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Abstract: This paper proposes a deep neural network (DNN)-based method for predicting ore
production by truck-haulage systems in open-pit mines. The proposed method utilizes two DNN
models that are designed to predict ore production during the morning and afternoon haulage sessions,
respectively. The configuration of the input nodes of the DNN models is based on truck-haulage
conditions and corresponding operation times. To verify the efficacy of the proposed method, training
data for the DNN models were generated by processing packet data collected over the two-month
period December 2018 to January 2019. Subsequently, following training under different hidden-layer
conditions, it was observed that the prediction accuracy of morning ore production was highest when
the number of hidden layers and number of corresponding nodes were four and 50, respectively.
The corresponding values of the determination coefficient and mean absolute percentage error (MAPE)
were 0.99% and 4.78%, respectively. Further, the prediction accuracy of afternoon ore production was
highest when the number of hidden layers was four and the corresponding number of nodes was 50.
This yielded determination coefficient and MAPE values of 0.99% and 5.26%, respectively.

Keywords: open-pit mine; deep learning; deep neural network (DNN); truck-haulage system;
ore production

1. Introduction

In open-pit mines, ore loading and hauling material-handling operations account for approximately
50% of the total mine-operation cost [1]. Therefore, it is essential to design a truck-haulage system
that not only maximizes mine productivity and equipment-management efficiency but also minimizes
haulage cost [2]. Recently, several discrete-event simulation techniques [3–11] have been proposed
for realizing effective truck-haulage systems designs. The allocation phase in the simulation of
truck-haulage systems involves selecting the type, size, number, and payload of fleets suitable for use
in haulage operations. This is followed by a dispatch phase that assigns trucks to a specific shovel
by considering ore production and equipment utilization [12]. Several simulation algorithms based
on mixed-integer linear programming [13–15], queuing theory [2,16–19], linear programming [20–22],
goal programming [23], and stochastic programming [24] have been proposed for fleet allocation.
Simulation techniques based on the assignment-problem [25,26] and transportation-problem [27]
approaches have also been developed for truck dispatching. Several other products for sophisticating
truck dispatching, such as Modular Mining Systems’ DISPATCH® [28] and Caterpillar’s CAT®

MINESTAR™ [29], have also been commercialized.
Information communication technologies (ICTs), such as wireless communications, sensor

networks, global positioning system (GPS), and cloud computing, have been implemented at
open-pit-mining sites to facilitate real-time monitoring of the operating status and haulage information
of equipment, as well as collection of equipment-tracking data on web servers [30–38]. Further, several
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truck-dispatch techniques have been proposed to simulate truck systems using real-time data collected
from mining sites. For example, Tan et al. [39] identified discrete haulage-operation events by analyzing
historical GPS truck-tracking data and implemented a truck-dispatch simulation algorithm using the
Arena® software. Chaowasakoo et al. [40] developed a real-time truck-dispatch system that plans
truck-haulage strategies using truck-shovel activity-time data obtained from GPS.

However, providing a comprehensive and effective truck-haulage systems simulation algorithm
is difficult. First, open-pit mines are characterized by frequent changes in loading points during
operations along with the use of multiple equipment-movement paths, unlike underground mines [1].
Additionally, several environmental factors, such as the weather, rock characteristics, and road
conditions, affect haulage operations [12,41]. Thus, it is difficult to design a simulation algorithm
for truck-haulage systems in large open-pit mines, where ore loading and haulage operations are
simultaneously performed at multiple locations. Moreover, several types of simulation algorithms can
be developed for a haulage plan that changes in real time, and it is difficult to alter these algorithms
depending on variations in the haulage plan. Therefore, it is necessary to develop a simulation strategy
that understands not only the characteristics of truck-haulage systems but also the sequence of discrete
haulage operations. Additionally, the simulation technique must accurately predict ore production
and equipment utilization using equipment-tracking data previously accumulated without use of
prior-knowledge-based algorithms.

Deep learning methods have recently attracted increased research interest because they facilitate
easy analysis and efficient processing of large amounts of big data obtained from ICT systems [42]. Deep
learning is an artificial intelligence (AI) technique wherein a computer analyzes data characteristics
and designs prediction models without human interference or prior knowledge [43]. Deep learning
methods extract high-level data features by using models that comprise a hierarchical connection of the
input, hidden, and output layers [44,45]. Nodes within each layer are connected to those in subsequent
layers and provide predicted values as output using a feed-forward method. In this way, training of a
deep learning model continues until prediction errors are minimized [46,47]. Deep learning models
are classified into several types, such as a deep neural network (DNN) [45,46], convolutional neural
network (CNN) [47,48], and recurrent neural network (RNN) [49,50], depending on the input-data
type and data-processing method employed.

Recently, various investigations have been performed to incorporate deep learning techniques into
mining-industry applications. Models that can detect anomalies [51–53], analyze deposit potential [54–
57], predict fuel consumption by trucks [58], and recognize cutting patterns of coal-mining shearers [59]
have been developed. Additionally, several risk-prediction systems employing deep learning techniques
have been developed to prevent occurrence of mining accidents [60,61]. Other deep learning-based
systems that have been recently developed include a visual object-detection system that can classify
workers and heavy mining vehicles in open-pit mines [62], stability-evaluation system for gate
roadways in a long wall-mining environment [63], and prediction system for health risks caused by
whole body vibration of mining-truck drivers [64]. Baek and Choi [65] developed a DNN model to
predict ore production and crusher utilization of a truck-haulage system using equipment-tracking
data obtained using a wireless network system installed in an underground mine. However, no
algorithm capable of learning truck-haulage-system characteristics and predicting ore production
using equipment-tracking data has yet been developed for use in open-pit mining applications.

Predicting ore production through deep learning using equipment-tracking data affords several
advantages. It aids comprehension of the operating patterns of haulage equipment and facilitates
ore-production prediction exclusively using data obtained from mining sites without developing
algorithms based on prior knowledge. Even in cases involving changes in the haulage plan,
ore-production prediction can be realized by simply updating the prediction model with the latest
datasets. Moreover, prediction of the latest ore produce can be realized by providing data obtained in
real time as input to the prediction model. Furthermore, deep learning methods can be used throughout
the lifetime of mines by continuously updating their underlying prediction model.
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In this study, an open-pit limestone mine installed with an ICT-based mine-safety-management
system was used as the investigation location. Two DNN models were designed to predict morning
and afternoon ore productions, respectively, with the input-layer nodes of each model configured with
the truck-haulage operating conditions and haulage-operation time as variables. DNN-model training
data were generated by processing packet data collected over the two-month period December 2018
to January 2019. The two models were trained by varying the number of hidden layers and their
corresponding nodes, and their prediction accuracy was evaluated by calculating the determination
coefficient and mean absolute percentage error (MAPE) for the training and validation data. By using
the DNN model with the lowest prediction error, morning and afternoon ore productions on five days
of the second week of February 2019 were predicted and compared against observed values.

2. Study Area

In this study, an open-pit mine owned by Hanil Cement Co., Ltd. in the Republic of Korea (position
coordinates: 128◦ 19′58′′ E; 37◦ 1′ 59′′ N), was selected as the investigation location. The mine produces
limestone, from which approximately 8.1 million tons of cement is manufactured each year. Figure 1
depicts an aerial view of the selected open-pit mine. The mine is approximately 2-km long, 700-m
wide, and 50-m deep. There are two dumping zones in the mine, each with an ore-processing shaft.
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Institute in South Korea, map datum: World Geodetic System (WGS) 1984).

The mine is equipped with 10 shovels, two loaders, and three dozers to facilitate ore production,
along with 15 dump trucks with loading capacities of 45, 60, and 84 tons for ore haulage, which is
accomplished via real-time dispatch. A production manager determines loading points by considering
daily ore-production targets and target ore grades. Additionally, these managers inform truck drivers of
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their destinations. Truck drivers drive to loading points to load ore into their trucks, and subsequently,
drive to the nearest dumping zones. If there is no truck waiting to dump the ore it is carrying, they
immediately dump the ore into the shaft; otherwise, they wait for their turn. If the quantity of dumped
ore exceeds the shaft capacity, the trucks dump the excess ore into the storage yard within the dumping
zone. Next, the truck drivers drive back to loading points, and repeat the ore-hauling operation.
The ore dumped into the shaft is subsequently crushed and transferred to the cement plant via use of a
conveyor belt.

The open-pit mine selected in this study is installed with an ICT-based mine-safety-management
system that tracks the locations of equipment and mineworkers, as well as monitors operating
conditions. Four wireless access points (APs) are installed in the investigation location considered.
These wireless APs confirm the equipment location by recognizing tags attached to the equipment and
send this information to a web server in real time. An operation manager can check this equipment
location and its operating status in real time by visualizing the information sent to the server on his office
dashboard (refer Figure 2). Figure 3 depicts the structure of packet data sent to the web server upon
identification of equipment tags by wireless APs. Packet data are categorized into tag-recognition date,
tag-recognition time, IP address of the identifying wireless AP, and tag-location data. The tag-location
data are further divided into start of text (STX), data type, emergency type, tag sequence, tag ID,
latitude, longitude, CHECKSUM, and end of text (ETX). The tag sequence indicates packet-data
continuity and comprises numbers between zero and 255. Truck locations are expressed in the form
of latitude and longitude coordinates, as measured by GPS, recorded in the degree-minutes-seconds
(DMS) notation. Approximately 700,000 packet data are sent to the web server per day.
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3. Methods

3.1. DNN Prediction

A DNN model comprises three layers: Input, hidden, and output. Figure 4a depicts the
DNN-structure model. Each layer comprises multiple nodes connected hierarchically to all nodes in
the subsequent layer. The input and output layers are, in general, single layers, whereas the hidden
layer may comprise two or more layers. Data features are fed to the input layer, and prediction values
are derived from the output layer after processing them in the hidden layers. Figure 4b describes
the prediction principle of a DNN model. The weighted sum of nodes is calculated and predicted
values are derived using an activation function that exists within each hidden-layer node that receives
the weighted sum of nodes as input and converts them into valid values. The most commonly used
activation function in regression analysis is the rectified linear unit (ReLU) [66], which produces a
value equal to the input if the weighted sum of nodes exceeds or equals zero; otherwise, it yields a
value of zero.
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ReLU predicts values by repeatedly modifying the weight during each DNN-model training [67].
This weight modification is performed in reverse from the output layer to the input layer via
backpropagation [68] until the cost function is minimized. The cost function can be expressed as the
sum of the squares of differences between the observed and predicted values. Equation (1) defines the
relation to evaluate the cost function (E). Here, n refers to the number of output-layer nodes, and yk
and ŷk denote the observed and predicted values of the kth output node, respectively. Equation (2)
adjusts the weight in such a way that the difference between the previous weight and partial derivative
of the error function can be assumed as the next weight. Here, i denotes the node number in the
previous layer, j denotes the node number in the next layer, wt

i j denotes the weight at time t, and η
denotes the learning rate.

E =
n∑

k=1

(yk − ŷk)
2 (1)

wt
i j = wt

i j − η
∂E
∂wt

i j

(2)

3.2. Design of DNN Model

As already mentioned, two DNN models were designed in this study to independently
predict morning and afternoon ore productions owing to variations in the truck-haulage operation
characteristics during different periods of the day. Figure 5 depicts the structure of a DNN model
comprising a single input layer, l hidden layers, and one output layer. The input and output layers
comprise 19 nodes and a single node, respectively. The hidden layer was designed to comprise m
nodes in all l layers.
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In general, truck-haulage systems simulation algorithms analyze how often trucks transport ore
from the loading zone to the dumping zone during unit working time to predict ore production [6].
For this purpose, simulation factors (daily working time, number of dispatched trucks, truck loading
capacity, etc.) and temporal factors (truck-haulage operation time) are entered into the simulation
algorithm [38]. Truck-haulage operation time consists of discrete events, such as ore loading, traveling,
ore dumping, spotting, and waiting, and can be defined by the truck cycle time theory proposed by
Subolesk [69]. In the truck cycle time theory, truck cycle time (TCT) can be expressed as the sum of
spotting time at the loader (STL), loading time (LT), travel time of the loaded truck (TL), stopping time
at the dumping zone (STD), dumping time (DT), travel time of the empty truck (TE), and average delay
time (AD), as defined by Equation (3).

TCL = STL + LT + TL + STD + DT + TE + AD (3)

In this study, the input nodes in the input layer were set to the input factors of the truck-haulage
system simulation that were modified to fit the system of the study area. The input nodes in
the input layer can be divided into truck-haulage operating conditions and haulage-operation
time. The output-layer node was either set to ore production during the morning or afternoon
haulage-operation period, conditionally.

Table 1 lists the different input nodes based on their type and measurement unit. To control
the scale of the input variables, operation times were expressed in the relative sense. For example,
if morning operation starts at 8:30 a.m., the corresponding start time was set to 0 min. Thus, if the
morning operation ends at 12:00 p.m., the corresponding end time equals 210 min. The same reasoning
applies to afternoon start and end times. The interval between operation times refers to the difference
between relative operation start and end times. The number of trucks dispatched by loading capacity
equals the number of trucks observed at the operation start time. The average travel time of a truck
equals the time required by a truck to travel to the loading point (from the dumping zone), perform
ore loading, and return to the dumping zone.
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Table 1. Description of input nodes in the proposed DNN model.

ID Type Unit

1 Relative operation start time Min
2 Relative operation end time Min
3 Interval between operation times Min
4 Number of dispatched 45 tons trucks Number
5 Number of dispatched 60 tons trucks Number
6 Number of dispatched 84 tons trucks Number
7 Loading capacity of 45 tons trucks Tons
8 Loading capacity of 60 tons trucks Tons
9 Loading capacity of 84 tons trucks Tons
10 Dumping zone A utilization of 45 tons trucks Ratio
11 Dumping zone B utilization of 45 tons trucks Ratio
12 Dumping zone A utilization of 60 tons trucks Ratio
13 Dumping zone B utilization of 60 tons trucks Ratio
14 Dumping zone A utilization of 84 tons trucks Ratio
15 Dumping zone B utilization of 84 tons trucks Ratio
16 Average stay time of trucks at dumping zone A Min
17 Average stay time of trucks at dumping zone B Min
18 Average travel time of trucks using dumping zone A Min
19 Average travel time of trucks using dumping zone B Min

3.3. Data Preparation for DNN Model

Training data for the proposed DNN model were generated by processing approximately 35.7
million data packets obtained from the mine-safety-management system. The processing was performed
over two months—December 2018 and January 2019. The results of packet-data analysis revealed
that the morning operation progressed from 8:30 a.m. (relative time: 0 min) to 12:00 p.m. (relative
time: 210 min), whereas afternoon operations lasted from 1:00 p.m. (relative time: 0 min) to 4:30 p.m.
(relative time: 210 min). The data-generation process employed in this study is explained as follows
(refer to Figure 6):

1. First, all incident packet data were preprocessed. Subsequently, packet data sent from the third
wireless AP (AP3) were extracted along with truck-tag recognition data. All hexadecimal values
were converted to decimal.

2. Packet data recorded during valid operation time intervals were subsequently sampled. Operation
time intervals were set to 30, 60, 90, 120, 150, 180, and 210 min with incremental shifts of 2-min
each to consider probable cases covering the period from 0 to 210 min. For example, if the
operation time interval equaled 30 min, 91 probable cases, such as 0–30, 2–32, 4–34, and 180–210
min, can be considered during the morning session.

3. Extracted packet data were classified according to the truck-tag ID, and dumping-zone utilization
of the trucks was calculated. The dumping-zone utilization of zone A by 45-ton trucks was
calculated as the ratio of the number of dumping-zone-A visits to the sum of dumping-zone-A
and dumping-zone-B visits (refer to Equation (4)). If trucks remained inside a dumping zone for
more than 1 min (can be calculated by comparing the latitude and longitude coordinates of a truck
recorded as packet data with dumping-zone coordinates), the number of dumping-zone visits
made by a truck was increased by one. In Equation (4), U(DA)45 and U(DB)45 denote dumping
zone A and B utilizations, respectively, by the 45-ton trucks, whereas NV(DA)45 and NV(DB)45
denote the number of visits made by 45-ton trucks to dumping zones A and B, respectively.

4. The average stay and travel times of trucks inside and outside the dumping zone, respectively,
were also calculated. Equation (5) calculates the average stay time (AST(DA)) of all trucks
inside dumping zone A. Here, TST(DA)45, TST(DA)60, and TST(DA)84 represent the sum of
the dumping zone A stay times corresponding to the 45-, 60-, and 84-ton trucks, respectively.
Equation (6) calculates the average travel time (ATT(DA)) of all trucks using dumping zone



Appl. Sci. 2020, 10, 1657 8 of 25

A. In this equation, TTT(DA)45, TTT(DA)60, and TTT(DA)84 represent the sum of travel times
corresponding to the 45-, 60-, and 84-ton trucks, respectively, using dumping zone A.

5. The amount of ore produced during a given operation time was calculated by multiplying the
loading capacity of each truck with the number of visits it made to the dumping zone (refer to
Equation (7)).

6. Finally, all calculated values were saved in a training-data format, the next operation-time interval
was set, and the above process was repeated 2–5 times.

U(DA)45 =
NV(DA)45

NV(DA)45 + NV(DB)45
, UDB45 =

NV(DB)45

NV(DA)45 + NV(DB)45
. (4)

AST(DA) =
TST(DA)45 + TST(DA)60 + TST(DA)84

NV(DA)45 + NV(DA)60 + NV(DA)84
(5)

ATT(DA) =
TTT(DA)45 + TTT(DA)60 + TTT(DA)84

NV(DA)45 + NV(DA)60 + NV(DA)84
(6)

OP = 45×
{
NV(DA)45 + NV(DB)45

}
+ 60×

{
NV(DA)60 + NV(DB)60

}
+

84×
{
NV(DA)84 + NV(DB)84

}
(tons)

(7)
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3.4. Statistical Analysis of Training Data

Using the above-described process, 16,217 training datasets were generated for the proposed DNN
model for prediction of morning ore production, and corresponding datasets concerning afternoon
ore production equaled 16,005. Figure 7 depicts the distribution of morning and afternoon ore
productions. As can be observed, the average morning ore production equaled 2987 tons, whereas the
corresponding afternoon production equaled 2960 tons. Table 2 lists average values of the number of
dispatched trucks, dumping zone utilizations, stay times, and travel times observed during morning
and afternoon operations.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 26 
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Table 2. Results of statistical analysis of training data.

Features

Ore Production (M 1) Ore Production (A 2)

Dump Truck Type Dump Truck Type

45 tons 60 tons 84 tons 45 tons 60 tons 84 tons

Average number of dispatched trucks 4 2 4 3 2 4
Average utilization ratio (DA 3:DB 4) 0.51:0.49 0.34:0.66 0.27:0.73 0.45:0.55 0.30:0.70 0.21:0.79

Average stay time (min) DA 2.25 2.29
DB 3.65 2.64

Average travel time (min) DA 11.08 11.51
DB 10.39 10.47

1 Morning, 2 Afternoon, 3 Dumping zone A, 4 Dumping zone B.

The value of the Pearson correlation coefficient between input variables and ore production
was calculated, and the correlation between them analyzed using training data (refer to Table 3).
Equation (8) provides the relation for evaluating the Pearson correlation coefficient (r). In this equation,
n denotes the number of samples; xi and yi denote values of the ith sample; x denotes the mean
of x samples; and y denotes the mean of y samples. Values of the Pearson correlation coefficient
between ore production and operation-time interval were observed to be 0.77 and 0.81 for the morning
and afternoon operation times, respectively. The interval between operation times demonstrated
the highest positive correlation with ore production, regardless of the operation time. Additionally,
relative operation-end times and number of dispatched 60- and 80-ton trucks demonstrated a positive
correlation with ore production, whereas relative operation-start time revealed a negative correlation
with ore production.

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(8)

Table 3. Pearson correlation coefficient values obtained between different input variables and ore
production during the morning and afternoon operation times.

Ore Production during Morning Operation Time Ore Production during Afternoon Operation Time

Input Variables PCC 1 Input Variables PCC 1

Interval between operation times 0.77 Interval between operation times 0.81
Relative operation end time 0.43 Relative operation end time 0.40

Number of dispatched 60 tons trucks 0.41 Number of dispatched 60 tons trucks 0.37
Number of dispatched 84 tons trucks 0.31 Number of dispatched 84 tons trucks 0.33

Dumping zone A utilization of 60 tons trucks 0.22 Dumping zone B utilization of 84 tons trucks 0.17
Number of dispatched 45 tons trucks 0.22 Number of dispatched 45 tons trucks 0.17

Average staying time of trucks in dumping zone B −0.19 Dumping zone A utilization of 84 tons trucks −0.10
Relative operation start time −0.33 Relative operation start time −0.40

1 Pearson correlation coefficient.

3.5. Experimental Setup for DNN Model Training

To optimize the DNN models to predict the morning and afternoon ore productions efficiently,
the DNN models were trained with different settings for the number of hidden layers and the number
of nodes within them. Table 4 describes the number of hidden layers and the number of hidden layer
nodes set for DNN model training by experience. The number of hidden layers was varied from three
to five, and the number of hidden layer nodes varied from 30 to 50 in increments of 10.
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Table 4. Hidden layer configuration for DNN model training.

Hidden Layer
Configuration

No. of Hidden Layer No. of Hidden Layer Nodes No. of
CasesFrom To Interval From To Interval

3 5 1 30 50 10 9

A 5-fold cross validation was conducted five times to evaluate prediction performance of DNN
models with different hidden layer configurations. The 5-fold cross validation randomly shuffles the
data set and divides the data set into five sets. One set is used for validation set and the other four sets
are used for training set. Five experimental validations are executed at one round. After one round of
cross-validation, random shuffling process of the whole data set is repeated again. That is, totally 25
experimental runs are used for the performance evaluation on the DNN model.

To evaluate the prediction error of the DNN models, the values of the coefficient of determination
(R2) and mean absolute percentage error (MAPE) between predicted and observed values were
evaluated. Equation (9) defines the evaluation of the coefficient of determination, wherein n denotes
the number of datasets; yi denotes the observed value of the ith training data; ŷi denotes the predicted
value of the ith training data; and y denotes the mean observed value. Equation (10) describes
MAPE evaluation.

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − y)2 (9)

MAPE =
1
n

n∑
i=1

∣∣∣yi − ŷi
∣∣∣

yi
× 100 (%) (10)

T-significance test was performed to determine if the performance differences of DNN models
for validation data are statistically significant. T-test calculates the p-value considering the mean and
variance of MAPE differences of two DNN models and determines if null hypothesis is rejected or
accepted. Null hypothesis means there is no predictive performance difference between two DNN
models. If p-value is equal or less than significance level, null hypothesis is rejected. Equation (11)
refers to the variance of MAPE differences of two DNN models, wherein k denotes the number of folds,
r denotes the number of total rounds of cross-validation, x denotes MAPE differences for validation
data of two DNN models, m denotes the mean of MAPE differences of two DNN models. Equation
(12) describes corrected repeated k-fold cross-validation t-test [70]. Here, n1 denotes the number of
training data, n2 denotes the number of validation data. T-value is converted into the p-value through
the student’s t-distribution considering the degree of freedom. Significance level was set to 0.05, and
two-tailed test was conducted.

σ̂2 =
1

k× r− 1

k∑
i=1

r∑
j=1

(
xi j −m

)2
(11)

t =
1

k×r
∑k

i=1
∑r

j=1 xi j√(
1

k×r +
n2
n1

)
σ̂2

(12)

Figure 8 depicts a flowchart of the algorithm developed in this study for DNN model training.
This algorithm was developed as a Python script and implemented using TensorFlow (Google; Menlo
Park, CA, USA)—an open-source deep learning module. The structure of the proposed DNN model
was first configured, and subsequently, prediction error evaluation was performed with 5 × 5-fold
cross validation. After choosing the best hidden layer configuration of DNN model, final DNN model
training was performed using whole training data. Optimal DNN model demonstrating the lowest
prediction error was considered for subsequent utilization. One thousand iterations for DNN model
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training was performed, and ReLU was used as the activation function. The Adam optimizer was
considered as a means to employ the gradient-descent method.
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3.6. Inference Using DNN Model

Estimates of morning and afternoon ore-production amounts in February 2019 were obtained
using optimized DNN models developed and trained as described above. The first week of February
2019 was a week of national holidays in the Republic of Korea, thereby resulting in reduced ore
production. The daily average ore production in the first week of February was observed to have been
reduced by approximately 10,000 tons compared to the previous month. The utility of the proposed
DNN model with regard to accurate ore-production predictions at the identified mine location was
assessed by applying the same to perform the said predictions during morning and afternoon operation
times over five days: 9, 11, 12, 13, and 14, February 2019. Ore production in the morning accounted
for the amount of ore mined in 210 min between 8:30 a.m. and 12:00 p.m. Accordingly, afternoon ore
production accounted for mining operations performed between 1:00 p.m. and 4:30 p.m. Input data for
DNN models were generated by processing approximately 280,000 packet-data samples recorded over
the above-mentioned five days. Table 5 lists variable values provided as input to the two DNN models.
Based on these input data, it was revealed that the number of 45-, 60-, and 84-ton trucks dispatched for
operation on the morning of 9 February amounted to four, two, and four, respectively, and that all these
trucks used dumping zone B. Additionally, it was revealed that the average stay time of the trucks in
dumping zone B, the average travel time, and calculated ore-production were 2.83 min, 10.6 min, and
6819 tons, respectively. To account for the error-increase rate between the calculated and observed
values, the inference error was evaluated by the percentage error (PE), as defined by Equation (13):

PE =
yi − ŷi

yi
× 100 (%) (13)
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Table 5. Data provided as input to DNN models for predicting ore production during morning and afternoon operation times.

Date
Morning Operation Time

Input Features OP 1

2/9 0 210 210 4 2 4 45 60 84 0 1 0 1 0 1 0 2.83 0 10.6 6819
2/11 0 210 210 2 3 5 45 60 84 0 1 0 1 0 1 0 6.21 0 12.33 4791
2/12 0 210 210 3 3 5 45 60 84 0.09 0.91 0 1 0 1 8.95 3.04 13.2 12.08 7467
2/13 0 210 210 3 2 4 45 60 84 0 1 0 1 0 1 0 4.44 0 9.36 7686
2/14 0 210 210 5 3 4 45 60 84 0.57 0.43 0.44 0.56 0 1 3.23 1.81 15.08 9.87 9075

Date
Afternoon Operation Time

Input Features OP 1

2/9 0 210 210 3 2 4 45 60 84 0 1 0 1 0 1 0 4.35 0 11.27 6033
2/11 0 210 210 3 2 4 45 60 84 0 1 0 1 0 1 0 3.46 0 10.12 6501
2/12 0 210 210 4 3 5 45 60 84 0.1 0.9 0 1 0 1 13.88 4.4 7.4 10.69 6117
2/13 0 210 210 3 2 4 45 60 84 0 1 0 1 0 1 0 4.56 0 10.58 4872
2/14 0 210 210 4 3 4 45 60 84 0.72 0.28 0.74 0.26 0 1 4.09 1.5 10.41 11.91 8256

1 Ore production.
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4. Results

4.1. Experimental Evaluation of Trained DNN Models

Figure 9 depicts trends observed in the calculated average values of R2 and MAPE, obtained
during 5 × 5-fold cross-validation of the morning and afternoon prediction DNN models, in accordance
with changes in hidden-layer conditions. As can be seen, the average value of R2 for validation data is
equal to 0.99 with increase in the number of hidden-layer nodes, irrespective of the number of hidden
layers. MAPE values for validation data decrease with increase in the number of hidden-layer nodes,
irrespective of the number of hidden layers. The highest MAPE value for the validation data was 6.08%
when the number of hidden layers was three and the number of corresponding nodes was 30, whereas
the lowest MAPE value of 4.78% was observed for four hidden layers and 50 hidden-layer nodes.
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Table 6 describes the mean and standard deviation of MAPE of DNN models for validation data,
in accordance with the number of rounds of 5-fold cross validation. The lowest mean and standard
deviation of MAPE were analyzed in (4, 50), (5, 50), and (4, 40) of hidden layer configuration conditions.
Table 7 lists the results of t-significance test for DNN models. In the table, ‘p < 0.05’ indicates that the
difference of MAPE of two models was statistically significant. In contrast, ‘NS’ means the predictive
performance of two models were both equal to each other. The results of the t-significance test for
MAPE of DNN models shows that DNN models with (4, 40), (5, 50), and (4, 40) of hidden layer
configuration follow with no statistically significant differences in the predictive performance.
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Table 6. Statistical analysis results of mean absolute percentage error (MAPE) of DNN models for
predicting morning ore production according to the number of rounds of 5-fold cross validation.

No. of Hidden
Layers

No. of Hidden
Layer Nodes

Statistics of
MAPE

Round of 5-Fold Cross Validation Total
Mean1 2 3 4 5

3

30
Mean 6.06 6.09 6.22 6.13 5.90 6.08
STD 0.26 0.47 0.43 0.17 0.19 0.30

40
Mean 5.54 5.43 5.77 5.37 5.66 5.55
STD 0.24 0.21 0.38 0.38 0.10 0.26

50
Mean 4.97 5.14 5.30 5.04 5.12 5.11
STD 0.13 0.36 0.58 0.32 0.21 0.32

4

30
Mean 5.66 5.87 5.81 5.66 6.02 5.81
STD 0.22 0.17 0.32 0.25 0.38 0.27

40
Mean 5.09 5.00 4.90 5.06 5.12 5.04
STD 0.34 0.18 0.30 0.18 0.41 0.28

50
Mean 4.98 4.77 4.64 4.75 4.78 4.78
STD 0.21 0.24 0.17 0.28 0.15 0.21

5

30
Mean 5.45 5.53 5.73 5.54 5.39 5.53
STD 0.43 0.36 0.26 0.39 0.30 0.35

40
Mean 5.36 5.14 4.87 4.77 5.22 5.07
STD 0.09 0.39 0.29 0.20 0.54 0.30

50
Mean 4.75 5.02 4.95 4.87 4.74 4.87
STD 0.14 0.18 0.25 0.49 0.20 0.25

Table 7. Results of t-significance test for DNN models for predicting morning ore production with
different hidden layer configurations.

DNN Models
(No. of Hidden Layers,

No. of Hidden Layer Nodes)
(3, 30) (3, 40) (3, 50) (4, 30) (4, 40) (4, 50) (5, 30) (5, 40) (5, 50)

(3, 30)
(3, 40) p < 0.05
(3, 50) p < 0.05 NS
(4, 30) NS 1 NS p < 0.05
(4, 40) p < 0.05 NS NS p < 0.05
(4, 50) p < 0.05 p < 0.05 NS p < 0.05 NS
(5, 30) p < 0.05 NS NS NS NS p < 0.05
(5, 40) p < 0.05 NS NS p < 0.05 NS NS NS
(5, 50) p < 0.05 p < 0.05 NS p < 0.05 NS NS p < 0.05 NS

1 Not statistically significant.

In this study, the DNN model corresponding to the MAPE value for validation data was considered
to realize optimum performance in predicting morning ore production. The optimum model comprised
four hidden layers and 50 hidden-layer nodes.

Similar to Figure 9, Figure 10 depicts the trends for R2 and MAPE values corresponding to the
DNN model for prediction of afternoon ore production. The average value of R2 was equal to 0.99,
regardless of the number of hidden layers and hidden-layer nodes. The average value of MAPE
values, in general, decrease with increase in hidden-layer nodes. The highest MAPE value of 7.00%
corresponds to three hidden layers and 30 hidden-layer nodes, whereas its lowest value of 5.22%
corresponds to five hidden layers and 50 hidden-layer nodes.
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Table 8 shows statistical analysis results of MAPE of DNN models for prediction afternoon ore
production, in accordance with the number of rounds of 5-fold cross validation. It was observed
that the prediction error of afternoon ore production was lowest when the number of hidden layers
and number of corresponding nodes were (5, 50), (4, 50), and (3, 50), respectively. As observed in
Table 9, there was no statistically significant differences in predictive performances among the three
DNN models.

Table 8. Statistical analysis results of MAPE of DNN models for predicting afternoon ore production
according to the number of rounds of 5-fold cross validation.

No. of Hidden
Layers

No. of Hidden
Layer Nodes

Statistics of
MAPE

Round of 5-Fold Cross Validation Total
Mean1 2 3 4 5
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30
Mean 6.63 7.23 6.90 7.10 7.13 7.00
STD 0.56 0.70 0.44 0.56 0.68 0.59

40
Mean 6.05 6.11 6.25 6.07 6.22 6.14
STD 0.42 0.42 0.41 0.24 0.25 0.35

50
Mean 5.53 5.55 6.04 5.41 5.74 5.65
STD 0.39 0.23 0.82 0.29 0.19 0.38

4

30
Mean 6.53 6.32 6.61 6.50 6.29 6.45
STD 0.48 0.41 0.42 0.17 0.12 0.32

40
Mean 5.76 5.80 5.66 5.55 5.86 5.73
STD 0.31 0.16 0.24 0.31 0.21 0.25

50
Mean 5.18 5.42 5.28 5.15 5.25 5.26
STD 0.26 0.30 0.26 0.25 0.15 0.24

5

30
Mean 6.13 6.32 6.63 6.38 6.50 6.39
STD 0.13 0.60 0.53 0.47 0.58 0.46

40
Mean 5.60 5.60 5.43 5.66 5.92 5.64
STD 0.42 0.40 0.28 0.66 0.39 0.43

50
Mean 5.31 5.25 5.34 5.07 5.10 5.22
STD 0.36 0.44 0.41 0.30 0.27 0.36
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Table 9. Results of t-significance test for DNN models for predicting afternoon ore production with
different hidden layer configurations.

DNN models
(No. of Hidden Layers,

No. of Hidden Layer Nodes)
(3, 30) (3, 40) (3, 50) (4, 30) (4, 40) (4, 50) (5, 30) (5, 40) (5, 50)

(3, 30)
(3, 40) p < 0.05
(3, 50) p < 0.05 NS
(4, 30) NS 1 NS p < 0.05
(4, 40) p < 0.05 NS NS p < 0.05
(4, 50) p < 0.05 p < 0.05 NS p < 0.05 p < 0.05
(5, 30) NS NS p < 0.05 NS NS p < 0.05
(5, 40) p < 0.05 NS NS p < 0.05 NS NS p < 0.05
(5, 50) p < 0.05 p < 0.05 NS p < 0.05 p < 0.05 NS p < 0.05 NS

1 Not statistically significant.

In this study, the optimum DNN model was chosen as the one corresponding to the lowest
mean and standard deviation of MAPE value for the validation data (i.e., four hidden layers and 50
hidden-layer nodes) for accurate prediction of afternoon ore production.

4.2. Inference Drawn Using Optimum DNN Models

Using the optimum morning and afternoon DNN models, ore-production estimates were obtained
for five days in the second week of February 2019; the results are illustrated in Figure 11. Table 10 lists
prediction-error values for ore production by date. In regards to morning ore production, compared to
actual values, ore-production predictions were found to be overestimated by 14.96%, 9.11%, 7.41%, and
4.10% on 9, 11, 12, and 14 February, 2019, respectively, whereas predictions underestimated by 21.42%
were obtained on 13 February, 2019, respectively. Morning ore-production predictions for the five days
demonstrated an average absolute error of 11.40%. In regards to afternoon ore production, compared
to actual values, ore-production predictions underestimated by 22.92%, 4.41%, 12.23%, 2.68%, and
2.12% were obtained on 9, 11, 12, 13, and 14 February, 2019, respectively. The average absolute error
in afternoon ore production for the five days equaled 8.87%, which is lower than corresponding to
morning ore production by 2.53%. A comparison between the sum of predicted morning and afternoon
ore-production value and the actual daily ore production demonstrated the two values to be nearly
identical, and the resulting MAPE equaled 4.17%.

The main reason behind the observed difference in the actual ore production and that predicted
by DNN models is that haulage operating conditions, such as the number of trucks dispatched, their
dumping-zone stay times, and average travel time, vary in real time during the morning and afternoon
hours of operation. Ore production can vary significantly if the number of trucks dispatched during
operation is reduced, or a truck is assigned to loading points far away from dumping zones. However, in
this study, since ore-production predictions were made by exclusively considering operating conditions
at operation-start times, inference errors for validation data were observed to exceed prediction errors.

Table 10. Prediction error between predicted and actual ore productions during five working days.

Date
Percentage Error (%) for Ore Production

Morning Operation Time
(8:30 a.m.–12:00 p.m.)

Afternoon Operation Time
(1:00 p.m.–4:30 p.m.)

All day
(8:30 a.m.–4:30 p.m.)

2019-02-09 14.96 −22.92 −2.82
2019-02-11 9.11 −4.41 1.33
2019-02-12 7.41 −12.23 −1.43
2019-02-13 −21.42 −2.68 −14.15
2019-02-14 4.10 −2.12 1.13

MAPE 11.40 8.87 4.17
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5. Discussions

5.1. Real-Time Ore-Production Prediction Using Optimum DNN Models

In this study, ore-production predictions were predicted every 30 min during the morning and
afternoon operation times on 9, 11, and 14 February, 2019 using optimum DNN models to account
for changes in haulage-system conditions that occur in real time. Seven ore-production predictions
were performed at start times of 8:30 a.m. (0 min), 9:00 a.m. (30 min), 9:30 a.m. (60 min), etc. up to
12:00 p.m. (210 min) during mornings. Corresponding start times in the afternoon were 1:00 p.m.
(0 min), 1:30 p.m. (30 min), 2:00 p.m. (60 min), etc. up to 4:30 p.m. (210 min). The number of trucks
dispatched equaled the number of 45-, 60-, and 84-ton trucks dispatched for haulage operations at
the start time of each prediction. The dumping-zone utilization, average stay time of trucks in the
dumping zone, and their average travel time were set using results of statistical analysis described in
Section 3.

Figure 12 depicts prediction results obtained for 9 February, 2019. Predicted ore production values
during the morning and afternoon operation times along with cumulative ore production up to the
end of the last prediction are shown in the figure. Owing to a gradual increase in average stay time
in dumping zone B between 8:30 a.m. and 10:00 a.m., corresponding ore production demonstrated
a gradual decrease. At 10:30 a.m., one 45-ton truck was removed from dispatch; this illustrates the
lowest ore production at the said time. However, the average travel time of trucks decreased from
11:00 a.m. onwards, and consequently, ore production tended to increase again. At 1:30 p.m., one 45-ton
and 60-ton truck each were removed from dispatch, thereby resulting in a significant decrease in
ore production. However, given the decrease in average truck-travel time from 2:00 p.m. onwards,
ore production was observed to increase once again.
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Figure 12. Ore-production predictions performed every 30 min on 9 February, 2019.

Figure 13 depicts ore-production predictions performed every 30 min during ore-haulage
operations on 11 February, 2019. The observed value of accumulated ore production until 12:00 p.m.
was less compared to the corresponding predicted value (predicted at 8:30 a.m.) owing to removal
of one 84-ton truck from dispatch at 9:00 a.m. Similarly, the accumulated actual ore production until
4:30 p.m. exceeded the afternoon ore production predicted at 1:00 p.m. because some trucks were
assigned to loading points close to dumping zones, thereby resulting in shorter average travel times
and more-than-expected ore production.
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Figure 13. Ore-production predictions performed every 30 min on 11 February, 2019.

Figure 14 depicts the comparison between predicted and actual cumulative ore productions
observed every 30 min during haulage operations on 14 February, 2019. The average travel time
of trucks decreased at 9:00 a.m. compared to that at 8:30 a.m. This led to prediction of increased
ore production. At 11:30 a.m., both the average travel and stay times of trucks decreased, thereby
resulting in prediction of even higher ore production. In contrast, during afternoon haulage operations,
the average stay time of trucks increased at both dumping zones A and B, and therefore, the DNN
model predicted a gradual decrease in ore production.
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Performing multiple ore-production predictions per day affords several advantages over
performing only a single prediction in the morning or afternoon at the start of the haulage operation.
Haulage operating conditions prevalent at the start of operation may change as the operation progresses.
On 9 February, a difference was observed between the predicted ore production at the start of the
haulage operation and cumulative ore production at the end of the said operation owing to changes in
the number of the trucks dispatched during operation hours. If we analyze haulage-system conditions
in real time by obtaining haulage data from mining sites in accordance with a specific operation
period and provide them as input to DNN models, accurate ore-production predictions can be realized.
Furthermore, task managers can make intuitive and effective decisions, such as dispatching additional
trucks or changing the location and number of loading points to meet daily production targets by
verifying the ore production predicted over a specific period.

5.2. Comparison of the DNN and the Multiple Regression Analysis

In order to compare the predictive performances of the DNN model with those of other learning
methods, morning ore production were predicted through the multiple regression analysis. The 16,217
training datasets were used for multiple regression analysis model training, and 5 × 5-fold cross
validation was performed to determine the degree of multiple regression equation. Table 11 shows cross
validation results performed when the degree of multiple regression equation is set to 2. The average R2

for validation data was 0.91, and the average MAPE was 23.54%. The average and standard deviation
of MAPE for validation data was higher than that of DNN model. According to the t-significant
test results, the predictive performance differences between the DNN model and multiple regression
analysis model were considered statistically significant (t-value: −4.09, p-value < 0.005).

Table 11. Results of accuracy analysis of multiple regression analysis model for predicting morning ore
production using training and validation data.

Degree of Multiple
Regression Equation Statistics

Round of 5-Fold Cross Validation Total
Mean1 2 3 4 5

2
R2 Mean 0.90 0.90 0.90 0.91 0.92 0.91

STD 0.13 0.13 0.14 0.12 0.10 0.13

MAPE
Mean 23.71 23.47 23.87 23.37 23.26 23.54
STD 8.37 8.52 9.37 8.34 7.82 8.48

Morning ore production estimates were obtained for five days in the second week of February
2019 through multiple regression analysis. Figure 15 illustrates the results of morning ore production
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inference, and Table 12 shows inference error between observed and predicted values. MAPE for
morning ore production inference over five days was analyzed to be about 16.37%, which was about
4.97% higher than the DNN model inference error. As the results of the inference, it was possible to
predict morning ore production more accurately when using the DNN model rather than the multiple
regression analysis.
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Table 12. Prediction error between predicted and actual morning ore productions during five
working days.

Date
MAPE

2019-02-09 2019-02-11 2019-02-12 2019-02-13 2019-02-14

Percentage
Error (%) 13.00 48.68 8.10 −11.78 0.28 16.37

5.3. Further Study

In recent years, prediction has become popular and is being applied in many fields. Many
advanced predictive deep learning models, such as stacked auto encoders (SAE) [71], deep belief
networks (DBN) [72], and Deep Boltzmann machine (DBM) [73], have been developed and proven to
be effective. In addition, many machine learning algorithms (such as random forest regression [74]
and support vector regression (SVR) [75]) also have been used to analyze and predict data properties.
Moreover, advanced deep learning algorithms have been developed and compared with conventional
algorithms to evaluate performances [76–81].

In this study, basic DNN models that were not combined with other advanced algorithms was
used to predict morning and afternoon ore productions, because this study is a first attempt to predict
ore production using equipment-tracking data obtained from open-pit mines. It was possible to
confirm that DNN models can predict the ore production of truck-haulage systems with low MAPE.
However, it is difficult to affirm that basic DNN is particularly suitable and the best model to predict
morning and afternoon ore productions. Therefore, it will be necessary to conduct performance
comparisons between DNN models and other predictive models to explore the best case for ore
production prediction.

In order to estimate the accurate predictive performance of the DNN model, bias error and
variance error should be considered. Bias and variance error concepts were introduced by structure
risk minimization (SRM), which is suggested by Vapnik [82]. Bias error and variance error indicate the



Appl. Sci. 2020, 10, 1657 21 of 25

predictive sensitivity caused by the parameters of the learning algorithm and the training dataset size,
respectively. High bias causes overfitting of the DNN model on the training data, on the other hand,
high variance causes underfitting.

Haykin [83] compared predictive performances of the DNN model considering the learning
parameters (i.e., the learning rate, the momentum constant, and the number of training epochs)
and the training dataset size to optimize the DNN model configuration. However, in this study,
fixed training dataset size and learning parameters were used for optimizing hidden layer structure
configurations. Therefore, further studies are required to analyze the predictive sensitivity of DNN
models on various training dataset sizes and learning parameter conditions to optimize hidden layer
structure configurations.

6. Conclusions

This paper proposed using DNN models to predict ore production by truck-haulage systems in
open-pit mines. Training data for two DNN models (one each for morning and afternoon ore-production
prediction) were generated by processing packet data obtained from a preselected mining site over a
two-month period. Additionally, the DNN models were optimized by varying the number of hidden
layers and their corresponding nodes. The results obtained in this study established that MAPE for
morning and afternoon ore-production predictions equaled 11.40% and 8.87%, respectively, and the
error between the actual and predicted ore productions in a given day was of the order of 4.17%.

This study aids analysis of truck-haulage operating conditions and corresponding operation
times by using a large packet dataset collected over a two-month period. Additionally, the study
aids comprehension of truck-haulage-system characteristics along with discrete haulage-operation
sequences and supports prediction of ore production through training of DNN-based deep learning
models without the need to develop additional algorithms. Therefore, it is expected that the proposed
ore-production prediction method will be able to eliminate problems encountered by conventional
truck-haulage-system simulation methods based on complex algorithms.

Mines are dynamic systems, and working environments therein change very frequently. If DNN
models can be sufficiently trained using data collected over an extended period, most dynamic
haulage-operation conditions can be accounted for, thereby resulting in highly accurate predictions.
Additionally, DNN models must be frequently updated with the latest training data to account for the
latest changes in haulage-operation conditions. There exists a need to undertake further research in
this direction to determine the optimum period for collecting training data, as well as the intervals
over which DNN models need to be updated.
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