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Abstract: The current research paradigm is one of data-driven research. Researchers are beginning
to deploy computer facilities to produce and analyze large amounts of data. As requirements for
computing power grow, data processing in traditional workstations is always under pressure for
efficient resource management. In such an environment, a tremendous amount of data is being
processed using parallel computing for efficient and effective research results. HTCondor, as an
example, provides computing power for data analysis for researchers. Although such a system works
well in a traditional computing cluster environment, we need an efficient methodology to meet
the ever-increasing demands of computing using limited resources. In this paper, we propose an
approach to integrating clusters that can share their computing power on the basis of a priority policy.
Our approach makes it possible to share worker nodes while maintaining the resources allocated
to each group. In addition, we have utilized the historical data of user usage in order to analyze
problems that have occurred during job execution due to resource sharing and the actual operating
results. Our findings can provide a reasonable guideline for limited computing powers shared by
multiple scientific groups.
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1. Introduction

Research methodology has changed from traditional observational methods to a data-driven
research paradigm, which is called the fourth generation research paradigm [1]. According to the
paradigm of existing scientific research, there has been a change from the first generation paradigm
that describes natural phenomena through observation, the second generation through modeling and
generalization, and the third generation research paradigm using computer simulation technology [2].
Recently, a data-driven research paradigm that analyzes and makes discoveries using vast amounts of
data from large research equipment has emerged [3,4]. Efficiently analyzing this vast amount of data
requires massive amounts of computing power [5,6]. In general, computer clustering technologies are
utilized in computing resources of groups of various sizes, from small lab units to data centers. This is
called high throughput computing (HTC) [7]. A job management program is required for batching jobs
and managing queues to use the HTC system more efficiently, such as HTCondor [8–10], PBSPro [11,12],
Slurm [13,14], and Torque [15,16]. HTCondor is an open source program that was released in 1988
(the name was Condor at the time of release [10]) and has an active open source community.
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We currently operate a data center to support researchers in basic science [17]. Not only do new
researchers continue to ask for support, but the demand for resources annually submitted by existing
researchers continues to grow [18]. Figure 1 shows that resource demand steadily increases by about
2000–3000 cores each year [19]. The total amount of demand will increase from 3900 cores in 2019 to
13,700 cores in four years. This trend is not confined to domestic, but also to international research
groups [20]. However, due to the limited size of equipment that can be introduced on a limited budget,
it is impossible to meet the requirements of all researchers. However, the user’s request is to meet
peak demand at a specific point in time, and since the utilization rate of the cluster is not always high,
we integrated the dedicated clusters of each research group into one in order to satisfy this as much
as possible.

Figure 1. Results of resource demand survey requested by a group of Korean researchers.

First, we chose to change the existing system without deploying a new system as a method for
management of integrated resources [21]. Accordingly, we chose to share worker nodes using existing
HTCondors but limit quotas of individual groups. In this case, it is difficult to continuously match
the information of newly added or deleted users and groups. To solve this problem, we separated
the job submission node. Users’ access and defined user groups are based on the submission node.
We also considered how the temporary resources that occur occasionally can be effectively utilized
while maintaining the minimum allocated resources for each group [22].

In this paper, we discuss how shared resources can be used simultaneously and how the minimum
allocated resources can be maintained for each group. We also analyzed the user’s job histories to
examine changes in job processing patterns. We also analyzed TimeLoss according to job characteristics.

2. Materials and Methods

2.1. Job History Information

We extracted the job history information through HTCondor’s condor_history command.
The user’s job histories were extracted and analyzed from April to September of 2018 before the
integration and the same period of 2019 after the integration. The information used in the analysis
is AcctGroup, AcctGroupUser, CMD for job categorization and CommittedTime, CumulativeSlotTime,
JobCurrentStartDate, JobCurrentStartExecutingDate, JobStartDate, NumJobStarts, and QDate
for job characteristics. The meaning of each item is summarized in Table 1.
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Table 1. Meaning of items extracted with condor_history [23].

Item Mean

AcctGroup Group information for submitted jobs
AcctGroupUser User information for submitted jobs
CMD Executed command
CommittedTime The number of seconds of wall clock time that the job has been allocated to a machine
CumulativeSlotTime Cumulative number of seconds the job has been allocated to a machine
JobCurrentStartDate Time at which the job most recently began running
JobStartDate Time at which the job first began running
NumJobStarts An integer count of the number of times the job started executing
QDate Time at which the job was submitted to the job queue

2.2. Status before Integration

Before the integration, each experiment group used dedicated computing resources. Each experimental
group could only use the dedicated resources assigned to them. For this reason, the congestion level of
the cluster varies according to the group members who follow the same schedule as the conferences
or workshops. In other words, the cluster is crowded at certain times, but most of the time it is idle.
The trend of job submissions for each group is shown in Figure 2. As shown in Figure 2, Group A
actively submitted jobs in mid-April and June, while Group B did in early April. It is important to note
that there are time mismatches for the utilization of computing resources dedicated to the two groups.

(a) Group A

(b) Group B

Figure 2. Submitted and queued jobs in 2018.

In the extracted job records, jobs with different submitted times and job started times were classified.
The time difference was assumed to be longer than the cycle reported by the job manager. In the HTCondor
Job Manager, this cycle is called the matchmaking cycle [24]. These jobs mean that the job cannot run
immediately because there are no slots available when the job is submitted. A percentage of 15.99% of jobs
submitted from Group A were accumulated in the job queue, and 55.46% of jobs submitted from Group B
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were accumulated in the job queue. The number of jobs submitted is not proportional to the number of
jobs waiting, as in Figure 2a,b. This is because the submitted jobs did not overlap in a short time.

Long overlap periods reduce the benefits of cluster consolidation. According to the job histories of
the year 2018, the percentage of jobs in the queue overlaps 3.37% of the total for Group A and 0.29% of
the total for Group B, and in fact jobs rarely overlap between the two groups. The overlapping periods
can be seen in Figure 3. Therefore, we expected high efficiency when the two groups were integrated.

Figure 3. Comparison of the queued job for two groups in 2018.

Despite the above situation, individual users feel that there is a resource shortage as demand
increases, and they want to increase the size of the overall cluster. During this period, the utilization
rate of Group A is 10.24%, and the utilization rate of Group B is 20.40%, so the utilization rate of
the entire cluster is not high. Therefore, it is difficult to guarantee that the overall cluster utilization
will increase as you increase the cluster size. In other words, if we provide more resources for each
experiment group, resource utilization will still be similar. The integration of the two group’s clusters
provides a way to meet the needs of users while increasing utilization across the clusters.

2.3. Deployment of the Integrated Cluster

2.3.1. Configuration of the Integrated Cluster

Target clusters for integration have similar properties and provide close functionalities in terms
of analytical tools or individual jobs used as experimental groups in the same field. The analysis
environment is similar, so no extra action had been required to shared worker nodes. The integrated
cluster is composed of independent job submit nodes, and there is a common job management node,
and there are worker nodes. The two groups to be consolidated were assigned worker nodes with
400 cores and 1656 cores, respectively. In order to integrate the two groups, we set the minimum
guaranteed quota to the number of cores of the worker nodes owned by each group. Storage, not
computing resources, is set up to be accessible from the same configuration and all worker nodes.
The problem caused by the difference of OS versions before integration was solved by introducing
Singularity, a Linux container program [25–27]. Figure 4 is a schematic of the integration cluster.
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Figure 4. The job management node in the center of the figure and the worker node below it are shared
by the two groups, but the job submission node (UI) and storage system are separately organized.

2.3.2. Configuration of Submission Node

Because job submission nodes in each group are separated, we can identify user groups by job
submission nodes. The user’s group authentication was based on the UI server information submitted by
the user, not information such as ID. In this concept, HTCondor does not restrict the group information
of the user’s submission, so it adds a setting to refuse to submit the job to the user access node such
as GROUP_NAMES = group_a, SUBMIT_REQUIREMENT_NAMES = GROUP, and SUBMIT_REQUIREMENT_GROUP
= (AcctGroup =?= “group_a”). This setting forces the users to clarify a valid group name for their jobs.
If a user submits a job with the wrong group name, the job manager rejects the job and informs the
correct name to user. For example, SUBMIT_REQUIREMENT_GROUP_REASON = “Wrong accounting group.
Your group is group_a”.

2.3.3. Configuration of the Job Management Node

In the job management node, the job is assigned to a worker node by matching the requirements
from the submitted job and the information of the worker node. Group information and the
quota of each group were set in this node, such as GROUP_NAMES = group_a, group_b, group_etc,
GROUP_QUOTA_group_a = 400, GROUP_QUOTA_group_b = 1656, and GROUP_QUOTA_group_etc = 80.
A setting that can be used in excess of the set quota when there are extra slots in the other
group’s slot (GROUP_ACCEPT_SURPLUS = True) and a setting to preempt a slot when another group
uses more than their own quota (PREEMPT = True, NEGOTIATOR_CONSIDER_PREEMPTION = True,
PREEMPTION_REQUIREMENTS = True, and PREEMPTION_REQUIREMENTS = $(PREEMPTION_REQUIREMENTS)
&& ((SubmitterGroupResourcesInUse < SubmitterGroupQuota) && (RemoteGroupResourcesInUse >
RemoteGroupQuota))) were added. The question of which slot to preempt thus arises. PREEMPTION_RANK
= 2592000 - ifThenElse(isUndefined(TotalJobRuntime),0,TotalJobRuntime) is in this setting. This
setting allows specific jobs to perform beyond the group’s quotas. When a job is requested by a different
group of users, it is necessary to terminate the running job over the quota. Furthermore, a returned slot is
then assigned to that group. In this case, we have set the most recent job to be preempted. Users may think
that they are losing time, but it is not at all a loss because it is a job that would have to wait in the queue if
resources were not consolidated.
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3. Results and Discussion

3.1. Characterization of Jobs before and after Integration

We found changes in job processing patterns in both periods through job statistics before and after
integration. The statistical information is shown in Table 2. The number of jobs processed increased by
about 84% in Group A, from 242,963 in 2018 to 447,944 in 2019, and decreased by about 35% in Group B,
from 2,788,872 in 2018 to 1,799,363 in 2019. The wall time of submitted jobs increased by about 587% in
Group A, from 647,731,692 s in 2018 to 4,450,001,236 s in 2019, and decreased by about 25% in Group B,
from 5,342,505,530 s in 2018 to 4,015,125,597 s in 2019, respectively. Job waiting time increased by about
1203% in Group A, from 201,578,262 s in 2018 to 2,625,918,725 s in 2019, and decreased by about 59% in
Group B, from 15,587,662,341 s in 2018 to 6,370,466,789 s in 2019.

Table 2. Statistics for submission jobs in 2018 and 2019.

Number of Jobs Processed Total WallTime (s) Total WaitingTime (s)

Group A Group B Group A Group B Group A Group B

2018 242,963 2,788,872 647,731,692 5,342,505,530 201,578,262 15,587,662,341
2019 447,944 1,799,363 4,450,001,236 4,015,125,597 2,625,918,725 6,370,466,789

+84.37% −35.48% +587.01% −24.85% +1202.68% −59.13%

The execution time of each job was analyzed to characterize the individual jobs. For Group A,
the average execution time in 2018 is 2648.35 s, and the quartiles are 28.00, 84.00, and 956.00 s, while
the average execution time of 2019 is 6061.84 s, and the quartiles are 95.00, 1482.00, and 6331.00 s. For
Group B, the average time of 2018 is 1890.27 s, and the quartiles are 152.00, 402.00, and 965.00 s, and
for 2019, the average time is 1414.18 s, and quartiles are 31.00, 130.00, and 645.00 s. In Group A, the
execution time of individual jobs more than doubled from the previous year, while in Group B they
tended to decrease. The distribution of job execution time is summarized in Figure 5.

(a) in 2018

(b) in 2019

Figure 5. Individual job committed time distribution.
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3.2. Analyzing Submitted Jobs after Integration

3.2.1. Job Submission Trends

In the same way that the 2018 job statistics were compared, the trend patterns of the job submitted
by each group in 2019 and the level of overlap between the two groups were checked. Comparing
Figures 2 and 6 shows that the timing of job submissions changed.

(a) Group A

(b) Group B

Figure 6. Submitted and queued jobs in 2019.

Similarly, we also compared the trends of queued jobs. In the case of Group A, the ratio in the
queue during the submission process increased to 32.97%, and in Group B the ratio in the queue during
the submission process decreased to 46.98%. In fact, the overlapping intervals of the jobs stacked in
the queue are shown in Figure 7—15.79% of the total in Group A and 1.68% of the total in Group B.
Both groups increased compared to before the integration. This part appears to be a natural change
due to the increase and decrease in the amount of job processing and wall time of Groups A and
B. In particular, users in Group A submitted larger jobs than in 2018 as the total slots grew. In fact,
the utilization rate of Group A increased significantly to 70.36%, and the utilization rate of Group B
decreased to 15.33%. In conclusion, the utilization rate of the entire cluster was 25.06%, which was
16.64% before the integration, that is higher than before despite the side effect due to integration.
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Figure 7. Comparison of queued jobs for two groups in 2019.

3.2.2. Characteristics of Preempted Jobs

When a slot was preempted, the job assigned to the slot had to be restarted when an idle slot was
available. Therefore, the job with a NumJobStarts value of 2 or more was judged as preempted, and
the characteristics of the job were examined. The distribution of NumJobStarts used in the analysis
is shown in Figure 8. Percentages of 17.10% in Group A and 0.76% in Group B were preempted job
ratios. It was noted that the ratio difference between the two groups resulted from a fourfold difference
in size.

(a) Group A

(b) Group B

Figure 8. Job-start distribution.
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We also looked at the situation of preempted jobs and preempted possibility along their committed
time. The result is shown in Figure 9. In both groups, the longer the execution time was, the higher the
probability of being preempted was. However, Group A maintained a high probability, while Group B
tended to have nothing preempted after a certain period.

(a) Group A

(b) Group B

Figure 9. Distribution of preempted jobs by committed time.

In the probability graph at Figure 10, redrawing only up to the percentage of committed time 99
would look like Figure 11. Both groups tend to grow linearly, but Group A grows faster than Group B.

(a) Group A

Figure 10. Cont.
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(b) Group B

Figure 10. Probability of preempted jobs by committed time.

(a) Group A

(b) Group B

Figure 11. Probability of preempted jobs by committed time until Percentile 99.

3.2.3. Time Loss along Preemption

If a slot is preempted, that is, in excess of the quota, the running job is canceled, and time is lost.
We calculated these loss times to measure the inefficiency of the preemption. As Figure 12 shows, most
of the time lost in the preemptive slots is small. For Group A, the average 19,003 s quartiles are 502,
3149, and 10,363 s. For Group B, the mean is 419 s, and the quartiles are 1, 2, and 25 s.
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(a) Group A

(b) Group B

Figure 12. TimeLoss of preempted jobs.

4. Conclusions

As scientific discoveries through data analysis form the mainstream of research, there is a need
for efficient use of available resources that are distributed and used independently. In the course of the
study, we showed examples of practical applications about the sharing of computing systems used in
different experimental groups. However, in the process of integrating resources, the effect that can
be obtained depending on the size of the resources was different. When integrating two groups of
different resources, the small group will have benefits from more resources than before, and the larger
group will see little benefit, which is expected. In practice, small groups benefited by up to 527.0%
of resource utilization, while large groups benefited by 127.4% and thus saw no significant benefit.
Meanwhile, the probability of a job being preempted or of time loss caused by being preempted was
greater in the small group than in the large group. Ultimately, when consolidating resources, all groups
obtain a reasonable benefit. These benefits will contribute to academic development by increasing the
utilization of resources by researchers. In the viewpoint of computing resources, you can use the same
resources more efficiently and meet the requirements of users. In addition, the results discussed in the
paper might provide a basis for persuading groups of different sizes. In the future, we will integrate
groups of various sizes and further study the benefits and effects of each group.
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