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Abstract: Colorectal cancer is one of the most frequently diagnosed cancers worldwide. The aim of
the present study was to simultaneously analyze compounds of Salviae miltiorrhizae Radix (SMR)
and determine their cytotoxic effects on HCT-116 human colorectal cancer cells. We established a
simultaneous analysis method of five compounds (salvianic acid A, salvianolic acid B, caffeic acid,
tanshinone IIA, and rosmarinic acid) contained in SMR, and found that among the various compounds
in SMR, tanshinone IIA significantly decreased cell viability in a concentration-dependent manner.
Hoechst staining also showed that both SMR and tanshinone IIA increased nuclear condensation,
suggesting induction of apoptosis. By Western blotting, we found that tanshinone IIA induced
apoptotic cell death, significantly increased Bax, but decreased Bcl-2 in the course of apoptosis.
Tanshinone IIA increased the expression of cleaved caspases-7 and -8. Tanshinone IIA was shown
to be an active ingredient of SMR that may be a useful chemotherapeutic strategy for patients with
colorectal cancer.
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1. Introduction

Colorectal cancer is the third-most commonly diagnosed cancer worldwide [1]. Although surgery
plays a key role in the diagnosis and treatment of colorectal cancer, there are still increasing attempts
to stop the progression of this cancer via the application of new synthetic and naturally-occuring
compounds [2,3]. Bioactive compounds from plants have been screened for anticancer activities [4,5].
Approximately 50-60% of cancer patients in the United States utilize complementary and alternative
medicines with traditional therapeutic regimens, such as radiation therapy and chemotherapy [6].

Apoptosis pathways are important targets in cancer-related therapies, and insufficient apoptosis
results in uncontrolled cancer cell proliferation [7]. The use of natural phytochemicals for inhibiting
cancer cell proliferation and inducing apoptosis contributes to promoting cancer cell death [8,9].
Natural phytochemicals are multiple-target molecules found in plants and microorganisms, and they
exert strong anticancer activity [10,11]. Phytochemicals isolated from natural sources also exhibit
various beneficial effects against inflammation, cancer, and neurodegenerative disorders [10]. This
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broad spectrum of biological and pharmacological activities has made natural compounds suitable
candidates for treating multifactorial diseases, such as colorectal cancer.

Salviae miltiorrhizae Radix (SMR) is one of the well-known traditional herbal medicines and has
been used in Asian countries [8]. Recently, there has been increasing scientific attention towards SMR
for its remarkable bioactivity against cardiovascular disease, renal damage, tumor angiogenesis, and
tumor cell invasion [12-14]. In the last decade, accumulating evidence has shown that SMR exerts a
significant anticancer effect against promyelocytic leukemia, breast cancer, ovarian carcinomas, and
hepatocellular carcinoma (HCC) [15-17]. In a recent network pharmacology-based study on the anti-
HCC effect of SMR, 62 chemical compounds form SMR yielded 101 putative targets that played a
critical role in HCC via multiple targets and pathways, especially the EGFR and phosphatidyl-inositol
3-kinase (PI3K)/Akt signaling pathways [18]. However, the effect of SMR and its compounds on human
colon cancer cells has not been fully elucidated. The aim of the present study was to simultaneously
analyze the compounds of SMR and determine their cytotoxic effects on HCT-116 human colorectal
cancer cells.

2. Materials and Methods

2.1. Plant Materials

Salviae miltiorrhizae Radix (SMR) was obtained from Kwangmyungdag Medicinal Herbs (Ulsan,
Korea) and identified by Dr. Goya Choi, Herbal Medicine Resources Research Center, Korea Institute
of Oriental Medicine (HMRRC, KIOM; Naju, Korea). A voucher specimen (SMR-2-14-0073) was stored
at the herbarium of the HMRRC, KIOM.

2.2. Chemicals and Reagents

Five reference standard compounds, salvianic acid A (98.0%), caffeic acid (99.0%), rosmarinic
acid (97.0%), salvianolic acid B (98.0%), and tanshinone IIA (98.8%) were purchased from standard
manufacturers: Acros Organics (Pittsburgh, PA, USA), Merck KGaA (Darmstadt, Germany), and
ChemPFaces Biochemical Co., Ltd. (Wuhan, China).

The solvents including methanol, acetonitrile, and water (HPLC-grade) and formic acid (>98.0%,
ACS reagent-grade) for quantitative analysis were obtained from Merck KGaA (Darmstadt, Germany)
and J. T. Baker (Phillipsburg, NJ, USA), respectively.

2.3. Preparation of 70% Ethanol SMR Extract

Dried SMR (0.3 kg) was extracted with 70% ethanol (3.0 L, 3 times) for 1 h at room temperature by a
Branson 8510 ultrasonicator (Denbury, CT, USA). The extract solution was filtered with 150 mm O filter
paper (Whatman, Maidstone, Kent, UK) under vacuum, concentrated to remove the organic extract
solvent (ethanol) using a Btichi rotary evaporator R-210 (Flawil, Switzerland), and then lyophilized
using a Ilshin BioBase FD-5525L freeze-drier (Dongducheon, Korea) to obtain powdered extract. The
yield of lyophilized 70% ethanol extract of SMR was 69.8 g (23.3%).

2.4. HPLC Analysis of Five Components in SMR

HPLC analysis was conducted using the Prominence LC-20A Series instruments (Shimadzu,
Kyoto, Japan) consisting of a DGU-20A3 degasser, LC-20AT solvent delivery unit, SIL-20A auto sample
injector, CTO-20A column oven, and SPD-M20A photodiode array detector. All chromatographic data
were obtained and analyzed with the LabSolution software (Version 5.53; SP3, Kyoto, Japan). Five
components were separated using a reverse-phase SunFire™ Cyg analytical column (4.6 X 250 mm, 5
um; Waters, Torrance, CA, USA) at 40 °C with gradient solvent condition. The mobile phases consisted
of 0.1% (v/v) aqueous formic acid (A) and 0.1% (v/v) formic acid in acetonitrile (B) and were adjusted
following the gradient condition: 0-30 min, 10-60% B; 30-40 min, 60-100% B; 4045 min, 100% B; 45-50
min, and 100-10% B. The re-equilibrium time was adjusted for 10 min. The flow rate of the mobile
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phase was 1.0 mL/min, and the injection volume of the standard and test solution was 10 uL each. For
quantitative determination of five marker components (salvianic acid A, caffeic acid, rosmarinic acid,
salvianolic acid B, and tanshinone IIA) in SMR, 200.0 mg of lyophilized SMR extract was liquefied
with 20 mL of 70% methanol and sonicated for 30 min. It was also diluted 20-fold for quantification of
salvianolic acid B. All samples were filtered using a membrane filter (0.2-um, Pall Life Sciences, Ann
Arbor, M1, USA) before analysis.

2.5. Cell Culture

The human colon cancer cell (HCT-116) was purchased from the ATCC (American Type Culture
Collection, Manassas, VA, USA). The cell was maintained and grown in RPMI 1640 medium (Roswell
Park Memorial Institute 1640; Corning, Manassas, VA, USA) contained with 10% FBS (fetal bovine
serum; Gibco BRL, Carlsbad, MD, USA) and penicillin/streptomycin (Life Technologies, Waltham, MA,
USA). The condition of the incubator was 37 °C and humidified atmosphere containing 5% CO,.

2.6. Cell Viability Assay

The cell viability assay was assessed using an Ez-Cytox Kit (Dail Lab Service Co., Seoul, Korea)
based on the manufacturer’s instructions [19]. Briefly, the cells were seeded in a 96-well plate at 1 x 10*
cells/well and then incubated. After 24 h, the cells were treated with the indicated concentrations of
each sample, and the cells were then incubated for 24 h. Following incubation, Ez-Cytox solution was
mixed with medium in each well and incubated for 1 h. The absorbance at 450/600 nm was determined
using a SPARK 10M (Tecan Group Ltd., Madnnedorf, Switzerland). The cell viability of 100% was
calculated from control cells.

2.7. Hoechst 33342 Cell Staining

Sample-induced nuclear condensation of HCT-116 cells was observed using Hoechst 33342
staining (Sigma Aldrich, St. Louis, MO, USA) [20]. Briefly, the cells were seeded in a 6-well plate at 4 x
10 cells per well. Following incubation for 24 h, the cells were treated with various concentrations of
each sample, and the cells were then incubated for 24 h. Following incubation, Hoechst 33342 solution
was added to the cells and incubated for 10 min. The stained cells were observed using a CCD camera
conjugated IX50 fluorescent microscope (Olympus, Tokyo, Japan).

2.8. Western Blotting

The apoptosis signaling pathways of HCT-116 cells induced by samples were performed using
Western blot analysis [21,22]. Briefly, the cells were seeded in a 6-well plate at 4 X 10° cells/well and
then incubated. After 24 h, the cells were treated with the indicated concentrations of each sample, and
the cells were then incubated for 24 h. Following incubation, the cells were harvested with a scraper
and lysed with radio-immunoprecipitation assay buffer (Elpis Biotech, Daejeon, Korea). The protein
concentrations were calculated with the Pierce BCA Protein Assay Kit (Thermo Scientific, Carlsbad,
CA, USA). The protein samples were separated by electrophoresis in a SDS-PAGE. Then, the proteins
were transferred to PVDF membranes (Merck Millipore, Darmstadt, Germany). The membranes
were conducted blockading by 5% skim milk. Then, the membranes were probed with primary
antibodies for Bax, B-cell lymphoma 2 (Bcl-2), cleaved caspase-7, cleaved caspase-8, cleaved caspase-9,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and poly(ADP-ribose) polymerase (PARP)
followed by incubating with secondary antibodies for anti-rabbit IgG (Cell Signaling Technology, Inc.,
Danvers, MA, USA).
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2.9. Statistical Analysis

All experiments were performed in triplicate, and the quantitative data were shown as mean +
SD. Statistical analysis using Student’s t-test was conducted and considered statistically significant
based on p-values less than 0.05.

3. Results and Discussion

In the present study, we analyzed five bioactive marker components found in SMR, consisting
of four phenolic acids (salvianic acid A, caffeic acid, rosmarinic acid, and salvianolic acid B) and one
terpenoid (tanshinone IIA). These compounds were separated with resolution >5.0 within 45 min
and retention times of 5.87, 11.11, 17.72, 20.42, and 42.51 min, respectively (Figure 1). The content of
rosmarinic acid, caffeic acid, salvianic acid A, salvianolic acid B, and tanshinone IIA in the samples
was 3.72,0.123, 1.27, 64.36, and 4.96 mg/g, respectively.
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Figure 1. Three-dimensional high-performance liquid chromatogram of 70% ethanol extract of Salviae
miltiorrhizae Radix.

We initially performed a cytotoxic evaluation using HCT-116 human colorectal carcinoma
cells. As shown in Figure 2, only tanshinone IIA significantly decreased cell viability in a
concentration-dependent manner, whereas 61.6 UM SMR showed approximately 50% suppression.
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Figure 2. Cytotoxic effect of 70% ethanol extract of Salviae miltiorrhizae Radix (SMR), salvianic acid A
(1), caffeic acid (2), rosmarinic acid (3), salvianolic acid B (4), and tanshinone IIA (5) on HCT-116 cells.

Many clinical anticancer drugs are known to exert their effects by inducing apoptosis [23].
Apoptosis is a gene-regulated response and, from the morphological point of view, is distinguished
by the specific structural changes in cells, such as plasma membrane bleb formation, cell and nuclear
shrinkage, oligonucleosomal DNA fragmentation, and chromatin condensation [24]. Morphological
analyses showed that both SMR and tanshinone IIA decreased the number of cells and induced signs
of cellular apoptosis, such as cellular shrinkage (Figure 3). Moreover, as shown in Figure 4, Hoechst
staining also showed that both SMR and tanshinone IIA increased nuclear condensation, suggesting
that SMR and tanshinone IIA successfully induced apoptosis, not necrosis, in human colorectal cancer
cells. However, tanshinone IIA was not cytotoxic to LLC-PK1 pig kidney epithelial cell, which is
normal cell lines, up to 100 uM (Supplementary Figure S1).
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Figure 3. Effects of 70% ethanol extract of Salviae miltiorrhizae Radix (SMR) and tanshinone ITA on
apoptosis in HCT-116 cells. (A) Morphology changes in HCT-116 cells. (B) Fluorescence microscopic
images of apoptotic HCT-116 cells stained with Hoechst 33342.

Two major molecular pathways that trigger programmed cell death are the caspase-mediated
intrinsic pathway, which is induced by cellular stresses, and the extrinsic pathway, which is related to
the death receptor [25]. Both pathways activate the apoptotic caspases, resulting in morphological and
biochemical cellular alterations related to apoptosis [26]. In addition, the extrinsic pathway controls
cell turnover by decreasing mutant cells. In the extrinsic pathway, cancer cell death is triggered by the
interaction with death ligands (such as tumor necrosis factor) and its death receptors. The cancer cell
death-initiating complex stimulates the activation of caspase-3 and -8, which are effector and starter
caspases, respectively [27,28]. The intrinsic pathway, which is typically activated in response to DNA
or cellular damage, stimulates the expression of proteins in mitochondria, such as cytochrome ¢, which
then activates caspase-3 and -9. [27,29]. It was also reported that after cleavage by caspase-9, caspase-3
inhibits reactive oxygen species production and is thus required for efficient induction of apoptosis,
whereas caspase-7 is required for apoptotic cell elimination [30]. In our present study, the expressions
of cleaved caspase-7 and -8 were significantly increased by tanshinone IIA, but there was no change in
that of cleaved caspase-9 (Figure 4).
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Figure 4. Effects of 70% ethanol extract of Salviae miltiorrhizae Radix (SMR) and tanshinone ITA on
apoptosis in HCT-116 cells. (A) Protein expression of PARP, Bax, Bcl-2, cleaved caspase-7, cleaved
caspase-8, cleaved caspase-9, and GAPDH. (B) Graph of relative protein expression. Data are the means
of experiments performed in triplicate. Data are presented as the mean + SD. and were analyzed using
the Student’s t-test. * p < 0.05 versus non-treated cells.

Furthermore, anti- and pro-apoptotic Bcl-2 members play critical roles in the
mitochondria-mediated pathway. That is, the ratio of anti- and pro-apoptotic proteins (e.g., Bax/Bcl-2)
is considered as a determinant of survival or apoptosis of cancer cells [31]. Earlier studies have
reported that the anti-apoptotic Bcl-2 members, which consist of Bel-x1, Bcl-2, Bel-w, and Mcl-1, exert
an important role in the resistance of cancer cells to chemotherapy. Therefore, a reduction in Bcl-2 and
an increase in Bax stimulate the apoptosis process and eliminate cancer cells [32]. Our western blotting
analysis results showed increased Bax expression and decreased Bcl-2 expression in cells co-treated
with tanshinone IIA, which was stronger than SMR (Figure 4); however, no difference was observed in
poly (ADP-ribose) polymerase (PARP) expression, which is a parameter for stress and DNA damage
in cells.

In summary, we simultaneously analyzed five compounds (salvianic acid A, rosmarinic acid,
salvianolic acid B, caffeic acid, and tanshinone IIA) from SMR, and determined their cytotoxic effects
on HCT-116 human colon cancer cells. Among the five compounds in SMR, only tanshinone ITA
significantly decreased cell viability in a concentration-dependent manner. Both SMR and tanshinone
IIA increased nuclear condensation, suggesting that SMR and tanshinone IIA successfully induced
apoptosis. We also found that tanshinone IIA induced apoptotic cell death and significantly increased
cleaved caspases-7, -8, and Bax expression, as well as decreased Bcl-2 expression in the course of
apoptosis. Taken together, our data show that tanshinone IIA is an active ingredient of SMR and may
be a useful chemotherapeutic strategy for patients with colorectal cancer.



Appl. Sci. 2020, 10,1304 80f9

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/4/1304/s1.

Author Contributions: Conceptualization, Y.-K.C. and K.S.K.; performing experiments and analyzing data, B.K.,
S.L., and C.-S.S,; C.-S.S,; validation, B.K. and K.S.K.; writing—original draft preparation, Y.-K.C. and K.S.K,;
writing—review and editing, K.S.K.; funding acquisition. All authors have read and agreed to the published
version of the manuscript.

Funding: The present study was also supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) (2019R1F1A1059173).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

Bray, F; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer |.
Clin. 2018, 68, 394-424. [CrossRef] [PubMed]

Cheraghi, O.; Dehghan, G.; Mahdavi, M.; Rahbarghazi, R.; Rezabakhsh, A.; Charoudeh, H.N.; Iranshahi, M.;
Montazersaheb, S. Potent anti-angiogenic and cytotoxic effect of conferone on human colorectal
adenocarcinoma HT-29 cells. Phytomedicine 2016, 23, 398—405. [CrossRef] [PubMed]

Mignani, S.; Rodrigues, J.; Tomas, H.; Zablocka, M.; Shi, X.; Caminade, A.-M.; Majoral, J.-P. Dendrimers in
combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev. 2018, 47, 514-532.
[CrossRef]

Yang, E.-J.; An, J.-H.; Son, Y.K.; Yeo, ].-H.; Song, K.-S. The cytotoxic constituents of Betula platyphylla and
their effects on human lung A549 cancer cells. Nat. Prod. Sci. 2018, 24, 219-224. [CrossRef]

Ahuja, A.; Kim, ].H.; Kim, J.H.; Yi, Y.S.; Cho, J.Y. Functional role of ginseng-derived compounds in cancer. J.
Ginseng Res. 2018, 42, 248-254. [CrossRef]

Meeran, S.M.; Ahmed, A.; Tollefsbol, T.O. Epigenetic targets of bioactive dietary components for cancer
prevention and therapy. Clin. Epigenetics 2010, 1, 101-116. [CrossRef]

Gezici, S.; Sekeroglu, N. Current perspectives in the application of medicinal plants against cancer: Novel
therapeutic agents. Anticancer Agents Med. Chem. 2019, 19, 101-111. [CrossRef]

Wang, Z.].; Cui, L.J.; Chen, C.X,; Liu, ].; Yan, Y.P.; Wang, Z.Z. Down regulation of cinnamoyl CoA reductase
affects lignin and phenolic acids biosynthesis in Salvia miltiorrhiza Bunge plant. Plant Mol. Biol. Rep. 2012,
30, 1229-1236. [CrossRef]

Guon, T.-E.; Chung, H.S. Induction of apoptosis with Moringa oleifera fruits in HCT116 human colon cancer
cells via intrinsic pathway. Nat. Prod. Sci. 2017, 23, 227-234. [CrossRef]

Rahman, I.; Chung, S. Dietary polyphenols, deacetylases and chromatin remodeling in inflammation. J.
Nutrigenet Nutrigenomics 2010, 3, 220-230. [CrossRef]

Choi, ].H.; Jang, M.; Nah, S.Y.; Oh, S.; Cho, I.H. Multitarget effects of Korean Red Ginseng in animal model of
Parkinson’s disease: Antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier
integrity. J. Ginseng Res. 2018, 42, 379-388. [CrossRef]

Zhao, W.; Yuan, Y.; Zhao, H.; Han, Y.; Chen, X. Aqueous extract of Salvia miltiorrhiza Bunge-Radix Puerariae
herb pair ameliorates diabetic vascular injury by inhibiting oxidative stress in streptozotocin-induced diabetic
rats. Food Chem. Toxicol. 2019, 129, 97-107. [CrossRef]

Li, W,; Jiang, Y.H.; Wang, Y.; Zhao, M.; Hou, G.J.; Hu, H.Z.; Zhou, L. Protective Effects of Combination of
Radix Astragali and Radix Salviae Miltiorrhizae on Kidney of Spontaneously Hypertensive Rats and Renal
Intrinsic Cells. Chin. |. Integr. Med. 2019. (Epub ahead of print). [CrossRef]

Zhang, L.J.; Chen, L.; Lu, Y.; Wu, ].M.; Xu, B.; Sun, Z.G.; Zheng, S.Z.; Wang, A.Y. Danshensu has anti-tumor
activity in BI6F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur. |. Pharmacol. 2010, 643,
195-201. [CrossRef]

Gu, M.; Zhang, G.; Su, Z.; Ouyang, F. Identification of major active constituents in the fingerprint of Salvia
miltiorrhiza Bunge developed by high-speed counter-current chromatography. J. Chromatogr. A 2004, 1041,
239-243. [CrossRef]

Li, Y.G,; Song, L.; Liu, M.; Hu, Z.B.; Wang, Z.T. Advancement in analysis of Salviae miltiorrhizae Radix et
Rhizoma (Danshen). |. Chromatogr. A 2009, 1216, 1941-1953. [CrossRef]


http://www.mdpi.com/2076-3417/10/4/1304/s1
http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1016/j.phymed.2016.01.015
http://www.ncbi.nlm.nih.gov/pubmed/27002410
http://dx.doi.org/10.1039/C7CS00550D
http://dx.doi.org/10.20307/nps.2018.24.4.219
http://dx.doi.org/10.1016/j.jgr.2017.04.009
http://dx.doi.org/10.1007/s13148-010-0011-5
http://dx.doi.org/10.2174/1871520619666181224121004
http://dx.doi.org/10.1007/s11105-012-0444-4
http://dx.doi.org/10.20307/nps.2017.23.4.227
http://dx.doi.org/10.1159/000324358
http://dx.doi.org/10.1016/j.jgr.2018.01.002
http://dx.doi.org/10.1016/j.fct.2019.04.018
http://dx.doi.org/10.1007/s11655-019-3071-1
http://dx.doi.org/10.1016/j.ejphar.2010.06.045
http://dx.doi.org/10.1016/j.chroma.2004.04.030
http://dx.doi.org/10.1016/j.chroma.2008.12.032

Appl. Sci. 2020, 10, 1304 90f9

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Bae, W.J.; Choi, ].B.; Kim, K.S.; Syn, HU.; Hong, S.H.; Lee, ].Y.; Hwang, TK.; Hwang, S.Y.; Wang, Z.P;
Kim, S.W. Inhibition of proliferation of prostate cancer cell line DU-145 in vitro and in vivo using Salvia
miltiorrhiza Bunge. Chin. |. Integr. Med. 2017, 1, 1. [CrossRef]

Luo, Y.; Feng, Y,; Song, L.; He, G.Q.; Li, S.; Bai, S.S.; Huang, Y.J.; Li, S.Y.; Almutairi, M.M.; Shi, H.L.; etal. A
network pharmacology-based study on the anti-hepatoma effect of Radix Salviae Miltiorrhizae. Chin. Med.
2019, 14, 27. [CrossRef]

Trinh, T.A.; Park, E.-].; Lee, D.; Song, ].H.; Lee, H.L.; Kim, K.H.; Kim, Y.; Jung, K.; Kang, K.S.; Yoo, J.-E.
Estrogenic activity of Sanguiin H-6 through activation of estrogen receptor o Coactivator-binding Site. Nat.
Prod. Sci. 2019, 25, 28-33. [CrossRef]

Kim, D.H.; Kim, D.W.; Jung, B.H.; Lee, ].H.; Lee, H.; Hwang, G.S.; Kang, K.S.; Lee, ]. W. Ginsenoside Rb2
suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. | Ginseng Res
2019, 43, 326-334. [CrossRef]

Lee, D.; Lee, D.S,; Jung, K.; Hwang, G.S.; Lee, H.L.; Yamabe, N.; Lee, H.].; Eom, D.W.; Kim, K.H.; Kang, K.S.
Protective effect of ginsenoside Rb1 against tacrolimus-induced apoptosis in renal proximal tubular LLC-PK1
cells. J. Ginseng Res. 2018, 42, 75-80. [CrossRef] [PubMed]

Roy, A.; Park, H.-].; Jung, H.A_; Choi, ].S. Estragole exhibits anti-inflammatory activity with the regulation
of NF-«kB and Nrf-2 signaling pathways in LPS-induced RAW 264.7 cells. Nat. Prod. Sci. 2018, 24, 13-20.
[CrossRef]

Debatin, K.-M. Activation of apoptosis pathways by anticancer treatment. Toxicol. Lett. 2000, 112, 41-48.
[CrossRef]

Bai, R.; Li, W,; Li, Y;; Ma, M.; Wang, Y.; Zhang, J.; Hu, E Cytotoxicity of two water-soluble polysaccharides
from Codonopsis pilosula Nannf. var. modesta (Nannf.) LT Shen against human hepatocellular carcinoma
HepG2 cells and its mechanism. Int. ]. Biol. Macromol. 2018, 120, 1544-1550. [CrossRef]

Ghasemian, M.; Mahdavi, M.; Zare, P.,; Feizi, M.A.H. Spiroquinazolinone-induced cytotoxicity and apoptosis
in K562 human leukemia cells: Alteration in expression levels of Bcl-2 and Bax. J. Toxicol. Sci. 2015, 40,
115-126. [CrossRef]

Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. JECCR 2011, 30, 87. [CrossRef]

Adams, ].M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death
Differ 2018, 25, 27. [CrossRef]

Waziri, PM.; Abdullah, R.; Rosli, R.; Omar, A.R.; Abdul, A.B.; Kassim, N.K.; Malami, I.; Etti, I.C.; Sani, ]. A.M.;
Lila, M.A M. Clausenidin induces caspase 8-dependent apoptosis and suppresses production of VEGF in
liver cancer cells. Asian Pac. J. Cancer Prev. 2018, 19, 917.

Shamas-Din, A.; Kale, J.; Leber, B.; Andrews, D.W. Mechanisms of action of Bcl-2 family proteins. Cold Spring
Harb. Perspect. Biol. 2013, 5, a008714. [CrossRef]

Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and
caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32. [CrossRef]
Keskin-Aktan, A.; Akbulut, K.G.; Yazici-Mutlu, C.; Sonugur, G.; Ocal, M.; Akbulut, H. The effects of melatonin
and curcumin on the expression of SIRT2, Bcl-2 and Bax in the hippocampus of adult rats. Brain Res. Bull
2018, 137, 306-310. [CrossRef] [PubMed]

Papadatos-Pastos, D.; Rabbie, R.; Ross, P.; Sarker, D. The role of the PI3K pathway in colorectal cancer. Crit.
Rev. Oncol/Hematol. 2015, 94, 18-30. [CrossRef] [PubMed]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s11655-017-2801-5
http://dx.doi.org/10.1186/s13020-019-0249-6
http://dx.doi.org/10.20307/nps.2019.25.1.28
http://dx.doi.org/10.1016/j.jgr.2018.12.002
http://dx.doi.org/10.1016/j.jgr.2016.12.013
http://www.ncbi.nlm.nih.gov/pubmed/29348725
http://dx.doi.org/10.20307/nps.2018.24.1.13
http://dx.doi.org/10.1016/S0378-4274(99)00252-0
http://dx.doi.org/10.1016/j.ijbiomac.2018.09.123
http://dx.doi.org/10.2131/jts.40.115
http://dx.doi.org/10.1186/1756-9966-30-87
http://dx.doi.org/10.1038/cdd.2017.161
http://dx.doi.org/10.1101/cshperspect.a008714
http://dx.doi.org/10.1186/1471-2121-14-32
http://dx.doi.org/10.1016/j.brainresbull.2018.01.006
http://www.ncbi.nlm.nih.gov/pubmed/29325994
http://dx.doi.org/10.1016/j.critrevonc.2014.12.006
http://www.ncbi.nlm.nih.gov/pubmed/25591826
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plant Materials 
	Chemicals and Reagents 
	Preparation of 70% Ethanol SMR Extract 
	HPLC Analysis of Five Components in SMR 
	Cell Culture 
	Cell Viability Assay 
	Hoechst 33342 Cell Staining 
	Western Blotting 
	Statistical Analysis 

	Results and Discussion 
	References

