
applied
sciences

Article

Model-Based Virtual Components in Event-Based
Controls: Linking the FMI and IEC 61499

Michael H. Spiegel 1,2 , Edmund Widl 1,* , Bernhard Heinzl 2 , Wolfgang Kastner 2

and Nabil Akroud 3

1 Center for Energy, Austrian Institute of Technology, 1210 Vienna, Austria; michael.spiegel@ait.ac.at
2 Institute of Computer Engineering, Automation Systems Group, TU Wien, 1040 Vienna, Austria;

bernhard.heinzl@tuwien.ac.at (B.H.); k@auto.tuwien.ac.at (W.K.)
3 Ormazabal Corporate Technology, 48340 Amorebieta-Etxano, Bizkaia, Spain; nak@ormazabal.com
* Correspondence: edmund.widl@ait.ac.at

Received: 30 January 2020; Accepted: 24 February 2020; Published: 28 February 2020
����������
�������

Abstract: Various development and validation methods for cyber-physical systems such as
Controller-Hardware-in-the-Loop (C-HIL) testing strongly benefit from a seamless integration
of (hardware) prototypes and simulation models. It has been often demonstrated that linking
discrete event-based control systems and hybrid plant models can advance the quality of control
implementations. Nevertheless, high manual coupling efforts and sometimes spurious simulation
artifacts such as glitches and deviations are observed frequently. This work specifically addresses
these two issues by presenting a generic, standard-based infrastructure referred to as virtual
component, which enables the efficient coupling of simulation models and automation systems.
A novel soft real-time coupling algorithm featuring event-accurate synchronization by extrapolating
future model states is outlined. Based on considered standards for model exchange (FMI)
and controls (IEC 61499), important properties such as real-time capabilities are derived and
experimentally validated. Evaluation demonstrates that virtual components support engineers
in efficiently creating C-HIL setups and that the novel algorithm can feature accurate synchronization
when conventional approaches fail.

Keywords: Functional Mock-up Interface; IEC standards; real-time systems; synchronization;
automation; delays

1. Introduction

The complexity of instances of cyber-physical systems, like smart grids, calls for mature
testing and validation methods in order to ensure correct operation in safety-critical situations [1].
In this context, model-based techniques allow representing parts of the overall system as virtual
components and to simulate their dynamic behavior using numerical models, e.g., for evaluating
control algorithms based on a virtual model of the physical system [2]. Such applications require
the coupling of (time-continuous) simulation models with automation infrastructure, forming hybrid
discrete/continuous systems. Integration of discrete and continuous dynamics remains a challenging
task [3], due to the need for non-trivial time synchronization in combination with (distributed)
event handling and accuracy requirements. Hardware-in-the-Loop (HIL) simulation, where some
parts of the control loop are physical hardware, imposes even stricter requirements, like real-time
capabilities. The accuracy of HIL setups strongly depends on the timing and synchronization
properties, e.g., to avoid instabilities [4].

Typically, simulation models and automation systems are coupled using tool-specific and/or
custom-built interfaces, which require significant development effort and offer little reusability [5].

Appl. Sci. 2020, 10, 1611; doi:10.3390/app10051611 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0281-867X
https://orcid.org/0000-0002-2834-306X
https://orcid.org/0000-0001-8297-7533
https://orcid.org/0000-0001-5420-404X
https://orcid.org/0000-0002-7756-1354
http://dx.doi.org/10.3390/app10051611
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/5/1611?type=check_update&version=2

Appl. Sci. 2020, 10, 1611 2 of 14

In contrast, interfaces based on established technology standards covering a broader variety of
simulation models and tools offer the ability to develop more generic virtual component interfaces
that are reusable across different setups.

In this work, a concept for a generic virtual component for bridging the gap between the
automation systems and simulation domain is devised. This generic virtual component is based
on established standards from each domain, in particular the IEC 61499 and Functional Mock-up
Interface (FMI) standard, and implements two different approaches for time synchronization and
event mapping.

The article is structured as follows: Section 2 briefly describes the state-of-the-art, and Section 3
introduces the concept of generic virtual components in detail. An experimental evaluation of the
studied concepts is presented in Section 4, and concluding remarks are given in Section 5.

2. Related Work

Various efforts in combining simulation models and tools, both on a per-tool basis and via
dedicated standards, have already been conducted [2,6–11]. In general, standard-based couplings
reduce the effort of tool-specific links and support a generic method beyond a specific use case [6].
Nevertheless, special attention has to be put on accurately mapping underlying simulation methods to
standard-based simulation interfaces [7,8,10,11].

2.1. Functional Mock-Up Interface

One standardized numeric representation of simulation models is given by the FMI standard
for Model Exchange [6,12,13]. At the time of writing, two versions, 1.0 and 2.0, of the FMI have
been released. The second FMI version introduces several optional capabilities such as persisting
the state of a model. Each numerical model is encapsulated into a single file, which is referred to as
Functional Mock-up Unit (FMU), and can be instantiated and accessed by other tools, for instance to
create a comprehensive simulation with models from various sources. The FMU itself contains a static
XML-based model description and a set of C functions that implement the dynamic behavior of the
model, represented by a set of Ordinary Differential Equations (ODEs) and discontinuities including
discrete changes, called events [12,13]. Equations are defined in terms of C functions and require
an external numerical solver to compute the results of a simulation. An FMU may either contain a
compiled platform-specific binary executable of the C functions or the source code itself.

In order to create a generic virtual component that connects simulation with automation
infrastructure, one needs to couple the continuous or hybrid FMI-based component model and
the surrounding discretized system. Although the FMI does not focus on purely discrete systems,
several authors have successfully described the integration of FMUs, and hybrid models in general,
into discrete event-based simulations [7,8,14]. Eker et al. presented a structured approach for
coupling heterogeneous models, such as continuous-time and discrete event-based models, into a joint
simulation that forms a tree of locally homogeneous submodels [14].

A predictive approach for integrating FMUs into discrete event-based simulations was proposed
in [7,8] and implemented as an external library called FMI++. The approach allows bidirectionally
synchronizing the operation according to the timing of scheduled events.

2.2. Distributed Control Systems Using IEC 61499

The concept of events to overcome a strictly periodic operation is also found in industrial
control applications [15–17]. The IEC standard 61499 defines a system-level design language for
distributed event-based control systems and has been successfully deployed in several industrial
applications [18,19]. The scope of IEC 61499 is well beyond mere scheduling of control
algorithms [15–17].

The standard defines several architectural entities, such as devices, potentially distributed
applications, and Function Blocks (FBs). In general, control applications are composed of connected FBs

Appl. Sci. 2020, 10, 1611 3 of 14

that implement a certain operation and expose their functionality via dedicated in- and out-puts. An FB
may provide event in- and out-puts that can be associated with data in- and out-puts, respectively.
As soon as an event is encountered in one of the event inputs, the operation of the FB is triggered, data
outputs may be updated, and output events can be fired. Some FB may additionally trigger output
events without prior input events, e.g., in case some hardware inputs change or a timeout is reached.

Strasser et al. demonstrated that IEC 61499 is not limited to asynchronous control strategies,
but can also be successfully used in synchronous closed-loop controls [19]. As such, the concept of
event-based virtual components is also applicable in synchronous systems.

In the current IEC 61499 standard, it is not possible to express real-time semantics such as
execution-time constraints [15,20]. To overcome these limitations, Lindgren et al. proposed backwards
compatible real-time semantics and demonstrated its use in a response-time and CPU-time analysis [20].
Hence, it is possible to analyze the real-time behavior of IEC 61499-based controllers that access virtual
components, but further information beyond the standard is needed.

2.3. Model-Based Control Engineering

Some efforts in coupling controllers and simulation models have already been presented [2,9,21].
In order to use tools not designed for hard real-time operation in real-time co-simulations,
Zehetner et al. presented a co-simulation algorithm based on polynomial extrapolation to break
closed loops between real-time and non-real-time facilities [22].

Several commercially available tools already claim to support HIL simulations and the
FMI (for instance: TISC Suite, Simulation Workbench, Labcar-Operator, ControlBuild, CarMaker,
Model.CONNECT). Many of these tools specifically focus on the automotive domain, but some
tools already implement communication protocols from the automation domain or specifically target
automation systems. Gunnarsson, Erwall, and Mårtensson conducted proof-of-concept experiments
to test FMI support in B&R Automation Studio based on a reaction wheel pendulum [23,24].
A co-simulation in Automation Studio and a controller HIL simulation using two Programmable
Logic Controllers (PLCs) revealed that, in principle, the HIL simulation was feasible and that the
outcome was strongly influenced by the chosen cycle time.

Although some work in standard-based linking of automation and simulation tools has already
been conducted, none of the reviewed approaches specifically focused on event-based controls for
real-time applications. In particular, the application of predictive event synchronization in real-time
control systems has not been analyzed in detail, yet. Preliminary work outlining predictive real-time
event synchronization for automation systems has been presented in [25], but no closed-loop operation
and only limited support for a best-effort operation could be achieved.

3. Generic Virtual Components

The demand for creating virtual mock-ups that efficiently emulate system components does
not allow for time and cost intensive development efforts. A model needs to be transformed
into virtual components as fast and seamlessly as possible to enable rapid development life cycles.
A generic virtual component shortcuts the manual coupling effort by integrating the model into the
surrounding automation system without the prior need for developing the appropriate interfaces or
mock-up implementations.

Since generic virtual components are not limited to a particular model or automation system,
a discussion needs to be based on general assumptions on the model and the automation system.
In particular, the presented work assumes an FMI-compliant model to encode the component behavior
and an IEC 61499-compliant automation system in which the virtual component is instantiated.
Still, various levels of integration are conceivable, e.g., by transforming a component model into an
IEC 61499-compliant description [26] or by accessing the component via a network connection [2,9].

Appl. Sci. 2020, 10, 1611 4 of 14

3.1. System Model

A generic virtual component cannot rely on the system architecture of a particular plant or control
system. On the contrary, a suitable abstract architecture needs to be found for further analysis. In order
to feature a generalized discussion in the context of IEC 61499, it is assumed that:

• the virtual component can be accessed via a dedicated FB,
• communication is restricted to the occurrence of events,
• each event e is triggered at a particular instant of time t(e) [27], and that
• e holds a set of variables that are either sent to the virtual component or to the automation system.

Although a control algorithm may choose to alter a variable between two consecutive events,
values are not communicated across FB boundaries. From an outside perspective, a continuous virtual
component holds exposed values constant unless they are communicated via an event.

Still, the FMI-based representation of the virtual component needs to be mapped to a set of
properly timed events. An abstract system model of a generic virtual component is presented in
Figure 1, which defines the following major components:

• Representational mapping: A generic virtual component has to map the hybrid representation
defined by the FMI to discrete events that can be exchanged within the automation system. Such
a mapping comprises the numerical computation of the state of the FMU based on its ODEs and
the algorithm mapping possibly continuous in- and out-puts to discrete events e. The algorithm
will be discussed in more detail in the following sections.

• Time synchronization: Since IEC 61499 events do not include a notion of time, the current progress
of simulation time has to be synchronized, e.g., to the clock of a controller. Synchronization
may also influence the range of feasible approaches for representational mapping since such a
projection may have to be conducted in real time.

• Automation system interface: The actual integration of the virtual component into the automation
system is implemented in the automation system interface, e.g., via a network connection. It is
assumed that the automation system interface simply relays discrete events e without changing
their abstract semantics.

Hybrid ODE Representation

Discrete-Event Representation

Numerical Model

Time Synchronization

Automation System Interface

Automation System

V
irtual C

om
pon

ent

Representational
Mapping

Hybrid ODE Solver

Event Mapping

Timed Discrete-Event Representation

t f(t), g(t),

IEC 61499-based Representation

REQ CNF
ACTION_DECODER

ACTION

ACTION_DECODER

OVERVOLTAGE_BLOCK
FAST_UP

STANDARD_UP
NORMAL

STANDARD_DOWN
FAST_DOWN

UNDERVOLTAGE_BLOCK

REQ CNF
OUTPUT_DRIVER

UP

OUTPUT_DRIVER

READY
FAST_UP
STANDAD_UP
STANDARD_DOWN
FAST_DOWN

DOWN

CNF
UP
DOWN

REQ
ACTION
READY

Figure 1. Abstract system model.

Appl. Sci. 2020, 10, 1611 5 of 14

3.2. Periodic Event Mapping

One commonly used approach for implementing the abstract representational mapping of Figure 1
is periodic synchronization. Thereby, data are periodically exchanged at discrete points in simulation
time, ti = i · Ta with Ta ∈ R+ and i ∈ N0, only. For each synchronization point, an event ei,
t(ei) = ti, which covers the model outputs, is sent to the automation system. Between two consecutive
synchronization points, the model is solved independently, and no data are exchanged. In case an
event ej with ti < t(ej) < ti+1 is triggered by the automation system, it has to be delayed until the
next synchronization point ti+1. Likewise, any FMI event between synchronization points indicating a
possible discontinuity cannot be directly transmitted because outputs are only sampled at the next
synchronization point. Figure 2 illustrates the basic operation of the periodic approach.

Figure 2. Periodic event mapping.

Although a controller may maintain its own notion of time differently from real time (e.g., in the
case of a purely virtual simulation), often the virtual component needs to run according to real time.
To study the timing of virtual components in more detail, the progress function pk : R → R is
introduced, which maps the current instant of real time t to the current notion of (simulation) time of
component k. For the automation system AS, simply a continuous clock is assumed and pAS(t) = t.
For an FMU, pFMU(t) is controlled by the solver and may differ from the current instant of real time.
Notably, pFMU(t) may not be continuous because the equations are solved in discrete steps. In order
to allow a timely operation, all synchronization events e = ei have to be triggered in time, and the
progress of every component k has to converge to:

t(e) = lim
t→t(e)−

pk(t). (1)

To guarantee a hard real-time operation with the idealized real-time condition (1), the Worst Case
Execution Time (WCET) Wsol of solving one step of size Ta needs to be bound, and in conjunction
with the communication WCET Wco, the constraint Wsol + Wco < Ta has to hold. Wsol highly depends
on the WCETs of the FMI functions, as well as the ODE solver and may not even exist. Additionally,
an FMU may indicate an arbitrary number of FMI events ni at step i. When assuming that solving
one continuous step is bound by Wstep, an event update by Wupd, and managing the model in- and
out-puts by Wio, one can estimate Wsol by:

Wsol = (ni + 1) ·Wstep + (ni + 2) ·Wupd + Wio. (2)

Note that the event update function has to be executed at the end of each continuous step and
after external inputs are applied. Even if the solver and all FMI functions provide a bound WCET,
the number of events ni within a single step needs to be bound as well.

Appl. Sci. 2020, 10, 1611 6 of 14

3.3. Predictive Event Mapping

One major drawback of periodic event mapping is that instant changes in both the FMI model
and the automation system cannot be directly communicated, but have to be delayed until the next
communication point ti+1. Hence, the event mapping may be well-suited for periodic control and
communication schemes, but hinders asynchronous integration of virtual components. In particular,
for delay-sensitive applications, a considerable deviation may be introduced, and Ta needs to be
carefully chosen. The predictive approach proposed in [7,8] and illustrated in Figure 3 can be used
to dynamically choose the next synchronization point and to reduce nominal delays. For predictive
event mapping, FMI events and IEC 61499 events are directly mapped without introducing periodic
synchronization events ei. Nevertheless, an FMU or the interface program may choose to trigger
intermediate events to communicate altered continuous outputs.

To provide adaptive synchronization, the predictive approach solves the included FMU until the
next communication need is encountered [7,8]. The prediction is conducted under the assumption
that no external event that potentially changes inputs is scheduled. As soon as an external event is
scheduled before the upcoming predicted event, the state of the model is reset to the time instant of the
external event, the predicted event that was added to the event queue before is invalidated, and the
prediction cycle starts anew. In order to aid resetting the FMU, multiple intermediate states that can be
quickly recalled without repeating numerical integration are periodically stored.

Figure 3. Predictive event mapping: Predicted events will be invalidated and updated as soon as
events from the automation system arrive.

While in non-real-time applications with revocable events, exact synchronization is feasible [7,8],
special attention has to be placed on real-time operation. Again, precise real-time operation would be
established if all FMI events e are triggered in time (1). Define fk(e) as the time when component k
finishes processing the arbitrary event e, and assume that event ea−1 has to be processed just before the
FMI event ea. To predict one event fully, including its associated values, and to advance the progress
function pFMU(t) at the real time instant t to pFMU(t) = t(ea), one needs to predict the upcoming
event ea, call the FMI event update function, and manage the output calculation and transmission [25].
When assuming that predicting one event takes at most Wpred and managing the model outputs has a
WCET of Wout, ea can be safely triggered in time if:

fFMU(ea−1) + Wpred + Wupd + Wout < t(ea). (3)

In general, IEC 61499 events e may be enqueued and processed out of time, i.e., fFMU(e) > t(e).
Consequently, the time from which on an FMI event ea is safely permitted depends on the type and
time of previous events eb, t(eb) ≤ t(ea). In order to reduce the event interdependency, one can assert
that each event is immediately processed and that ea−1 is triggered in a timely manner, i.e., Equation
(1) is satisfied for the event origin k [25]. First, let ea−1 be an event from the automation system and
assume that processing ea−1 takes at most Wa-upd. Consequently, (3) implies:

Appl. Sci. 2020, 10, 1611 7 of 14

t(ea−1) + Wa-upd + Wpred + Wupd + Wout < t(ea). (4)

Second, let ea−1 be an FMI event. By definition, processing ea−1 ends as soon as it is fully predicted
and (3) implies (5) and (4), as well.

t(ea−1) + Wpred + Wupd + Wout < t(ea) (5)

To maintain the assertion of timed events ec from the automation system, ec must not be triggered
unless the FMU has finished processing the previous event ec−1 and does not start to finalize the
next predicted event ea by calling the update and output functions. According to the event mapping
algorithm, each event triggers a new prediction, even if the next event is external. Similarly, ec can
be safely triggered if (6) holds, and (7) is implied for both types of events when assuming a timely
operation of ec−1:

fFMU(ec−1) + Wpred ≤ t(ec) < t(ea)− (Wupd + Wout) (6)

t(ec−1) + Wa-upd + Wpred < t(ec) < t(ea)− (Wupd + Wout) (7)

From the WCET analysis, it follows that for all types of events, there is a time frame in which they
may safely occur. Nevertheless, in comparison to the periodic approach, not only the total number
of events between two consecutive synchronization points, but also the distance between any two
consecutive events has to be restricted, which particularly prevents models featuring feedthrough [25].
Still, predictive event mapping allows sampling and transmitting data values as soon as an event is
triggered, even if a best-effort approach is used and the event cannot be delivered exactly in time.
Since the FMI does not specify any execution time bounds and does not restrict the distance between
events, hard real-time operation of either periodic or predictive event mapping, which requires known
WCETs, is not feasible in general.

Due to the limited reset capabilities of FMI 1.0 and the optional support in FMI 2.0, calling the
event update function may alter the internal discrete state of an FMU and prevent a proper reset below
the executed event [25]. Hence, calling the update and output functions must be delayed until no
prior IEC 61499 event is permitted and the predicted event is scheduled. In (6) and (7), the update
time is statically bound by Wupd + Wout, but a best-effort implementation cannot use a static WCET.
Although it may be feasible to further optimize the schedule of calling the event update function by
estimating the execution time, the described implementation uses the predicted event time as the
deadline for submitting IEC 61499 events and schedules the update function as soon as the event time
is reached.

3.4. Implementation Aspects

Based on the coupling algorithms and the system model of Figure 1, a unified program flow was
developed and a prototypical interface program was implemented. The interface program itself, called
FMITerminalBlock, was implemented in C++ and released under an open source license (available at
https://github.com/AIT-IES/FMITerminalBlock).

3.4.1. Unified Best-Effort Operation

In order to manage a best-effort operation without event loss, a centrally managed queue was
implemented, which schedules events according to their nominal event time. In case a predicted
event becomes outdated, it has to be withdrawn and must not be scheduled. Special attention had to
be placed on handling border cases such as late and concurrent events. Since only predicted events
need to be triggered in real time, it was decided to deterministically schedule concurrent predicted
events before events from the automation system. When inserting any event e into the queue, it is
checked whether e is already an outdated predicted event and whether any other prediction became

https://github.com/AIT-IES/FMITerminalBlock

Appl. Sci. 2020, 10, 1611 8 of 14

outdated by e. Consequently, at any given time, at most one prediction resides in the queue, and the
only prediction can be found in the very first place in the ordered queue. In case an event ea−1 was
submitted late after the event update function of ea was called, i.e., t(ea−1) < t(ea), the model cannot
be reset to the event time t(ea−1), and the event is belatedly applied at t(ea) and scheduled as soon
as possible.

To unify the program flow and queue management of both periodic and predictive event mapping,
the notion of an abstract event predictor was introduced. For each scheduled event, the abstract event
predictor returns the next event according to the mapping scheme. Since predicted events may be
removed from the managed queue, an abstract event predictor implementing periodic mapping
would return the same cached synchronization event ei until ei is actually scheduled and distributed.
Hence, the overhead of repeated output calculations is avoided, and still, the abstract event predictor
implementation solely determines the mapping approach.

3.4.2. Automation System Interface

The automation system was accessed via a network connection, which decoupled the generic
implementation from the automation system Run-time Infrastructure (RTI) at the cost of maintaining
an additional network protocol. Although the interface program followed a protocol-agnostic design,
the ANS.1-based protocol defined by IEC 61499 was solely used in all experiments because of its
well-supported event-based communication.

3.4.3. Representational Mapping

The FMI++ library [7,8] was used to access FMUs, to solve them between synchronization
events, and to determine the point in time at which future events would occur. The interface
implementation itself managed the overall program flow including the coupling algorithms and
real-time synchronization. It also maintained the network connections and mapped exchanged data to
model variables according to a user configuration. In addition to the variable mapping, the interface
also allowed configuring various simulation parameters such as the mapping approach, the numerical
integration method, and different timing parameters.

3.4.4. Time Synchronization

Since the interface application featured a soft real-time approach that targeted all FMI-compliant
FMUs, it was necessary to track the real-time performance of a simulation run for quantifying the
quality of gained results. A time tracking mechanism was implemented to record the current instant
of real time at various event processing stages. Since the computer clock and FMI-based simulations
used different time bases and epochs, real-time tracking additionally converted the current instant
of real time into the simulation time representation. Python-based post-processing scripts were
used to extract various metrics, such as event delays and maximum observed real-time deviations,
without introducing additional run-time overhead.

Although the interface application was designed to interact with a PLC RTI, no tight integration
into the PLC toolchain including the corresponding development environment was implemented.
Such a tight integration may reduce the configuration effort by utilizing the automation model [28],
but thwarted the independent network interface.

4. Experimental Evaluation

A set of experiments was undertaken to explore the practical limitations of the described event
mapping approaches and to demonstrate the feasibility of HIL experiments using predictive mapping.
To guide future experiments that include FMI-based virtual components, a general evaluation method
is first described and afterwards applied to all conducted experiments.

Appl. Sci. 2020, 10, 1611 9 of 14

4.1. Experiment Description

4.1.1. Component Models

All experiments were based on a common monolithic reference simulation, which included an
On-Load Tap Changer (OLTC) and transformer model. Via the OLTC, the output voltage of the
transformer could be adjusted and adapted to fluctuating grid conditions. An OLTC controller model
directed the OLTC and initiated tap switching according to the low voltage reading. As soon as the
voltage left a predefined interval, a dead time was awaited and the controller initiated one or more
consecutive tap switching operations. A simple static three-phased load and controllable voltage
source bordered the transformer model and allowed injecting voltage disturbances. The monolithic
phasor-based reference model was implemented in MATLAB/Simulink and used components from
the Simscape Power Systems Library.

Based on the reference model, three experimental setups were designed, illustrated in Figure 4.
In each experiment, a virtual component, which comprised the OLTC, the transformer, the load, and
the voltage source, was instantiated. The FMU defining the virtual component was directly exported
from the reference model using the FMI 2.0 for Model Exchange standard via the FMI Kit for Simulink
in Version 2.4.0. Two controller implementations with identical functionality were manually derived
from the reference model and alternatively used in the experiments.

Virtual
Component

Hardware

OLTC and Transformer

OLTC Controller

Software PLC

ASN.1

Modbus

Protocol Bridge
Software PLC

ASN.1

OLTC Controller

One Controller
Realization

Simultaneously

Figure 4. Experimental setups.

4.1.2. Controller Hardware

The first OLTC controller was an embedded hardware implementation, which was interfaced
via a Modbus TCP/IP connection. The communication interface enabled querying control outputs
directed to the OLTC and allowed setting the low voltage readings and whether the OLTC was ready
to initiate a switching operation. In order to avoid overloading the embedded controller and the
resulting frequent packet loss, a minimum polling interval of 200 ms was chosen. Since the OLTC
controller hardware and the reference model encoded control actions differently, a simple protocol
bridge was deployed. The bridge, which was implemented in a software PLC, periodically polled the
hardware controller and sent change events to the virtual component. Upon receiving events from the
virtual component, data could be directly relayed without awaiting the next polling cycle.

Appl. Sci. 2020, 10, 1611 10 of 14

4.1.3. Software PLC Controller

Polling external hardware introduced significant delay. To study the effects of the event mapping
algorithms in more detail, a second event-based controller that was solely implemented in a software
PLC was derived from the reference model. In contrast to the hardware controller, output events
could be directly sent, and protocol translation was avoided. Since both controller implementations
received measurements and status signals from the virtual component and sent control outputs back,
a closed-loop simulation was performed. The virtual OLTC started its operation as soon as a control
signal was received, and the controller continued its operation as soon as the OLTC finished its last
switching command. Due to the partially asynchronous behavior, synchronization and communication
delays were directly reflected in the experiment outcome.

4.1.4. Configuration

To cope with the high computational complexity of the transformer model, integration of
the FMU state was achieved with the help of the Adams–Bashforth–Moulton variable step-size
solver, as implemented in the Sundials sub-library [29]. All experiments used an initial step-size
of 10 ms and iteratively located state events until a precision of 1 ms was reached, using relative and
absolute integrator tolerances of 10−4. Synchronization and prediction step sizes were chosen such
that little delay was accumulated and real-time deviations quickly decayed to zero. In particular,
a synchronization step size of 100 ms for periodic synchronization and a prediction horizon of
1 s supported by locally stored intermittent results every 100 ms for predictive event mapping
were selected.

The simulation outcome in terms of model in- and out-put variables was recorded whenever
an event was exchanged. Each event record contained the nominal event time and every associated
variable value. Alternative instrumentation points may include the external hardware or the software
PLC, but to gain a consistent view according to the reference clock of the experiment, only the
FMITerminalBlock records were taken into account. Since each experiment covered multiple switching
operations and numerous event emissions, synchronization was inherently repeated within one
experiment run.

Both the software PLC and the virtual component were executed with a high process priority on
a Windows 7 PC featuring 6 GB of RAM and an Intel Xeon dual core CPU W3505, clocked at 2.53 GHz.
All software PLC configurations were designed and executed by Eclipse 4diac [30]. The hardware
OLTC controller was based on a development board featuring an ATmega2560 microcontroller from
Microchip, running at 16 MHz, and a WIZnet W5100 Ethernet-TCP/IP driver, which implemented
both the control logic and the Modbus TCP/IP interface.

4.2. Timing Evaluation Method

In order to assess the timing quality, the following generalized method was developed and
applied to each experiment.

4.2.1. Timing Record Fusion

Since the network, which was used to connect the virtual component, was considered as part
of the automation system, the real-time instant of an FMI event was approximated by two locally
recorded time stamps. The first one dated the beginning of the event distribution and was taken as
soon as the event was scheduled. The second time stamp was recorded as soon as all event outputs
were calculated and the event was successfully distributed. Additionally, the real-time instant at which
an event was added to the queue (i.e., when it was received or predicted) and the time an event became
outdated were tracked to gain further insights.

For each real-time record, a single independent entry was logged by FMITerminalBlock. In the
post-processing steps, the independent records were linked such that each time stamp was associated

Appl. Sci. 2020, 10, 1611 11 of 14

with the corresponding event entity. To simplify the prototypical program flow and to increase the
level of parallelism, FMITerminalBlock did not assign unique event identifiers, and the nominal event
time was used to match timing records. An algorithm that emulated the state of the event queue in
post-processing was used to associate the timing records with the corresponding event entity. An error
was issued in case of ambiguities, but none were observed during the experiments.

4.2.2. Timing Metrics

From the recovered dataset, two classes of timing metrics were used. The first one was the
delay metrics comparing the actual time stamp to the nominal event time at a particular processing
stage. Most importantly, the delay at the beginning and the end of the distribution stage and the
maximum observed delay were considered. The second class of metrics operated on the linked event
data and tracked the duration of an operation such as event prediction and distribution. In particular,
distribution time was taken to estimate the event jitter and prediction time to assess the computational
effort of solving the model.

4.3. Results and Discussion

4.3.1. Timing

Table 1 summarizes the main delay metrics. One may note the maximum distribution delay of
both predictive approaches of 187 ms. This was nearly the amount of two periodic synchronization
steps and therefore larger than the maximum delay in the periodic configuration of 47 ms emission
plus 100 ms synchronization delay. Nevertheless, only the average distribution delay of the predictive
software PLC with approximately 90 ms was considerably larger than the 22 ms to 28 ms in the other
experiments, although for all predictive experiments, the same FMITerminalBlock configuration was
used. Both predictive experiments showed a maximum duration of 172 ms for a full prediction
and average values of 111 ms and 116 ms with standard deviations of 42 ms and 48 ms, respectively,
indicating similar efforts of predicting one event.

Table 1. Delay metrics.

Experiment Dist. Stage
Delay Metrics

Samples Mean (s) Variance (s2) Max. (s)

PLC Predictive Begin 282 0.0903 0.003331 0.187
End 282 0.0909 0.003335 0.187

PLC Periodic Begin 771 0.0262 2.176 × 10−5 0.0336
End 771 0.0275 4.919 × 10−5 0.0468

HW Predictive Begin 222 0.0219 0.001354 0.187
End 222 0.0224 0.001381 0.187

It turned out that the safeguard condition (4), which stated that two events must not be triggered
close to each other, was regularly violated and that 71 % of all events in the predictive PLC controller
experiment were triggered before the maximum prediction time expired. Thirty three percent of the
events in the experiment were even triggered immediately after another event. Due to increased
latencies, the share of events triggered as close as 172 ms dropped to 53 % in the hardware controller
experiment, and consequently, a reduced average delay was observed.

The models showed mechanical switching times as short as 500 ms and electric transients well
below 100 ms. Consequently, the simulation results needed further considerations regarding their
accuracy to better allow studying the effects of the real-time execution on the simulation outcome.

Appl. Sci. 2020, 10, 1611 12 of 14

4.3.2. Simulation Outcome

Figure 5 shows exemplary control actions that brought the simulated low voltage back to the
targeted middle band for all three conducted experiments. One can note that for the predictive software
PLC configuration, only a little deviation could be seen in the tap switching timing. Nevertheless,
timing analysis of the displayed interval showed a maximum distribution delay of 172 ms, but most
delays became masked because the transformer was still busy when highly delayed events arrived
and the results were not disturbed. In contrast, a maximum distribution delay of only 38 ms was
recorded in the hardware controller experiment of Figure 5, but the increased communication delay in
the automation system strongly contributed to the observed result.

420

440

460

480

500

Lo
w

 V
ol

ta
ge

 [V
] Induced Voltage Disturbance

Reference Simulation
PLC Controller (Periodic)
PLC Controller (Predictive)
HW Controller (Predictive)

15 16 17 18 19 20
Time [s]

0

2

4

Ta
p

Po
si

tio
n Steady-State Deviation

Accurate Simulation

Figure 5. Exemplary switching operation.

Since low voltage readings of the virtual component were transferred and updated upon event
occurrence only, intermediate simulation results were solely plotted in the reference simulation.
Nevertheless, all control actions were initiated by an event, and hence, predictive event mapping could
more accurately sample and communicate the model outputs before it transited to the new steady-state
value. Contrarily, periodic event mapping deferred communication to the next synchronization point
where the new steady-state value was already established. One can note that, due to late sampling,
the last switching operation was omitted, and a steady-state deviation for the periodically synchronized
virtual component appeared.

5. Conclusions

The paper introduced and successfully demonstrated the concept of generic virtual components,
which bridge the gap between FMI-based models and event-based automation systems. The analysis
of periodic and extrapolation-based predictive event mapping showed that:

• only soft real-time operation was feasible, in general,
• predictive operation introduced strict bounds of a delay-free synchronization that were rarely

met in practice, and
• periodic event mapping always had to delay and accumulate events.

Experiments designed to study the boundaries of the mapping approaches via a prototypical
interface application demonstrated the benefits of event-accurate predictive mapping. Although the
hybrid model regularly violated the strict real-time condition, a satisfying best-effort synchronization
could be achieved, and deviations when using periodic event mapping could be eliminated.
In particular, FMI-based models without good real-time simulator support, such as various
thermal models and models that require event-accurate coupling, may specifically profit from the
presented work.

Appl. Sci. 2020, 10, 1611 13 of 14

Author Contributions: Conceptualization, M.H.S., E.W., and B.H.; methodology, M.H.S.; software, M.H.S. and
E.W.; validation, M.H.S.; formal analysis, M.H.S. and B.H.; investigation, M.H.S. and N.A.; writing, original draft
preparation, M.H.S. and B.H.; writing, review and editing, B.H. and E.W.; visualization, M.H.S.; supervision,
W.K., B.H., and E.W.; project administration, E.W. All authors read and agreed to the published version of
the manuscript.

Funding: This work is partly supported by the European Union’s Horizon 2020 research and innovation program
(H2020/2014-2020) under project “ERIGrid” (Grant Agreement No. 654113).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BFB Basic Function Block
CFB Composite Function Block
FB Function Block
FMU Functional Mock-up Unit
FMI Functional Mock-up Interface
HIL Hardware-in-the-Loop
ODE Ordinary Differential Equation
OLTC On-Load Tap Changer
PLC Programmable Logic Controller
RTI Run-time Infrastructure
SCADA Supervisory Control and Data Acquisition
SIFB Service Interface Function Block
SSD Service Sequence Diagram
WCET Worst Case Execution Time

References

1. Nieße, A.; Tröschel, M.; Sonnenschein, M. Designing dependable and sustainable Smart Grids–How to
apply Algorithm Engineering to distributed control in power systems. Environ. Model. Softw. 2014, 56, 37–51.
[CrossRef]

2. Yang, C.H.; Zhabelova, G.; Yang, C.W.; Vyatkin, V. Cosimulation Environment for Event-Driven Distributed
Controls of Smart Grid. IEEE Trans. Ind. Inform. 2013, 9, 1423–1435. [CrossRef]

3. Lin, H.; Sambamoorthy, S.; Shukla, S.; Thorp, J.; Mili, L. Power system and communication network
co-simulation for smart grid applications. In Proceedings of the 2011 IEEE PES Innovative Smart Grid
Technologies (ISGT 2011), Anaheim, CA, USA, 17–19 January 2011; pp. 1–6. [CrossRef]

4. Viehweider, A.; Lauss, G.; Lehfuss, F. Stabilization of Power Hardware-in-the-Loop simulations of electric
energy systems. Simul. Model. Pract. Theory 2011, 19, 1699–1708. [CrossRef]

5. Heinzl, B.; Raich, P.; Preyser, F.; Kastner, W. Simulation-based Assessment of Energy Efficiency in Industry:
Comparison of Hybrid Simulation Approaches. IFAC-PapersOnLine 2018, 51, 689–694. [CrossRef]

6. Blochwitz, T.; Otter, M.; Arnold, M.; Bausch, C.; Clauß, C.; Elmqvist, H.; Junghanns, A.; Mauss, J.;
Monteiro, M.; Neidhold, T.; et al. The functional mockup interface for tool independent exchange of
simulation models. In Proceedings of the 8th International Modelica Conference, Dresden, Germany,
20–22 March 2011; pp. 20–22.

7. Widl, E.; Müller, W.; Elsheikh, A.; Hörtenhuber, M.; Palensky, P. The FMI++ library: A high-level utility
package for FMI for model exchange. In Proceedings of the 2013 Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES), Berkeley, CA, USA, 20–22 May 2013; pp. 1–6. [CrossRef]

8. Müller, W.; Widl, E. Linking FMI-based components with discrete event systems. In Proceedings of the
2013 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 15–18 April 2013; pp. 676–680.
[CrossRef]

9. Strasser, T.; Stifter, M.; Andrén, F.; Palensky, P. Co-Simulation Training Platform for Smart Grids. IEEE Trans.
Power Syst. 2014, 29, 1989–1997. [CrossRef]

http://dx.doi.org/10.1016/j.envsoft.2013.12.003
http://dx.doi.org/10.1109/TII.2013.2256791
http://dx.doi.org/10.1109/ISGT.2011.5759166
http://dx.doi.org/10.1016/j.simpat.2011.04.001
http://dx.doi.org/10.1016/j.ifacol.2018.03.117
http://dx.doi.org/10.1109/MSCPES.2013.6623316
http://dx.doi.org/10.1109/SysCon.2013.6549955
http://dx.doi.org/10.1109/TPWRS.2014.2305740

Appl. Sci. 2020, 10, 1611 14 of 14

10. Müller, S.C.; Georg, H.; Küch, M.; Wietfeld, C. INSPIRE—Co-Simulation of Power and ICT Systems for
Evaluation of Smart Grid Applications. At-Automatisierungstechnik 2014, 62, 315–324. [CrossRef]

11. Awais, M.U.; Palensky, P.; Mueller, W.; Widl, E.; Elsheikh, A. Distributed hybrid simulation using the HLA
and the Functional Mock-up Interface. In Proceedings of the IECON 2013—39th Annual Conference of the
IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 7564–7569. [CrossRef]

12. Modelica Association Project Functional Mock-up Interface. In Functional Mock-Up Interface for Model
Exchange; 2010; Available online: https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_
for_ModelExchange_v1.0.pdf (accessed on 26 February 2020).

13. Modelica Association Project Functional Mock-up Interface. In Functional Mock-Up Interface for Model Exchange
and Co-Simulation; 2014; Available online: https://svn.modelica.org/fmi/branches/public/specifications/
v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf (accessed on 26 February 2020).

14. Eker, J.; Janneck, J.W.; Lee, E.A.; Liu, J.; Liu, X.; Ludvig, J.; Neuendorffer, S.; Sachs, S.; Xiong, Y. Taming
heterogeneity—The Ptolemy approach. Proc. IEEE 2003, 91, 127–144. [CrossRef]

15. IEC 61499-1/Ed.2: Function Blocks—Part 1: Architecture; IEC: Geneva, Switzerland, 2012.
16. Vyatkin, V. The IEC 61499 standard and its semantics. IEEE Ind. Electron. Mag. 2009, 3, 40–48. [CrossRef]
17. Strasser, T.; Zoitl, A.; Christensen, J.H.; Sünder, C. Design and Execution Issues in IEC 61499 Distributed

Automation and Control Systems. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2011, 41, 41–51. [CrossRef]
18. Vyatkin, V. IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-the-Art Review.

IEEE Trans. Ind. Inform. 2011, 7, 768–781. [CrossRef]
19. Strasser, T.; Auinger, F.; Zoitl, A. Development, implementation and use of an IEC 61499 function block

library for embedded closed loop control. In Proceedings of the INDIN ‘04 2004 2nd IEEE International
Conference on Industrial Informatics, Berlin, Germany, 24–26 June 2004; pp. 594–599. [CrossRef]

20. Lindgren, P.; Lindner, M.; Lindner, A.; Vyatkin, V.; Pereira, D.J.; Pinho, L.M. A Real-Time Semantics for
the IEC 61499 standard. In Proceedings of the 2015 IEEE 20th International Conference on Emerging
Technologies & Factory Automation (ETFA 2015), Luxembourg, 8–11 September 2015.

21. Yang, C.H.; Vyatkin, V.; Cheng Pang, V. Model-Driven Development of Control Software for Distributed
Automation: A Survey and an Approach. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 292–305. [CrossRef]

22. Zehetner, J.; Stettinger, G.; Kokal, H.; Toye, B. Echtzeit-Co-Simulation für die Regelung eines
Motorprüfstands. ATZ Automob. Z. 2014, 116, 40–45. [CrossRef]

23. Gunnarsson, S. Evaluation of FMI-Based Workflow for Simulation and Testing of Industrial Automation
Applications. Master’s Thesis, Department of Automatic Control, Lund University, Lund, Sweden, 2016.

24. Erwall, C.; Mårtensson, O. Model-Based Design of Industrial Automation Solutions Using FMI. Master’s
Thesis, Department of Automatic Control, Lund University, Lund, Sweden, 2016.

25. Spiegel, M.H.; Leimgruber, F.; Widl, E.; Gridling, G. On using FMI-based models in IEC 61499 control
applications. In Proceedings of the 2015 Workshop on Modeling and Simulation of Cyber-Physical Energy
Systems (MSCPES), Seattle, WA, USA, 13 April 2015; pp. 1–6. [CrossRef]

26. Hegny, I.; Wenger, M.; Zoitl, A. IEC 61499 based simulation framework for model-driven production
systems development. In Proceedings of the 2010 IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), Bilbao, Spain, 13–16 September 2010; pp. 1–8. [CrossRef]

27. Kopetz, H. Real-Time Systems; Design Principles for Distributed Embedded Applications; Real-Time Systems
Series; Springer Science+Business Media: LLC: Boston, MA, USA, 2011. [CrossRef]

28. Spiegel, M.H. Linking Simulation and Automation Infrastructure—A Study Based on the FMI and IEC
61499. Master’s Thesis, Technische Universität Wien, Wien, Austria, 2018.

29. Hindmarsh, A.C.; Brown, P.N.; Grant, K.E.; Lee, S.L.; Serban, R.; Shumaker, D.E.; Woodward, C.S.
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. (TOMS)
2005, 31, 363–396. [CrossRef]

30. Strasser, T.; Rooker, M.; Ebenhofer, G.; Zoitl, A.; Sunder, C.; Valentini, A.; Martel, A. Framework for
distributed industrial automation and control (4DIAC). In Proceedings of the INDIN 2008 6th IEEE
International Conference on Industrial Informatics, Daejon, Korea, 13–16 July 2008; pp. 283–288.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/auto-2014-1086
http://dx.doi.org/10.1109/IECON.2013.6700393
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/MIE.2009.934796
http://dx.doi.org/10.1109/TSMCC.2010.2067210
http://dx.doi.org/10.1109/TII.2011.2166785
http://dx.doi.org/10.1109/INDIN.2004.1417415
http://dx.doi.org/10.1109/TSMCC.2013.2266914
http://dx.doi.org/10.1007/s35148-014-0042-x
http://dx.doi.org/10.1109/MSCPES.2015.7115407
http://dx.doi.org/10.1109/ETFA.2010.5641364
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1145/1089014.1089020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Functional Mock-Up Interface
	Distributed Control Systems Using IEC 61499
	Model-Based Control Engineering

	Generic Virtual Components
	System Model
	Periodic Event Mapping
	Predictive Event Mapping
	Implementation Aspects
	Unified Best-Effort Operation
	Automation System Interface
	Representational Mapping
	Time Synchronization

	Experimental Evaluation
	Experiment Description
	Component Models
	Controller Hardware
	Software PLC Controller
	Configuration

	Timing Evaluation Method
	Timing Record Fusion
	Timing Metrics

	Results and Discussion
	Timing
	Simulation Outcome

	Conclusions
	References

