherwise.

In the above rules, L1 is a relatively small spatial distance constant and τ1 is a relatively large color
similarity constant for richly-textured regions. L2 is a relatively large spatial distance constant and τ2 is
a relatively small color similarity constant for low texture regions. τlarge(Ds(p, q)) and τsamll(Ds(p, q))
are the adaptively calculated color similarity threshold for richly-textured regions and textureless
regions accordingly. Rule 1 is a restricted condition which ensures that limited area is included in the
richly-textured regions. While Rule 2 is fulfilled to ensure as many points from the same depth as
possible are included in the textureless regions. The adaptively calculated color similarity threshold is
illustrated in Figure 5b.Appl. Sci. 2020, 10, x FOR PEER REVIEW  7 of 17 

 

 

Figure 4. The cross-based support region construction for cost aggregation. 

One of the core issues in constructing the cross-based adaptive shape support window is how to 

design proper rules to expand the pixel 𝑝 to its neighbors. Zhang et al. [19] used color similarity 

 𝐷𝑐(𝑝, 𝑞) and constant color similarity threshold to construct the cross-based support window. This 

method cannot perform well in depth-discontinuous regions and low-texture regions at the same 

time. In order to perform better in both depth discontinuous and low-texture regions, Mei et al. [14] 

used both color similarity 𝐷𝑐(𝑝, 𝑞) and spatial distance 𝐷𝑠(𝑝, 𝑞) to construct the support window. 

Two color similarity thresholds were set according to two spatial distance thresholds, as illustrated 

in Figure 5a. If the spatial distance is smaller than threshold 𝐿1, a larger color similarity threshold 𝜏1 

is used. If the spatial distance is between 𝐿1 and 𝐿2, a smaller color similarity threshold 𝜏2 is used. 

We further improve the method in Mei et al. [14] by calculating the color similarity threshold for each 

pixel adaptively. As illustrated in Figure 4, if we want to construct the adaptive support region of 

pixel 𝑝, the color difference 𝐷𝑐(𝑝, 𝑞) and the spatial distance 𝐷𝑠(𝑝, 𝑞) between pixel 𝑝 and 𝑞 are 

first calculated. According to the spatial distance 𝐷𝑠(𝑝, 𝑞), the pixel 𝑞 is labeled as textured region 

pixel or textureless region pixel. If 𝐷𝑠(𝑝, 𝑞) is larger than spatial distance threshold 𝑑𝐿𝑖𝑚, the pixel 

𝑞 is labeled as textureless region pixel. Otherwise pixel 𝑞 is labeled as textured region pixel. In the 

richly-textured regions, the color similarity thresholds should be larger and decrease with the 

increase of the spatial distance. In the textureless regions, the color similarity thresholds can be 

smaller and should decrease with the increase of the spatial distance. Based on these findings, we 

adaptively calculate the color similarity threshold for each pixel according to the following two rules: 

Rule 1  𝜏𝑙 𝑎𝑟𝑔 𝑒(𝐷𝑠(𝑝, 𝑞)) = −
𝜏1

𝐿1
× 𝐷𝑠(𝑝, 𝑞) + 𝜏1, if 𝐷𝑠(𝑝, 𝑞) ≤ 𝑑𝐿𝑖𝑚.  

Rule 2 𝜏𝑠𝑎𝑚𝑙𝑙(𝐷𝑠(𝑝, 𝑞)) = −
𝜏2

𝐿2
× 𝐷𝑠(𝑝, 𝑞) + 𝜏2, otherwise.  

In the above rules, 𝐿1 is a relatively small spatial distance constant and 𝜏1 is a relatively large 

color similarity constant for richly-textured regions. 𝐿2 is a relatively large spatial distance constant 

and 𝜏2 is a relatively small color similarity constant for low texture regions. 𝜏𝑙 𝑎𝑟𝑔 𝑒(𝐷𝑠(𝑝, 𝑞)) and 

𝜏𝑠𝑎𝑚𝑙𝑙(𝐷𝑠(𝑝, 𝑞)) are the adaptively calculated color similarity threshold for richly-textured regions 

and textureless regions accordingly. Rule 1 is a restricted condition which ensures that limited area 

is included in the richly-textured regions. While Rule 2 is fulfilled to ensure as many points from the 

same depth as possible are included in the textureless regions. The adaptively calculated color 

similarity threshold is illustrated in Figure 5b. 

Figure 4. The cross-based support region construction for cost aggregation.Appl. Sci. 2020, 10, x FOR PEER REVIEW  8 of 17 

 

  
(a) (b) 

Figure 5. The spatial distance thresholds and color similarity thresholds proposed by Mei et al. [14] 

(a) and the adaptive color similarity threshold proposed by this paper (b). 

The support regions generated by these three approaches are presented in Figure 6, and we can 

find that more valid pixels are included in the support window generated by our proposed method 

in large low texture regions compared with the other two methods. 

(a) (b) (c)  

Figure 6. Examples of cross-based windows on the Lampshade1 image via various construction 

approaches. (a) Zhang et al. [19]; (b) Mei et al. [14]; (c) proposed construction approach. 

After the adaptive shape support region constructed, the matching cost can be aggregated using 

guided image filter over the support region. The guided filter kernel in Equation (8) is designed for 

fixed square size window. In order to apply guided filter with adaptive shape support window to 

the cost volume, the guided filter should be modified accordingly. The modified weight kernel for 

adaptive shape support window is defined as: 

𝑊𝑖𝑗(𝐺) =
1

|𝑁𝑖|
∑ (

1

|𝑁𝑘|
∑ (1 +

(𝐺𝑖−𝜇𝑘)(𝐺𝑗−𝜇𝑘)

𝜎𝑘
2+𝜀

)𝑗∈𝑁𝑘
)𝑘∈𝑁𝑖
, (12) 

where |𝑁𝑖| and |𝑁𝑘| represent the pixel numbers of adaptive shape support regions 𝑁𝑖  and 𝑁𝑘 

respectively. 𝐺𝑖 and 𝐺𝑗 are obtained directly from the guidance image. 𝜇𝑘 and 𝜎𝑘
2 are calculated 

from the pixels of guidance image 𝐺 that inside the support region. Thus, the weight coefficient for 

each neighbor can be compute. To speed up the cost aggregation process, we use an orthogonal 

integral image technique [19] to aggregate costs in the adaptive shape regions horizontally and 

vertically respectively. 

2.3. Disparity Selection 

The initial disparity for each pixel can be directly selected using winner-take-all (WTA) strategy 

as defined by: 

𝑑𝑝 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑑∈𝐷

𝐶′(𝑝, 𝑑), (13) 

where 𝐶′(𝑝, 𝑑) represents the aggregated matching cost volume obtained by the cost aggregation, 

and 𝐷 denotes the set of all allowed candidate disparities. The disparity 𝑑𝑝 for a specific pixel 𝑝 is 

obtained by choosing the disparity that has the minimum aggregated matching cost. 

Figure 5. The spatial distance thresholds and color similarity thresholds proposed by Mei et al. [14]
(a) and the adaptive color similarity threshold proposed by this paper (b).



Appl. Sci. 2020, 10, 1869 8 of 17

The support regions generated by these three approaches are presented in Figure 6, and we can
find that more valid pixels are included in the support window generated by our proposed method in
large low texture regions compared with the other two methods.
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After the adaptive shape support region constructed, the matching cost can be aggregated using
guided image filter over the support region. The guided filter kernel in Equation (8) is designed for
fixed square size window. In order to apply guided filter with adaptive shape support window to
the cost volume, the guided filter should be modified accordingly. The modified weight kernel for
adaptive shape support window is defined as:

Wi j(G) =
1
|Ni|

∑
k∈Ni

 1
|Nk|

∑
j∈Nk

1 +
(Gi − µk)

(
G j − µk

)
σ2

k + ε


, (12)

where |Ni| and |Nk| represent the pixel numbers of adaptive shape support regions Ni and Nk respectively.
Gi and G j are obtained directly from the guidance image. µk and σ2

k are calculated from the pixels of
guidance image G that inside the support region. Thus, the weight coefficient for each neighbor can be
compute. To speed up the cost aggregation process, we use an orthogonal integral image technique [19]
to aggregate costs in the adaptive shape regions horizontally and vertically respectively.

2.3. Disparity Selection

The initial disparity for each pixel can be directly selected using winner-take-all (WTA) strategy
as defined by:

dp = arg min
d∈D

C′(p, d), (13)

where C′(p, d) represents the aggregated matching cost volume obtained by the cost aggregation, and
D denotes the set of all allowed candidate disparities. The disparity dp for a specific pixel p is obtained
by choosing the disparity that has the minimum aggregated matching cost.

2.4. Disparity Refinement by Multi-Constraints-Based Methods

The initial disparity maps obtained by WTA strategy still have many occluded and mismatched
pixels. In this section, multi-constraints-based disparity refinement methods that consist of outlier
detection, occlusion/mismatch interpolation, weighted median filter, and subpixel refinement are
adopted to handle the disparity errors.

Outlier Detection: In order to find out the outliers in the left and right disparity maps, a left-right
consistency check is applied. A pixel p is labeled as an outlier if it violates the following constraint:∣∣∣dL(p) − dR(p− dL(p))

∣∣∣ < 1, (14)
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where dL(p) and dR(p− dL(p)) are the disparities of pixel p and p− dL(p) in the left and right disparity
maps respectively. Then outliers are further categorized into occlusions and mismatches according to
the technique proposed by Hirschmuller [35] to better interpolate the disparity of the outlier pixels
using different methods in the interpolation step.

Occlusion/mismatch interpolation: In this step, we adopt different interpolation strategies to
interpolate the disparities of detected occlusion and mismatch pixels. For an occluded pixel p, a valid
non-occluded disparity value from background region is required since occluded areas normally
locate on the background. Therefore, we extract the nearest reliable pixels in eight different directions
and select the pixel with the lowest disparity value for interpolation. Otherwise, the holes due to
mismatches are processed by selecting the pixels with the most similar color value.

Weighted median filter: A weighted median filter [36] is usually implemented following behind the
interpolation process to smooth outliers and streak-like artifacts while preserving the object boundaries.
In this paper, only the invalid pixels are filtered with bilateral weights, which is computed as:

WBF = exp

−
∣∣∣p− q

∣∣∣2
σ2

s

exp

−
∣∣∣I(p) − I(q)

∣∣∣2
σ2

c

, (15)

where I(p) and I(q) represent the intensity values of the pixel p and q. Parameters σs and σc adjust the
spatial distance and color similarity, respectively. The filter assigns higher weights to pixels spatially
close and similar in color.

Subpixel refinement: Finally, a subpixel estimation approach based on quadratic polynomial
interpolation is performed to reduce the discontinuities caused by discrete disparity levels [35]. For
each pixel p, its optimal sub-pixel disparity valve dsub is determined by the following formula:

dsub = d−
C′(p, d+) −C′(p, d−)

2(C′(p, d+) + C′(p, d−) − 2C′(p, d))
, (16)

where d is the discrete depth with the minimal cost, d− = d− 1, and d+ = d + 1. C′(p, d), C′(p, d+), and
C′(p, d−) denote the aggregated costs with the corresponding disparities, respectively. Finally, a 3× 3
median filter is adopted to remove a few spikes.

3. Results and Discussion

In this section, we evaluate the performances of our proposed cost computation measurement and
cost aggregation strategy. The rectified stereo image pairs from the Middlebury benchmark dataset [32]
are used as experimental data. The experimental parameters are given in Table 1, and they are kept
constant for all tests. The percentage of bad pixels of the estimated disparities over the stereo pairs
was served as evaluating criterion. And the disparity error threshold was set to 1.0 pixel.

Table 1. Parameter settings of the proposed algorithm.

Parameter Value Parameter Value

λGRAD 25 λCTg 15
τ1 30 L1 31
τ2 6 L2 80

dLim 9 ε 0.012

3.1. Evaluation of the Robustness to the Illumination and Exposure of Our Cost Computation Method

To verify the effectiveness of our proposed cost computation method, we used six pairs of stereo
images with ground truth: Aloe, Baby1, Bowling1, Cloth1, Flowerpots, and Rocks 1, provided by
Middlebury 2006 datasets [32] which have three illuminations (1, 2, 3) and three different exposure
settings (0, 1, 2). Figure 7 shows the left image of the aloe data under three different illuminations
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(no exposure variation) and with three different exposure settings (no illumination change). In this
paper, three widely used cost computation methods were considered for comparison, including a
function combining the sum of absolute difference (SAD) and gradient [6], a function combining
absolute difference (AD) with census transform [14] and a combination of absolute difference, gradient,
and Census transform [15]. To highlight the preference of cost computation function, all disparity
maps were computed with the same cost aggregation algorithm proposed in Section 2.2 and no further
refinement was applied.
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Figure 7. The left image of the aloe data under three different illuminations (with the same exposure 1)
and with three different exposure settings (under the same Illumination 1). (a) Illumination 1;
(b) Illumination 2; (c) Illumination 3; (d) Exposure 0; (e) Exposure 1; (f) Exposure 2.

Figures 8 and 9 show two pairs of the left and right images, the ground truth maps, and the
disparity maps obtained by our proposed cost function and other three common combined cost
methods under various illuminations and with different exposure settings, respectively. In Figure 8, the
left images are captured under Illumination 1, the right images are captured under Illumination 3, and
both are with the same Exposure 1. In Figure 9, the left images are taken with Exposure 0, while the
right images are taken with Exposure 2. Furthermore, both the left image and right image are under the
same Illumination 2. Comparing Figure 8g with Figure 8d–f, the disparity maps in Figure 8g are better
than the disparity maps in Figure 8d–f, which indicates that the proposed cost computation method is
more robust to illumination variation for these textureless stereo images. Comparing Figure 9g with
Figure 9d,f, the disparity maps in Figure 9g are better than the disparity maps in Figure 9d,f, which
indicates that the proposed cost computation method is more robust to exposure variation than cost
combined SAD with gradient and cost combined AD, gradient and census. The disparity maps in
Figure 9g and the disparity maps in Figure 9d have no significant differences.
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Figure 8. Disparity maps under different illumination conditions of Aloe and Baby1. (a) Left image
under Illumination 1; (b) right image under Illumination 3; (c) ground truth; (d) cost combined sum
of absolute difference (SAD) with gradient; (e) cost combined absolute difference (AD) with census
transform; (f) combination of AD, gradient and census; (g) the proposed cost function.

The average percentage of bad pixels of disparity maps via these four different cost measurements
under three radiometric conditions are shown in Tables 2 and 3. As a reference, we also computed the
disparity maps without any illumination changes (Illumination 1) and exposure changes (Exposure 1)
and the result is shown in Table 4. In Table 2, the proposed cost computation method achieved smallest
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error matching rate in five of six pairs of stereo images and achieved the best average error matching
rate, which indicates that the proposed cost computation method is more robust to illumination
variation than the comparing methods. In Table 3, the proposed cost computation method also
achieved smallest error matching rate in five of six pairs of images and achieved the best average error
matching rate, which indicates that the proposed cost computation method is more robust to exposure
variation than the comparing methods. In Table 4, the proposed cost computation method achieved
smallest error matching rate in three of six pairs of the stereo images and achieved the best average
error matching rate, which indicates that the proposed cost computation method is comparable to
state-of-the-art cost computation methods in situations without radiometric changes. From the results
in Tables 2–4, we can conclude that our proposed cost function is less sensitive to lighting changes and
exposure changes. This is mostly because the absolute difference is too sensitive to the image intensity
variations, which weaken the accuracy of the other three approaches. Additionally, our proposed cost
method is more robust under different exposure configurations than different illumination settings.
One possible reason is that the change of exposure is regarded as a global linear transformation, while
changing illumination results in local radiometric differences.
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Figure 9. Disparity maps with different exposures of Aloe and Baby1. (a) Left image with Exposure
0; (b) right image with Exposure 2; (c) ground truth; (d) cost combined SAD with gradient; (e) cost
combined AD with census transform; (f) combination of AD, gradient and census; (g) the proposed
cost function.

Table 2. Error matching rate of various cost computation under different illumination.

Algorithms Aloe Baby1 Bowling1 Cloth1 Flowerpots Rocks1 Avg

SAD + Grad 32.175 16.882 40.9 10.829 53.528 27.238 30.259
AD + Cen 32.274 25.055 46.147 13.212 56.0 18.732 31.903

AD + Grad + Cen 37.149 23.175 46.658 12.69 72.106 32.375 37.359
Proposed 22.034 11.115 26.946 11.333 34.185 13.849 19.910

Table 3. Error matching rate of various cost computation with different exposures.

Algorithms Aloe Baby1 Bowling1 Cloth1 Flowerpots Rocks1 Avg

SAD + Grad 52.51 50.672 46.434 50.178 87.562 79.773 61.188
AD + Cen 16.173 11.118 20.022 11.096 41.021 15.329 19.127

AD + Grad + Cen 31.012 30.182 31.374 13.543 77.590 44.218 37.987
Proposed 15.205 10.658 22.782 11.060 29.834 14.094 17.272

Table 4. Error matching rate of various cost computation without radiometric changes.

Algorithms Aloe Baby1 Bowling1 Cloth1 Flowerpots Rocks1 Avg

SAD + Grad 12.409 12.009 26.122 9.619 20.697 10.598 15.242
AD + Cen 13.61 11.811 23.859 10.475 22.676 12.766 15.866

AD + Grad + Cen 15.349 12.350 24.563 11.236 21.832 12.586 16.319
Proposed 14.478 9.749 18.663 11.085 18.644 12.008 14.104
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3.2. Evaluation of Adaptive Shape Guided Filter on the Middlebury Benchmark Dataset

In this section, we chose 21 stereo pairs in Middlebury 2006 dataset for evaluation. To verify the
effectiveness of our proposed algorithm, we evaluated both the local stereo matching method with the
original guided image filter (GF) [23] and our proposed stereo matching method. The parameters of
cost aggregation with an original guided filter such as the window size and smooth parameter are set
according to [23]. We adopted the same cost computation method in both the original guided image
filter algorithm and the proposed algorithm, which was proved to be more robust than other combined
cost computation methods in Section 3.1. Further, to obtain more accurate disparity maps, we also
used the same multi-constraints-based disparity refinement to exclude as many outliers as possible.

The stereo matching results of six pairs of textureless stereo images (Lampshade1, Lampshade2,
Midd1, Midd2, Monopoly, and Plastic) are shown in Figure 10. Comparing the disparity maps in
Figure 10e matched by our proposed method to the disparity maps in Figure 10c matched by the
traditional guided filter algorithm, the disparity maps matched by our proposed method are much
smoother in the textureless regions and preserves the edges better. Comparing the error maps of the
proposed method in Figure 10f to that of the traditional guided filter algorithm in Figure 10e, the
error pixels of our proposed method is much less than that of the traditional guided filter. The results
presented in Figure 10 indicates that our proposed algorithm performs better than the original guided
filter in large low texture images.

The percentage of bad pixels in the matching results of all 21 stereo pairs matched by our proposed
method and traditional guided filter algorithm are shown in Table 5. The traditional guided filter
algorithm performs much better (better than one percent of bad pixels) than our proposed method in 7
of the 21 stereo pairs (Aloe, Baby1, Baby2, Bowling1, Bowing2, Cloth2, and Wood1). In 8 of the 21
stereo pairs (Baby3, Cloth1, Cloth3, Cloth4, Flowerpots, Rocks1, Rocks2, and Wood2), our proposed
method achieved comparable bad pixel rate to the traditional guided filter algorithm. For the six pairs
of low texture stereo images, the proposed method achieved a much better result than the traditional
guided algorithm. Although the error pixels have increased in 8 of the 21 image pairs, our algorithm
is obviously more effective for textureless images. Especially in textureless image pairs Midd1 and
Midd2, our proposed algorithm obviously recovers more correct disparity in low texture background
(the third and fourth row in Figure 10). The error rate of Midd1 data is reduced by 23.8% and the error
rate of Midd2 data is reduced by about 19%.
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Figure 10. Comparison of the original cost aggregation method with our proposed method for the
Middlebury dataset. From top to bottom: Lampshade1, Lampshade2, Midd1, Midd2, Monopoly,
Plastic. (a) Left images; (b) ground truth maps; (c) results of the local stereo matching method based on
traditional guided filter; (d) error maps for the method based on traditional guided filter; (e) results of
the proposed method; (f) error maps of the proposed method.

Table 5. Percentage of bad pixels for the Middlebury 2006 dataset.

Algorithm Aloe Baby1 Baby2 Baby3 Bowling1 Bowling2

GF 7.407 2.575 5.534 5.981 7.94 12.184
Proposed 8.626 4.092 10.635 6.197 14.636 14.794

Algorithm Cloth1 Cloth2 Cloth3 Cloth4 Flowerpots Lampshade1

GF 2.96 8.613 3.94 8.393 12.405 11.223
Proposed 3.225 10.418 4.332 8.454 12.696 9.54

Algorithm Lampshade2 Midd1 Midd2 Monopoly Plastic Rocks1

GF 15.729 37.653 35.381 22.803 32.666 4.183
Proposed 8.57 13.857 16.27 7.335 25.724 4.968

Algorithm Rocks2 Wood1 Wood2 Avg (all)

GF 3.587 3.829 0.965 11.712
Proposed 3.973 8.574 0.484 9.4

3.3. Evaluation of the Influences of Parameter Settings

Selecting proper parameters is very important in local stereo matching methods. In this section, we
explore the influence of different parameter settings. The main parameters in the cost computation step
are regularization parameters λGRAD and λCTg, which play an important role to adjust the proportion
of two costs in the combined cost function. We chose five textureless images as test images and tuned
the parameter individually with the rest of the parameters remaining constant. Figure 11a,b show the
quantitative influence of parameters λGRAD and λCTg to disparity estimation in detail. From this figure,
we can find that disparity results are stable with regularization parameters λGRAD and λCTg varying
from 15 to 45. When λGRAD is set to 25 and λCTg is set to 15, the overall performance is relatively better,
so λGRAD is recommended to be set to 25 and λCTg is recommended to be set to 15.

In the step of cross-based support window construction, the color similarity threshold τ1 and arm
length threshold L1 were used to adjust the size of the support window for the richly textured regions.
These two parameters have no significant influence on the disparity accuracy for most images, as
shown in Figure 11c,d, since we set a small distance threshold (dLim = 9) to distinguish the textureless
region from the textured region. For the Lampshade2 data set, the parameter settings (τ1 = 30, L1 = 31)
improved the disparity accuracy by about 2% in the discontinuous regions. The experimental results
are more affected by tuning the color similarity threshold τ2 and arm length threshold L2, which were
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used to determine the size of the adaptive support window in the large textureless regions. In this
paper, we set the color similarity threshold τ2 to 6 and arm length threshold L2 to 80 respectively
to obtain good accuracy. In addition, the disparity results degraded gradually with the increasing
distance threshold dLim, so we selected a small distance threshold which was set to 9. The smooth
parameter of the modified guided filter ε was set according to [23].
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Figure 11. The experimental results on different parameter settings using the Middlebury textureless
images. (a) Regularization parameterλGRAD for enhanced gradient-based matching cost; (b) regularization
parameter λCTg for modified census transform-based matching cost; (c) color similarity threshold τ1;
(d) arm length threshold L1; (e) color similarity threshold τ2; (f) arm length threshold L2; (g) distance
threshold dLim.
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4. Conclusions

It is challenging to handle occluded, textureless and discontinuous regions in stereo matching.
In order to obtain better disparity maps in large textureless regions, this paper proposed a local stereo
matching method using efficient combined matching cost measurement and adaptive shape guided
filter. A matching cost computation method that combines enhanced gradient-based matching cost
with improved census transform-based matching cost, which is more robust against exposure variations
and illumination changes as well as textureless areas, is proposed. Besides, cross-based adaptive shape
support region is constructed for each pixel using adaptively calculated color similarity threshold
and an adaptive shape guided filter based on this cross-shaped support region is implemented to
aggregate matching cost and thus improve the accuracy of disparity estimation for large low texture
regions. Experiments were conducted using Middlebury benchmark dataset to validate the proposed
methods. The experimental results indicate that our proposed stereo matching method can produce
more accurate disparity maps for large low texture regions. The average percentage of bad pixels
of our proposed method is about 9.40%, which is much lower compared with the original guided
filter-based method.
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