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Abstract: In this paper, an adaptive neural fault-tolerant tracking control scheme is presented for the
yaw control of an unmanned-aerial-vehicle helicopter. The scheme incorporates a non-affine nonlinear
system that manages actuator faults, input saturation, full-state constraints, and external disturbances.
Firstly, by using a Taylor series expansion technique, the non-affine nonlinear system is transformed
into an affine-form expression to facilitate the desired control design. In comparison with previous
techniques, the actuator efficiency is explicit. Then, a neural network is considered to approximate
unknown nonlinear functions, and a time-varying barrier Lyapunov function is employed to prevent
transgression of the full-state variables using a backstepping technique. Robust adaptive control laws
are designed to handle parameter uncertainties and unknown bounded disturbances to cut down
the number of learning parameters and simplify the computational burden. Moreover, an auxiliary
system is constructed to guarantee the pitch angle of the UAV helicopter yaw control system to satisfy
the input constraint. Uniform boundedness of all signals in a closed-loop system is ensured via
Lyapunov theory; the tracking error converges to a small neighborhood near zero. Finally, when the
numerical simulations are applied to a yaw control of helicopter, the adaptive neural controller
demonstrates the effectiveness of the proposed technique.

Keywords: non-affine nonlinear system; adaptive neural control; actuator fault; full-state constraints;
input saturation

1. Introduction

In the control field, with the rapidly expanding helicopter technology,
the unmanned-aerial-vehicle (UAV) helicopter has been of wide concern in recent years; it has
been applied to maritime supervision, environmental monitoring, search and rescue, agricultural
and forestry protection, pipeline inspection, and aerial photography, to name just a few areas [1].
Since UAV helicopter flight control is a highly nonlinear, strongly coupled, and inherently unstable
problem and subject to the uncertainties of various environments and varying flight conditions,
the total dynamics of a UAV helicopter system are extremely complex, which have been decomposed
into the longitudinal and lateral dynamics in [2–4], we only consider the turning movement of the UAV
helicopter yaw control system under the comprehensive actions of actuator faults, input saturation,
full-state constraints, and external disturbances in this paper. A linearized model cannot fulfill a global
model approximation. Looking further, a nonlinear model for the yaw channel dynamics of helicopter
is normally non-affine and has a control input that acts on the system in an implicit nonlinear way. As
a result, it is a challenging task to determine the control input. To overcome this design difficulty for
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a non-affine system, the traditional approaches contain an inverse control strategy [5] that requires
more accurate mathematical models. T-S fuzzy control [6], mean value theorem [7–9], which has many
online adjustment parameters, and Taylor series expansion [10]. In this paper, a combination of a
Taylor series expansion with a robust sliding mode differentiator is employed to convert the non-affine
nonlinear system into an affine nonlinear system.

Approximation-based adaptive control for multifarious nonlinear systems with unknown
functions has drawn extensive research recently, and a great many schemes have been proposed.
Fuzzy logic systems using linguistic information were applied to the control of unknown nonlinear
systems in [11,12]. A direct adaptive fuzzy robust control method was described in [13] to cope
with the problems caused by the dynamic uncertainties in single-input and single-output (SISO)
strict-feedback nonlinear systems. On the basis of an adaptive fuzzy control and backstepping
technique, a robust adaptive fuzzy backstepping stabilization control strategy was developed for a
class of stochastic nonlinear switched systems in [14]. To approximate unknown nonlinear functions
and improve control system robustness, a radial basis function (RBF) neural network (NN) was used
to approximate nonlinear functions in an active power filters dynamic model [15]. An adaptive
fuzzy neural network (FNN) control scheme based on an RBFNN was proposed [16] to enhance the
robustness and compensation performance of the system. In [17], a fuzzy sliding mode controller
based on an RBFNN controller was achieved for a three-link robot system. To take advantage of
neural network online approximation performance, dynamic learning from neural control for a
class of nonlinear strict-feedback systems with predefined tracking performance attributes was put
forward [18] and then employed on a third-order one-link robot. In [19], output feedback adaptive
NN controls were studied for two classes of nonlinear discrete-time SISO systems with unknown
control directions. By combining backstepping and dynamic surface control with adaptive fuzzy
state-feedback control, an adaptive fuzzy dynamic surface control was investigated for a class of
nonlinear systems subject to a fuzzy dead zone, unmodeled dynamics, and unknown control gain
functions in [20]. Nevertheless, these adaptive control schemes do not account for the combined
function of input saturation and actuator fault.

As a result of space limitations, energy, and actuator physical performance, input saturation is
ubiquitous in real-world control systems. Failures and faults are caused by actuators and sensors
because of their continuous operation for long periods and unexpected external disturbances. Ignoring
these factors, which can degrade nominal closed-loop performance, can cause a controller design to fail
to achieve the desired tracking and even lead to instability. In [21], a second-order dynamic terminal
sliding mode control was proposed for a class of non-affine nonlinear systems designed for input
constraints and external disturbances. By adding a power integrator and backstepping technique, [22]
devised a novel finite-time attitude control scheme for a rigid spacecraft subject to actuator saturation.
In [23], the authors studied flexible-joint robot systems with input saturation and investigated an
adaptive fuzzy dynamic surface control approach. Adaptive fault-tolerant control (FTC) has been used
far and wide [24–26]. In [27], active adaptive fault-tolerant neural control was discussed for mitigating
actuator fault problems in large-scale uncertain systems. By introducing a backstepping technique to
fault-tolerant control, an adaptive actuator fault compensation control was studied in [28] for a class of
uncertain multi-input single-out discrete-time systems with triangular forms. In [29], hybrid fuzzy
adaptive FTC was presented for a class of uncertain nonlinear systems with unmeasured states. In [30],
an adaptive neural-fuzzy sliding-mode fault-tolerant control was developed for uncertain nonlinear
systems to handle actuator effectiveness faults and input saturation. Currently, there are still rare
conclusions about non-affine nonlinear systems that can tolerate input saturation and actuator faults.

Moreover, the state constraints in the system are also an extremely significant matter.
The Barrier Lyapunov function (BLF) is an effective tool to prevent the violation of constraints [31].
Adaptive control was proposed by designing a combined adaptive controller and BLF in [32–35]
to satisfy the output constraints. In [36], an adaptive neural control was addressed for a class
of stochastic pure-feedback nonlinear time-delay systems with unknown direction control gains
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and full-state constraints. The work of [37] studied adaptive fuzzy tracking control-based barrier
functions of uncertain nonlinear multi-input multi-output (MIMO) systems with full-state constraints;
these systems have been applied to chemical processes. In [38], robust adaptive backstepping control
for a class of non-affine nonlinear systems with full state constraints and input saturation was proposed.
However, actuator faults have not been studied in the above literature.

To sum up, in this paper, we propose an adaptive neural fault-tolerant control scheme for a UAV
helicopter yaw control system that provides for actuator faults, input saturation, full-state constraints,
and external disturbances. The non-affine nonlinear system is converted to an affine nonlinear system
via a Taylor series expansion and a robust sliding mode filter. The unknown nonlinear function can be
approximated by an RBFNN, and furthermore, the scheme deals with bounded disturbances. Next,
an anti-saturation compensator is used to analyze the impact of input constraints; full-state constraints
issues can be managed by combining BLF with a backstepping design technique. Then, the Lyapunov
theory is applied to verify that the proposed adaptive anti-saturation tracking controller can ensure
the boundedness of all signals in the closed-loop system. The remainder of this paper is organized
as follows: Section 2, the yaw dynamic of helicopter is given, a novel dynamic model transformation
technique and the control scheme are proposed, and simulation results are presented to show the
effectiveness of the proposed technique. Section 3 draws conclusions of this paper.

2. Main Results

In this section, Section 2.1 gives the modeling of UAV helicopter yaw-channel, the normal SISO
non-affine nonlinear system structure is introduced in Section 2.2, the controller design and stability
analysis of the closed-loop system are addressed in Section 2.3, illustrative examples are provided in
Section 2.4.

2.1. UAV Yaw-Channel Model

In UAV helicopters, which are distinct from other types of robots because of their small-scale
structure, the torque associated with the yaw control channel is provided with high sensitivity.
To enhance the performance of helicopter yaw control, we consider a more precise model to characterize
the yaw channel. In this paper, the model is adopted from [39], the framework of a rigid body
UAV helicopter.

Based on [10], the yaw channel dynamic equation is described as{
ϕ̇ = r

Izz ṙ = −Qmr + Ttrltr + b1r + b2 ϕ
(1)

where ϕ and r are the helicopter’s yaw angle and angular rate and Izz is the inertia around the z-axis.
The z-axis is perpendicular to the design axis of the helicopter and points at the nose and below the
fuselage in the helicopter’s symmetrical plane. Qmr is the torque of main rotor, Ttr is the thrust of tail
rotor, ltr is the distance between the tail rotor and z-axis, and b1 and b2 are damping constants.

By using the blade element method [39], the torque Qmr can be formulated as

Qmr =
∫ R

R0

(
ρΩ2r2Clcφ

2
+

ρΩ2r2Cdc
2

)
rdr (2)

therein, φ = υ1/(Ωr), Cl = aα, Cd ≈ Cd0 + Cd1α + Cd2α2, where ρ, a, r, α, c, υ1, φ and Ω are the density
of air, slope of the lift curve, speed radial distance, angle of attack of the blade element, chord of the
blade, induced speed, inflow angle, and rotor speed of the main rotor, respectively.

The non-affine nonlinear yaw-channel model is rewritten as{
ϕ̇ = r

Izz ṙ = b1r + b2 ϕ− (kQ2 θ2
mr + kQ1 θmr + kQ0) + (kT2 θ2

tr + kT1 θtr + kT0)ltr
(3)
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where kQ2 , kQ1 and kQ0 are decided by the shape of the blades and the speed of the main rotor, θmr is
pitch angle of main rotor, kT2 , kT1 and kT0 depend on the shape of the blades and the speed of the
tail rotor, θtr is pitch angle. According to Equation (3), the yaw dynamics of a UAV helicopter can
be represented by a second-order time-varying non-affine system with input nonlinearity. The input
nonlinearity is mainly caused by the main rotor collective, the speed of main rotor, and the speed of
tail rotor.

The deduction process of non-affine nonlinear helicopter yaw-channel model is given in the
Appendix A.

2.2. Normal Model

In general, we consider the following normal SISO non-affine nonlinear system structure:{
ẋ1 = x2

ẋ2 = F(t, x, u f s) + D
(4)

where x = [x1, x2]
T ∈ R2 is measurable system state, F(t, x, u f s) denotes a known smooth nonlinear

function, D is external disturbance. u f s is faulted saturation control input which is u f s = ρus, and
ρ is an unknown function that satisfies 0 < ρ ≤ 1, us is a saturation input, which is shown in the
Appendix B u denotes an actual control input to the system. On account of the limited workspace
and security considerations, the states of the system are constrained and need to satisfy: |x1| ≤ α1,
|x2| ≤ α2.

Assumption 1. F(.) is continuous and
∂F(t,x,u f s)

∂u f s
is bounded.

To facilitate the design of the controller, a Taylor series expansion is applied to convert the control
input in the non-affine nonlinear system of Equation (4) to an explicit expression, resulting in{

ẋ1 = x2

ẋ2 = f (t, x) + g(t, x)ρ us + d
(5)

where f (t, x) = F(t, x, u f sξ
) − ∂F(t,x,u f s)

∂u f s
|u f sξ

u f sξ , g =
∂F(t,x,u f s)

∂u f s
|u f sξ

, d = D + ∆(.) is the compound

disturbance, ∆(.) is a higher-order term, and u f sξ denotes the filtered value of u f s which is acquired by
a robust sliding mode differentiator.

u̇ f sξ = −
u f sξ − u f s

τ
−

ζ1(u f sξ − u f s)∥∥∥u f sξ − u f s

∥∥∥+ ζ2

(6)

where τ is the filter time constant and the two positive parameters ζ1 and ζ2 denote the switching gain
and the switching rate to regulate the sliding mode, respectively.

Remark 1. From Equation (6), u f sξ can approximate u f s with any small deviation by choosing an appropriate
the filter time parameter τ. If present, the higher-order term ∆(.) can tend to zero. Supposing that the ∆(.) is
small enough, its effect can be compensated in d.

To proceed to the following work, the definitions and lemmas are given.

Definition 1. [31] If on an open region D containing the origin defined about the system ẋ = f (x), a scalar
function V(x) that is continuously differentiable and positive definite has the property V(x) → ∞ as x
approaches the boundary of D and has positive constant boundedness along with the solution of the system
ẋ = f (x) with x(0) ∈ D, then V(x) is known as a barrier Lyapunov function.
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In brief, the symmetric barrier Lyapunov function is defined as

Vi =
1
2

ln(
k2

ai
k2

ai − z2
i
) (7)

If zi stays within the boundary of kai, especially since the barrier Lyapunov function tends toward infinity
at |zi| = kai, there can exist an available Lyapunov function in the interval |zi| < kai.

Lemma 1. [31] For any positive constant kai ∈ R, the following equality satisfies zi ∈ R in the set |zi| < kai:

ln
k2

ai
k2

ai − z2
i
≤

z2
i

k2
ai − z2

i
(8)

Lemma 2. (Young’s inequality) For ∀ x, y ≥ 0, the following inequality holds:

xy ≤ εp

p
xp +

1
qεq yq (9)

with ε > 0, p > 1, q > 1, 1
p + 1

q = 1. Only if xp = yq, the equals sign holds in Equation (9).

Lemma 3. For any positive constant ε > 0 and x ∈ R, the following is satisfied:

0 ≤ |x| − xtanh(εx) ≤ ι/ε (10)

where the normal number ι = e−(ι+1), namely ι ≈ 0.2785.

Lemma 4. [40] The first order sliding mode differentiator is expressed as{
ω̇1 = γ0 = −ε1|ω1 − f (t)|

1
2 sign(ω1 − f (t)) + ω2

ω̇2 = ε2sign(ω2 − γ0)
(11)

where ω1, γ0, and ω2 denote states of the first order sliding mode differentiator, ε1 and ε2 are the designed
parameters, and f (t) is an unknown function. Consequently, γ0 can approximate the differential term ḟ (t) with
any arbitrary precision if the initial errors ω1(t0)− f (t0), ω2(t0)− ḟ (t0) are bounded.

Lemma 5. [41] If there exists a continuously positive function V(x, t) : Rn ×R+ → R+, with two scalars
c1 > 0 and c2 ≥ 0 and where µ1 and µ2 are class K∞-functions, then V(x, t) satisfies Equations (12) and (13)

µ1(|x|) ≤ V(x, t) ≤ µ2(|x|) (12)

V̇ ≤ −c1V + c2 (13)

with regard to x ∈ Rn and t > 0. Then, there is the following solution for arbitrarily initial value x(0) ∈ Rn

and satisfies
V(x, t) ≤ V(0)e−c1t +

c2

c1
, ∀t > 0 (14)

Lemma 6. [42] Let the unknown function f (Z) be defined over a compact set Ωz; then for any approximation
accuracy l∗ > 0, there exists an RBFNN such that

f (Z) = W∗TΨ(Z) + l(Z) (15)

where Z ∈ Ωz ⊂ Rn is the input vector of the neural networks with n being the input dimension. W =

[w1, w2, · · · , wm]T ∈ Rm is the weight vector with the neural network node number m and W∗ is the ideal
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constant weight vector. l(Z) denotes the approximation error with ‖l(Z)‖ ≤ l∗. Ψ(Z) is the smooth basis
vector Ψ(Z) = [Ψ1(Z), Ψ2(Z), · · · , Ψm(Z)]T ∈ Rm with Ψi(Z) selected from the commonly used Gaussian
functions

Ψi(Z) = exp
[
−(Z− ci)

T(Z− ci)

b2
i

]
, i = 1, 2, · · · , m (16)

where ci = [ci1, ci2, · · · , cin]
T and bi are the center and width of the Gaussian functions, respectively. The ideal

constant weight vector is defined such as

W∗ := arg min
Ŵ∈Rm

{
sup

Z∈Ωz

| f (Z)− ŴTΨ(Z)|)
}

(17)

It’s noteworthy that the ideal weight vector W∗ is unknown and its elements need to be estimated by
designed adaptive law. Nevertheless, in this paper, minimum parameter learning theory is used instead of a
direct estimate with the variable θ = Ḡ−1‖W∗‖2.

Remark 2. The ideal weight W∗ ∈ Rm realizes m unknown elements to be estimated. More estimators will
result in a good many of adjustment parameters, thus directly increasing the computational burden. By updating
the estimation values of the norm for the unknown neural network weight vectors but not their weights only
the unknown parameter θ needs to be estimated in this paper, hence the computational complexity can be
reduced substantially.

For the system of Equation (4), it is necessary for the system transformation and the reference
trajectory to satisfy the following assumptions:

Assumption 2. There exist two positive constants β1 and β2 such that the desired reference trajectory signal
yd and its time derivative ẏd have corresponding boundedness, i.e., |yd| ≤ β1, |ẏd| < β2.

Assumption 3. For a time-varying unknown compound disturbance d, there exists an unknown positive
constant dm, i.e., |d| < dm.

Assumption 4. Without loss of generality, there exist two negative constants G
¯
< Ḡ < 0 such that G

¯
< gρ <

Ḡ < 0.

Remark 3. This assumption is widely used as a necessary controllable condition in [43] which implies that g is
strictly negative and that the affine nonlinear system is nonsingular. Since the bounds of G

¯
and Ḡ need not be

known, the assumption has a broad scope of application.

In this paper, an adaptive neural network fault-tolerant control scheme is investigated for a SISO
non-affine nonlinear yaw control system with provisions for the composite factor of actuator faults,
input saturation, full-state constraints, and external disturbances. First of all, the non-affine nonlinear
system is converted into an affine nonlinear expression via an integrating Taylor series expansion
with a robust sliding mode differentiator. Next, an RBFNN is applied to approximate the unknown
function, and an adaptive control design is employed to deal with the compound bounded disturbance
and the approximation error of the RBFNN. Then, an anti-saturation compensator is used to avoid
the influence of input saturation on the performance of the closed-loop system. Lastly, a controller
based on the barrier Lyapunov function is designed to guarantee good tracking control performance.
The control structure is shown in Figure 1.
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Figure 1. The adaptive neural fault-tolerant control structure for UAV helicopter yaw control system
with input saturation and full-state constraints.

2.3. Controller Design and Stability Analysis

In this section, we present the adaptive neural network fault-tolerant control using the
backstepping technique for helicopter yaw control system. The recursive design process contains two
steps in the system of Equation (5).The design procedure is as follows:

Step 1: The tracking error is defined as z1 = x1 − yd and its time derivative is

ż1 = ẋ1 − ẏd = x2 − ẏd (18)

Choose the barrier Lyapunov function candidate as

V1 =
1
2

ln
k2

a1
k2

a1 − z2
1

(19)

where ka1 is a positive scalar. By introducing z2 = x2− α, where α is the designed virtual control signal
to be defined later, the derivative of V1 is given by

V̇1 =
z1ż1

k2
a1 − z2

1
=

z1(z2 + α− ẏd)

k2
a1 − z2

1
(20)

Design the virtual control α as

α = −k1z1 + ẏd −
z1

2(k2
a1 − z2

1)
(21)

with k1 > 0. Based on Equations (20) and (21), then, one has

V̇1 =
−k1z2

1
k2

a1 − z2
1
−

z2
1

2(k2
a1 − z2

1)
2
+

z1z2

k2
a1 − z2

1
(22)

Then from Lemma 2, we obtain

z1z2

k2
a1 − z2

1
≤

z2
1

2(k2
a1 − z2

1)
2
+

1
2

z2
2 (23)
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By substituting (23) into (22), we have

V̇1 ≤
−k1z2

1
k2

a1 − z2
1
+

1
2

z2
2 (24)

Step 2: In this step, the actual control input will be derived. Selecting the barrier Lyapunov
function as

V2 = V1 +
1
2

ln
k2

a2
k2

a2 − z2
2

(25)

where ka2 is a positive number, we define the variable ∆u = us − u. The time derivative of the error
variable z2 is

ż2 = ẋ2 − α̇

= f + gρus + d− α̇

= f + gρ∆u + gρu− α̇ + d

(26)

Invoking (24), (25), and (26),

V̇2 = V̇1 +
z2ż2

k2
a2 − z2

2

= V̇1 +
z2

k2
a2 − z2

2
( f + gρ∆u + gρu− α̇ + d)

≤
−k1z2

1
k2

a1 − z2
1
+

z2

k2
a2 − z2

2

[
f + gρ∆u + gρu− α̇ + d +

z2

2
(k2

a2 − z2
2)
] (27)

where α̇ can be estimated by Lemma 4.
The unknown nonlinear function is defined as F(Z) = f + gρ∆u− α̇ + z2

2 (k
2
a2 − z2

2). The RBFNN
is used to approximate the unknown function F(Z) as

F(Z) = W∗TΨ(Z) + l(Z), |l(Z)| ≤ l∗ (28)

where Z = [x1, x2, yd, ẏd]
T ∈ ΩZ, l(Z) is the approximation error. To reduce the computational burden,

the variable θ = Ḡ−1‖W∗‖2 is applied.
Substituting (28) into (27), we have

V̇2 ≤
−k1z2

1
k2

a1 − z2
1
+

z2

k2
a2 − z2

2
W∗TΨ +

z2

k2
a2 − z2

2
(d + l) +

z2

k2
a2 − z2

2
gρu (29)

By using Young’s inequality, the second term of Equation (29) can be rewritten as

z2

k2
a2 − z2

2
W∗TΨ ≤ z2

2

2a2(k2
a2 − z2

2)
2 ‖W

∗‖2ΨTΨ +
a2

2
(30)

where a is a positive design parameter.
A new variable is defined as δ = Ḡ−1(dm + l∗) and based on Assumption 3, we introduce δ, θ

and (30) into (29) and obtain

V̇2 ≤
−k1z2

1
k2

a1 − z2
1
+

z2

k2
a2 − z2

2
gρu +

z2
2

2a2(k2
a2 − z2

2)
2 ‖W

∗‖2ΨTΨ +
|z2|

k2
a2 − z2

2
Ḡδ +

a2

2

=
−k1z2

1
k2

a1 − z2
1
+

z2

k2
a2 − z2

2
gρu +

z2
2

2a2(k2
a2 − z2

2)
2 ḠθΨTΨ +

|z2|
k2

a2 − z2
2

Ḡδ +
a2

2

(31)
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The adaptive law for the unknown parameters θ and δ is given by
˙̂θ = γ

[
σ1θ̂ − z2

2

2a2(k2
a2 − z2

2)
2 ΨTΨ

]
˙̂δ = β

[
σ2δ̂− z2

k2
a2 − z2

2
tanh(

z2

λ(k2
a2 − z2

2)
)

] (32)

where θ̂ and δ̂ are the estimated values of the unknown parameters θ and δ, respectively. γ > 0, β > 0,
λ > 0, σ1 < 0 and σ2 < 0 are parameters to be designed. The estimated errors can be expressed as
θ̃ = θ− θ̂ and δ̃ = δ− δ̂. The initial values of θ̂ and δ̂ are assumed to be satisfied: θ̂(0) ≤ 0 and δ̂(0) ≤ 0
according to [44], which will realize these conditions for t > 0.

To reduce the problem of control input saturation, the anti-saturation compensator is designed
as follows:

ζ̇ = −(k3 +
k4

k2
a2 − z2

2
)ζ + ∆u (33)

where ζ denotes the state of the compensator with k4 > k3 > 0.
Step 3: The barrier Lyapunov function candidate V is chosen as

V = V2 −
Ḡδ̃2

2β
− Ḡθ̃2

2γ
+

1
2

ζ2 (34)

The time derivative of V is

V̇ = V̇2 +
Ḡ
β

δ̃ ˙̂δ +
Ḡ
γ

θ̃ ˙̂θ + ζζ̇

≤
−k1z2

1
k2

a1 − z2
1
+

z2

k2
a2 − z2

2
gρu +

z2
2

2a2(k2
a2 − z2

2)
2 ḠθΨTΨ +

|z2|
k2

a2 − z2
2

Ḡδ +
a2

2

+
Ḡ
β

δ̃ ˙̂δ +
Ḡ
γ

θ̃ ˙̂θ + ζζ̇

=
−k1z2

1
k2

a1 − z2
1
+

z2

k2
a2 − z2

2
gρu +

z2
2

2a2(k2
a2 − z2

2)
2 ḠθΨTΨ +

|z2|
k2

a2 − z2
2

Ḡδ +
a2

2

+ Ḡδ̃σ2δ̂− Ḡδ̃
z2

k2
a2 − z2

2
tanh(

z2

λ(k2
a2 − z2

2)
) + Ḡθ̃σ1θ̂ − Ḡθ̃

z2
2

2a2(k2
a2 − z2

2)
2 ΨTΨ

− k3ζ2 − k4

k2
a2 − z2

2
ζ2 + ∆uζ

(35)

Now, the actual control input u is designed as

u = k2z2 − k2ζ − θ̂z2

2a2(k2
a2 − z2

2)
ΨTΨ− δ̂tanh(

z2

λ(k2
a2 − z2

2)
) (36)

where k2 is a positive design parameter. Considering u into the second term of Equation (35), we get

z2

k2
a2 − z2

2
gρu =

z2

k2
a2 − z2

2
gρ

[
k2z2 − k2ζ − θ̂z2

2a2(k2
a2 − z2

2)
ΨTΨ− δ̂tanh(

z2

λ(k2
a2 − z2

2)
)

]

≤ k2z2
2

k2
a2 − z2

2
Ḡ− k2z2ζ

k2
a2 − z2

2
gρ− θ̂z2

2

2a2(k2
a2 − z2

2)
2 ΨTΨḠ− z2

k2
a2 − z2

2
δ̂tanh(

z2

λ(k2
a2 − z2

2)
)Ḡ

(37)
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By applying Young’s inequality, the following inequalities hold:

− k2z2ζ

k2
a2 − z2

2
gρ ≤ k2

k2
a2 − z2

2
|z2||ζ||gρ|

≤ −
k2z2

2Ḡ
2(k2

a2 − z2
2)
− k2ζ2G

¯
2

2(k2
a2 − z2

2)Ḡ

∆uζ ≤ 1
2k3

∆u2 +
k3

2
ζ2

(38)

From (37) and (38), the time derivative of V is expressed as

V̇ ≤ −
k1z2

1
k2

a1 − z2
1
+

k2z2
2

k2
a2 − z2

2
Ḡ−

k2z2
2

2(k2
a2 − z2

2)
Ḡ− k2ζ2G

¯
2

2(k2
a2 − z2

2)Ḡ
− θ̂z2

2

2a2(k2
a2 − z2

2)
2 ΨTΨḠ

− z2

k2
a2 − z2

2
δ̂tanh(

z2

λ(k2
a2 − z2

2)
)Ḡ +

z2
2

2a2(k2
a2 − z2

2)
2 ḠθΨTΨ +

|z2|
k2

a2 − z2
2

Ḡδ +
a2

2

+ Ḡδ̃σ2δ̂− Ḡδ̃
z2

k2
a2 − z2

2
tanh(

z2

λ(k2
a2 − z2

2)
) + Ḡθ̃σ1θ̂ − Ḡθ̃

z2
2

2a2(k2
a2 − z2

2)
2 ΨTΨ

− k3ζ2 − k4

k2
a2 − z2

2
ζ2 +

1
2k3

∆u2 +
k3

2
ζ2

= −
k1z2

1
k2

a1 − z2
1
+

k2z2
2

2(k2
a2 − z2

2)
Ḡ− ζ2

k2
a2 − z2

2
(k4 +

k2G
¯

2

2Ḡ
) + Ḡδ̃σ2δ̂ + Ḡθ̃σ1θ̂ +

a2

2

− k3

2
ζ2 +

1
2k3

∆u2 + Ḡδ

[
|z2|

k2
a2 − z2

2
− z2

k2
a2 − z2

2
tanh(

z2

λ(k2
a2 − z2

2)
)

]

≤ −
k1z2

1
k2

a1 − z2
1
−

k2z2
2

2(k2
a2 − z2

2)
(−Ḡ)− k3

2
ζ2 + Ḡδ̃σ2δ̂ + Ḡθ̃σ1θ̂ +

a2

2
+

∆u2

2k3
+ 0.2785λḠδ

(39)

Since δ̃ = δ− δ̂ and θ̃ = θ − θ̂, the following inequalities hold:

δ̃δ̂ = δ̃(δ− δ̃) ≤ −1
2

δ̃2 +
1
2

δ2

θ̃θ̂ = θ̃(θ − θ̃) ≤ −1
2

θ̃2 +
1
2

θ2
(40)

Considering (40) and Lemma 1, we have

V̇ ≤ −
k1z2

1
k2

a1 − z2
1
−

k2z2
2

2(k2
a2 − z2

2)
(−Ḡ)− Ḡσ2δ̃2

2
− Ḡσ1θ̃2

2
− k3

2
ζ2

+
a2

2
+

∆u2

2k3
+ 0.2785λḠδ +

Ḡσ2

2
δ2 +

Ḡσ1

2
θ2

≤ −k1 ln
k2

a1
k2

a1 − z2
1
− −k2Ḡ

2
k2

a2
k2

a2 − z2
2
− Ḡσ2δ̃2

2
− Ḡσ1θ̃2

2
− k3

2
ζ2

+
a2

2
+

∆u2

2k3
+ 0.2785λḠδ +

Ḡσ2

2
δ2 +

Ḡσ1

2
θ2

(41)

It should be noted that the state ζ of the anti-saturation compensator is affected by the value of
|∆u|. If |∆u| tends to infinity, the control input will be infinite when the system (5) tracks the reference
trajectory which will cause the saturation compensator to cease to be effective; the system will not
track the desired value. Based on this analysis, |∆u| should be bounded.
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Remark 4. In this paper, an anti-saturation compensator (33) is used to avoid the problem of input saturation.
When the control input required by the system is greater than the actuator performance, ∆u 6= 0. At this time,
the state ζ is generated by the anti-saturation compensator, which compensates for the deviation caused by input
saturation until ∆u = 0. Furthermore, the larger the values of parameters k3 and k4 are, the faster the auxiliary
system’s compensation rate is. Therefore, with the anti-saturation auxiliary system, this paper’s design effectively
deals with the adverse effects created by input saturation and guarantees helicopter’s yaw angle true tracking to
the desired trajectory under the input constraints.

Theorem 1. Consider the non-affine nonlinear system (4), affine-form system (5), and Assumptions 1–4.
By establishing an adaptive saturation controller (36), a virtual control signal (21), and by designing the
adaptation law (32), with the initial conditions bounded and all signals of the closed-loop system uniformly
bounded, the proposed scheme can guarantee that the helicopter’s yaw channel system tracking errors z1 and z2

converge to small compact sets around the origin.

Proof. We can get the following inequality from (41):

V̇ ≤ −kV + C (42)

where k = min{2k1,−k2Ḡ,−βσ2,−γσ1, k3} and C = a2

2 + ∆u2

2k3
+ 0.2785λḠδ + Ḡσ2

2 δ2 + Ḡσ1
2 θ2.

At the same time, integrating both sides of (42) over [0, t], we get

0 ≤ V(t) ≤
[

V(0)− C
k

]
e−kt +

C
k

(43)

where V(0) is the initial value of V. Equation (43) shows that z1, z2, δ̃, θ̃, and ζ are bounded.
Then, because x1 = z1 + yd and |yd| ≤ β1, we have |x1| ≤ |z1|+ |yd| < ka1 + β1 ≤ α1. From the

design of α in (21), we know the function α contains x1, yd and ẏd, and that the maximum value of α

exists, namely α ≤ αm. Considering that x2 = z2 + α, we get |x2| ≤ |z2|+ |α| < ka2 + αm ≤ α2. Since
δ, δ̃, θ, and θ̃ are bounded, δ̂ = δ− δ̃ and θ̂ = θ − θ̃ are also bounded. The designed actual control
input u from (36) verifies that u is bounded. Therefore, all the signals in the closed-loop system remain
uniformly bounded.

Further analysis shows that

ln
k2

a1
k2

a1 − z2
1
≤ 2[V(0)− C

k
]e−kt +

2C
k

ln
k2

a2
k2

a2 − z2
2
≤ 2[V(0)− C

k
]e−kt +

2C
k

(44)

Taking exponentials on both sides of (44) leads to

k2
a1

k2
a1 − z2

1
≤ e2[V(0)− C

k ]e
−kt+ 2C

k

k2
a2

k2
a2 − z2

2
≤ e2[V(0)− C

k ]e
−kt+ 2C

k

(45)

Since k2
a1 − z2

1 > 0 and k2
a2 − z2

2 > 0, multiplying by k2
a1 − z2

1 and k2
a2 − z2

2 in (45) results in

|z1| ≤ ka1

√
1− e−2[V(0)− C

k ]e
−kt− 2C

k

|z2| ≤ ka2

√
1− e−2[V(0)− C

k ]e
−kt− 2C

k

(46)
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It can be seen that given any ∆1 > ka1

√
1− e−2 C

k and ∆2 > ka2

√
1− e−2 C

k , there is a T such that

for any t > T, |z1| ≤ ∆1 and |z2| ≤ ∆2. |z1| ≤ ka1

√
1− e−2 C

k and |z2| ≤ ka2

√
1− e−2 C

k along with

t→ ∞. It can be concluded that |z1| ≤ ka1

√
1− e−2 C

k and |z2| ≤ ka2

√
1− e−2 C

k as t→ ∞. According to
the definitions of C and k in (42),we conclude that z1 and z2 eventually converge to arbitrarily small
compact sets by choosing appropriate design parameters. The proof is completed.

Remark 5. In this paper, the barrier Lyapunov theory integrated with the design procedure of backstepping is
applied to deal with state constraints. The change range of backstepping error variables z1 and z2 is restricted by
the design parameters ka1 and ka2. If |z1| → ka1 and |z2| → ka2, the barrier Lyapunov function will approximate
infinity. Hence, the variation of z1 and z2 is always limited to |z1| < ka1 and |z2| < ka2. This ensures that
the bounds of the system state constraints are not violated in the process of helicopter’s yaw channel tracking,
satisfying the limits of helicopter yaw motion space and improving its operational security.

Remark 6. The investigated control strategy is an adaptive neural fault-tolerant control, and it is employed in
a UAV helicopter SISO non-affine nonlinear yaw control system to realize tracking errors in arbitrarily small
compact sets; As far as we know, there are few conclusions about adaptive neural network fault-tolerant
control for non-affine nonlinear yaw control system faced with the uncertainties in system conversion,
unknown disturbances, actuator faults, input saturations, and full-state constraints. The MIMO systems
can also make use of this control scheme, but the universality of the proposed controller needs further study.

2.4. Simulation Results

A UAV yaw-channel model acquired from the helicopter-on-arm platform [45,46] was used to
confirm feasibility of the proposed control scheme.Taking input saturation and actuator faults into
consideration for the UAV yaw-channel model, the non-affine nonlinear yaw dynamic model was
formulated as follows: {

ϕ̇ = r

ṙ = l1 ϕ + l2r + l3θtr f s + l4θ2
tr f s + l5Ωθtr f s + D

(47)

with l1 = −3.33, l2 = −1.38, l3 = 63.09, l4 = 11.65, l5 = −0.14, and Ω = 1200. θtr f s denotes the pitch
angle with saturation and actuator faults. D = sin t + cos 2t + 2 is an external disturbance.

Let [ϕ, r]T = [x1, x2]
T , θtr f s = u f s. The nonlinear controller was designed by applying the Taylor

series expansion technique to Equation (47).{
ẋ1 = x2

ẋ2 = f + gρus + d
(48)

where f = l1x1 + l2x2 + l3u f sζ + l4u f sζ
2 + l5Ωu f sζ − (l3 + 2l4u f sζ + l5Ω)u f sζ , g = l3 + 2l4u f sζ + l5Ω.

The initial conditions of the UAV helicopter are x1(0) = 0.16 rad and x2(0) = −0.2 rad/s.
The desired tracking command was yd = 0.52 sin(1.2t) + 0.05 cos(t) + 0.05. With ka1 = ka2 = 0.2,
the state constraints of the system were |x1| ≤ 0.82 rad, |x2| ≤ 0.874 rad/s. The robust sliding mode
filter parameters in Equation (6) were chosen as τ = 0.005, ζ1 = 20, and ζ2 = 0.01. The saturation
parameter usm = 0.055 rad, the anti-saturation compensator parameters were designed as k3 = 0.5,
k4 = 1, and the initial value of ζ(0) = 0.

The RBFNN was exerted to approximate the unknown nonlinear function. The neural network
W∗TΨ(Z) contained six units evenly distributed in the interval [−25, 25] with the width of each unit
equal to 9. The designed adaptive parameters were taken as λ = 0.2, γ = β = 1, σ1 = −0.3, σ2 = −0.1,
and a = 0.1. The initial estimated values of the adaptive parameters were θ̂(0) = 0 and δ̂(0) = −0.1.
The input controller parameters were chosen as k1 = 0.5 and k2 = 1. In the simulation scenario, the
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UAV helicopter suffers from actuator fault at t ≥ 15s, and ρ = 1
0.75+e−cosx1x2

. To verify the feasibility
of the proposed adaptive neural fault-tolerant control scheme, the simulation results are shown in
Figures 2–9. Figure 2 shows the approximation curves of the states which illustrate the effectiveness of
the approximation method (5). Figure 3 shows the good approximation performance of the robust
sliding mode filter (6); the filtered value u f sξ can approximate u f s with good accuracy. Figures 4 and 5
not only demonstrate the good tracking performance of system states with input saturation and an
actuator fault but also meet state constraints. Figures 6 and 7 give the time trajectories of the adaptive
parameters θ̂ and δ̂. Figure 8 shows the state ζ change of the anti-saturation compensator. Figure 9
shows the changes of helicopter input pitch angle u and input with saturation and actuator fault u f s.
According to the simulation, the anti-saturation compensator can accommodate input constraints
and demonstrates a superior compensation characteristic. The adaptive saturation controller of
Equation (36) proposed in this paper can effectively address the state constraints and input saturation
of the system. We can see that when an actuator fault occurs at t ≥ 15 s, the system can still track the
desired trajectory.
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Figure 2. The response curves of x1 and x2 in system transformation.
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Figure 9. The control input with saturation and actuator faults.

3. Conclusions

An adaptive neural fault-tolerant control scheme was developed for a UAV helicopter SISO
non-affine nonlinear yaw control system capable of dealing with unknown external disturbances,
actuator faults, input saturation, and full-state constraints. By combining a Taylor series expansion
technique with a robust sliding mode filter, the actual control input was explicitly defined. An RBFNN
was employed to approximate the unknown nonlinear function. In comparison with prior research,
this paper leads to the following salient conclusions:

(i) A symmetric barrier Lyapunov function with a smooth structure was designed to prevent the
system from exceeding all state constraints.

(ii)To lighten the online computational burden, the Euclidean norm of the unknown neural
network weight vector was estimated instead of the ideal weight vector. The number of learning
parameters was reduced along with the complexity of the calculations.

(iii) The compound bounded disturbances and unknown parameters were estimated by adaptive
technology. Moreover, we employed the limit of gρ to handle actuator fault tolerance, making it
unnecessary to determine the bound value of gρ in the process of stability proofing. This broadens the
range of applications.

(iv) By incorporating an anti-saturation compensator, the signal difference between actual control
input and saturation actuator output was analyzed for its effect on system control so that the control
input met the input constraint requirement.

The future investigative directions are to verify the feasibility of the UAV helicopter’s longitudinal
dynamics with existing time-varying state constraints, unknown control directions, and input
saturation issues. From the perspective of the control system, we will design the overall solution of
UAV helicopter based on the research in the paper and navigation instructions. In the future, the
proposed control scheme should also extend its generality and adaptability to the MIMO systems.
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Appendix A. The Detailed Dynamic Equations of Helicopter Yaw-Channel Model

After complete employment with the assistance of Maple, we can obtain new expression of main
rotor torque combined Equation (2) with C1 = 1

6 ρabcΩ2(R3 − R3
0), C2 = 1

8 ρabcΩ
√

2/ρπR2(R2 − R2
0)

,where R and b are radial and number of the rotor.

Qmr =
1
8

Cd2ρcΩ2(R4 − R4
0)θ

2
mr +

[
8Cd2Ω

√
ρπR2(2C1θmr + C2

2 − C2

√
C2

2 + 4C2θmr)(R3
0 − R3)

+ 4aΩ

√
ρπR2(2C1θmr + C2

2 − C2

√
C2

2 + 4C1θmr)(R3 − R3
0) + 6Cd2C1(R2 − R2

0)

+ 6aC1(R2
0 − R2) + 6Cd1ρπΩ2R2(R4 − R4

0)

]
cθmr

48πR2 +

[
3Cd2C2

√
C2

2 + 4C1θmr(R2
0 − R2)

+ 3aC2

√
C2

2 + 4C1θmr(R2 − R2
0) + 4Cd1Ω

√
ρπR2(2C1θmr + C2

2 − C2

√
C2

2 + 4C1θmr)(R3
0 − R3)

+ 6Cd0ρπΩ2R2(R4 − R4
0) + 3aC2

2(R2
0 − R2) + 3Cd2C2

2(R2 − R2
0)

]
c

48πR2

Likewise, the force which is created by the tail rotor can be expressed by the following form

Ttr =
1
2

ρatrbtrctrΩ2
tr

∫ Rtr

Rtr0

(
θtrr2

tr −
√

Ttr

2ρAtr

r
Ωtr

)
drtr

= C3θtr +
1
2

C4(C4 +
√

C2
4 + 4C3θtr)

therein C3 = 1
6 ρatrbtrctrΩ2

tr(R3
tr − R3

tr0), C4 = 1
8 ρatrbtrctrΩtr

√
2/ρπR2

tr(R2
tr − R2

tr0), where atr, btr, ctr,
Ωtr, θtr, rtr are the slope of the lift curve, number of the rotor, chord of the blade, speed of the tail rotor,
pitch angle, and radial distance, respectively.

In the same manner, the force produced by the main rotor can be formulated as

Tmr = C1θmr +
1
2

C2(C2 +
√

C2
2 + 4C1θmr)

We can see that the controller is hard to design so a model that can provide superior means of
analysis and management is essential. By plotting the torque vs. pitch angle, we approximate the
relation between Qmr and θmr with a quadratic polynomial [31].

Qmr = kQ2 θ2
mr + kQ1 θmr + kQ0

Similarly, the force of the tail rotor Ttr is described as

Ttr = kT2 θ2
tr + kT1 θtr + kT0

From the above analysis, we can get the non-affine nonlinear helicopter yaw-channel model as
Equation (3).

Appendix B. The Expression of Saturation Function us

In this paper, we mainly consider the typical saturated nonlinear function model, us is described
as follow

us = sat(u) =


usm, u ≥ usm

u, − usm < u < usm

−usm, u ≤ −usm
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where usm is the maximum of saturation input us, u denotes an actual control input to the system,
us and u are the functions of time t.

 !
s
u sat u 

u

s
u

sm
u

sm
u

sm
u 

sm
u 

Figure A1. Saturation function.
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