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Abstract: Due to the rapid development of shale gas, a system has been established that can utilize
a considerable amount of data using the database system. As a result, many studies using various
machine learning techniques were carried out to predict the productivity of shale gas reservoirs. In this
study, a comprehensive analysis is performed for a machine learning method based on data-driven
approaches that evaluates productivity for shale gas wells by using various parameters such as
hydraulic fracturing and well completion in Eagle Ford shale gas field. Two techniques are used to
improve the performance of the productivity prediction machine learning model developed in this
study. First, the optimal input variables were selected by using the variables importance method
(VIM). Second, cluster analysis was used to analyze the similarities in the datasets and recreate
the machine learning models for each cluster to compare the training and test results. To predict
productivity, we used random forest (RF), gradient boosting tree (GBM), and support vector machine
(SVM) supervised learning models. Compared to other supervised learning models, RF, which is
applied with the VIM, has the best prediction performance. The retraining model through cluster
analysis has excellent predictive performance. The developed model and prediction workflow are
considered useful for reservoir engineers planning of field development plan.

Keywords: shale gas; machine learning; data-driven; variables importance method; clustering analysis

1. Introduction

Since 2010, the multistage hydraulic fracturing for horizontal wells has been established as a
method for producing shale gas and tight oil, especially in North America. As of 2018, shale gas
accounted for over 50% of total natural gas production in the US (Figure 1) [1]. Future production
profiles and estimated ultimate recovery (EUR) of shale gas wells are obtained by such methods as
reservoir simulation [2], hydraulic fracturing modeling, rate transient analysis (RTA), and decline
curve analysis (DCA). However, the reservoir simulation implies high uncertainty in representing
flow behavior due to reservoir properties, complexity of reservoir, absorption or desorption flow,
and variation of fracture permeability [3–7]. It is a time-consuming and a challenge task. In case of
RTA, data of flow pressure and reservoir property over time are necessary, and the end of transient
linear flow can be accurately predicted only by deriving the stimulated reservoir volume (SRV) through
microseismic (MS) analysis. In this way, the estimated ultimate recovery (EUR) can be calculated [8].
However, property data are difficult to acquires, and the MS analysis implies uncertainty, which are
the disadvantages of RTA. For this reason, many studies have actively attempted to apply a DCA in
order to predict the productivity of a shale reservoirs.
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The DCA method proposed by Arps [9] has been widely applied to traditional oil and gas reservoirs.
This method assumes the pseudo steady state flow. However, shale gas has low permeability and is
produced in hydraulic fractured horizontal wells, which delays the entry into the boundary dominated
flow (BDF) regime. Accordingly, it is not possible to forecast a production profile by using initial
production data. Some studies proposed new decline curve analysis methods considering production
profiles of shale and tight reservoirs (super-hyperbolic decline method; superbolic, power law
exponential decline method; PLE, modified-stretched exponential decline; YM-SEPD, Duong method,
logistic growth model; LGM) [10–14]. However, these DCA methods tend to over and underestimate
production rates due to the difference among various flow characteristics like reservoir property,
hydraulic fracturing design, and natural fracture network. To overcome the above weakness, a study [15]
was also conducted to propose a cumulative production incline rate index that selects an appropriate
DCA methods.

However, the DCA methods requires at least one year of production data. Shale reservoirs have a
reported economic recovery of three years and require a model that can know the productivity of the
wells to be developed before drilling or early stage of production.

To overcome the limitations of simulation and DCA methods, machine learning techniques were
studied and applied by many researchers for predicting productivity in shale and tight reservoirs.
Mohaghegh [16] quantitatively assessed the impact of shale gas development by conducting pattern
recognition analysis and analyzing the correlation between productivity and other factors like
rock mechanical property, hydraulic fracturing and well completion data, and reservoir property.
Zhong et al. [17] predicted the cumulative production rate of the Wolfcamp reservoir in USA by using
various supervised learning techniques, such as regression analysis, support vector machine (SVM),
and gradient boosting machine (GBM). In addition, the classification and regression tree (CART) using
regression analysis was performed to identify the importance of input data and select useful input
data for productivity. This attempt aimed to improve the prediction performance of a model.

Clustering analysis is one of unsupervised learning techniques. This technique measures the
similarity of datasets and classifies target groups in order to identify similarity of objects belonging to
the same group and difference among groups. In oil engineering, the clustering analysis is mainly
used to estimate electrofacies, classify properties in nonlinear relationships, and improve the accuracy
of a prediction model. Sfidari et al. [18] applied an artificial intelligence-based clustering analysis
(self-organizing map: SOM) and hierarchical k-means clustering analysis to classify electrofacies and
thus predict total organic contents (TOC) from logging data. This method turned out to be better than
the conventional analysis. Jung et al. [19] developed a method of enhancing the reliability of history
matching and a prediction model of production profiles by combining the clustering analysis and SVM.

Other studies utilized data-driven based supervised or unsupervised learning to predict
productivity in unconventional reservoirs, where fluid has a more complex flow pattern and different
production methods are applied in comparison with conventional reservoirs. Bansal et al. [20] and
Lolon et al. [21] obtained influential factors on shale gas productivity by using a statistical analysis
model and proposed a data-based artificial neural network (ANN) model for predicting cumulative
production rates. Alabbodi et al. [22], Mohaghegh et al. [23], and Li et al. [24] developed data-based
ANN models to forecast the estimated ultimate recovery (EUR) of the Marcellus shale reservoir.
They utilized not only Arps DCA method but also PLE, Duong, and SEPD methods to predict the
EUR at the point of the minimum economic limit rate, which was selected as the input dataset.
They also derived factors of the decline curve analysis methods by conducting the principal component
analysis (PCA).

However, the above studies focused on eliciting parameters that affect productivity of shale
reservoirs as input data for a supervised learning models and In addition, there are limitations in
predicting the production profile and EUR using the parameters of DCA equations as output data.

In this paper, we have developed the supervised learning model that predicts the cumulative
production using a data-driven approach and machine learning modeling for Eagle Ford shale
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reservoirs. The developed model can predict the cumulative production at various production times
and can be useful for forecasting the productivity at a well in the early stage of production.

The main novel contributions of our paper can be summarized as follows:

• First, our work considers the overfitting problem caused by unnecessary input features of
prediction models. To further enhance the predictive performance of our machine learning model,
we performed an RF-based variables importance method and statistical analysis to eliminate
unnecessary input features.

• Second, after removing input features using VIM, general supervised learning models, including
random forest, gradient boosting tree, and support vector machine were evaluated, and we
selected the best model to predict productivity in Eagle Ford shale reservoirs.

• Third, to enhance the prediction model performance, clustering analysis was used, and the
supervised learning model for each cluster was re-trained and compared with the results.
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2. Materials and Methods

Clustering refers to a very broad set of techniques for finding subgroups or clusters in a data set.
When we cluster the observations of a data set, we seek to partition them into distinct groups so that
the observations within each group are quite similar to each other, while observations in different
groups are quite different from each other. Of course, to make this concrete, we must define what it
means for two or more observations to be similar or different. Clustering is widely used in many fields
and has many methods. The most common techniques are K-means clustering, Partitioning Around
Medoids clustering and hierarchical clustering.

2.1. Random Forest

Random Forest is a machine learning technique that produces prediction values by constructing
multiple decision trees [25]. Each decision tree constituting the random forest is constructed from
training data and explanatory variables that are randomly extracted from the entire training data set.
Because each decision tree has a different set of learned data, both the model of the tree constructed
and the values predicted from it are different. Just as the learning data of one decision tree is formed
differently in random forest, the unlearned data is extracted differently each time. Data not used in
constructing decision trees is used for model validation (Figure 2). This is called OOB (Out-Of-Bag).
The total number of OOB selections in the entire decision tree of the random forest is different for
each individual entity, and the values that are classified when selected are also predicted differently
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for each tree. This feature allows us to calculate the probability of prediction for an individual entity.
The advantage of this model is that, first, although the accuracy of a single tree may drop because the
trained data set is small and but, the final accuracy predicted by combining them is superior to the
simple decision tree algorithm. Second, according to the law of algebra, the larger the size of the forest
(the number of trees), the more generalized errors, commonly known by the misclassification rate,
converges to a certain limit value. Third, when retrieving individual decision trees, we use randomly
reconstructed data from the entire learning data, so it is not affected by noise or outliers.

Where MSEOOB is the mean square error of the OOB data, ntree is the number of trees in the
forest, yi is the actual value, and ŷOOB

i is the predicted value for observation yi in the OOB data. R2
RF

and σ̂2
y are the R-squared of the OOB data and the variance of the predicted parameters of the OOB

data, respectively.

MSEOOB = ntree−1
ntree∑
i=1

(
yi − ŷOOB

i

)2
(1)

R2
RF = 1−MSEOOB/σ̂2

y (2)

2.2. Gradient Boosting Tree

The proposal for the gradient rise comes from the concepts that it can be interpreted as an
optimization algorithm for an appropriate cost function [26–28]. Afterwards, an explicit regression
gradient rise algorithm was developed, which is a general functional gradient rise perspective,
and then the research was upgraded in terms of algorithm enhancement as an iterative gradient
drop algorithm. That is, the algorithm optimizes the cost function rather than the function space by
repeatedly selecting the function (weak hypothesis) that points in the direction of the negative slope
(Figure 3). These functional gradients have led to the development of algorithms beyond regression
and classification in many areas of machine learning and statistics.
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2.3. Support Vector Machine

Support vector machine (SVM) is a machine learning method proposed by Vapnik and Cortes [29].
It is one of the techniques widely used for classification and regression problems. SVM finds a set
of hyperplanes in a space of high dimensional or infinite dimension and performs classification and
regression analysis using it. SVM is a global classification model that utilizes all attributes and provides
non-overlapping segmentation as a learning method. It is based on linear discrimination with SVM
maximum margin and does not consider dependencies between attributes.
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For the decision boundary function according to:

f (x) = wTx + b (3)

where w is the weight vector that defines the boundary and x, b represent the input vector, and the bias,
respectively. The error function is as follows:

J =
1
2

wTw + C
M∑

m=1

∣∣∣ym − f (xm)
∣∣∣
ε

(4)

For training input vectors and target outputs, xm and ym are respectively the m-th (m = 1, 2,
3, . . . , M) is referred to as input and output. And C is a penalty with a constant greater than zero.
This means that the penalty is given to ym, which is larger than the deviation ε of function f (x).
SVM efficiently performs nonlinear classification by using not only linear classification, but also
mapping to a multidimensional space called a kernel trick. Intuitively, determining the decision
boundary in the hyperplane shown in Figure 4 results in the lowest misclassification of new data when
using the hyperplane with the largest margin as the classifier.

K(xm, x) = K
(
xT

mx
)
= φ(xm)

Tφ(x) (5)

Thus, the model is changed into:

f (x) =
M∑

m=1

(α∗m − αm)K
(
xT

mx
)
+ b (6)

The kernel function is K, which is represented by converting it back into a φ. (α∗m − αm)

are Lagrange multipliers, which allows the selection of various kernel functions suitable for
regression analysis. For kernel functions, gaussian, hyperbolic tangent, and polynomial type can
be used. Choosing the optimal kernel function parameters can prevent overfitting and improve
predictive performance.



Appl. Sci. 2020, 10, 1267 6 of 19
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 19 

 

Figure 4. Decision boundary function of SVM algorithm. 

2.4. Clustering Analysis 

2.4.1. K-means Clustering 

K-means clustering is a simple and easy approach for partitioning a data set into K, non-

overlapping clusters. It is the process of assigning observation values according to initial setting of 

values after setting the initial value. And minimizing the variance of the distance difference with each 

cluster. The main purpose of this analysis is to find a solution for satisfying the two objective 

functions that maximizes the degree of cohesion in the cluster and the separation between the clusters. 

2.4.2. Partitioning Around Medoids Clustering 

Partitioning Around Medoids (PAM or K-medoids) clustering is to select the real object data 

representing the cluster instead of averaging the distances of the observations. PAM clustering has 

two disadvantages, first, it is not valid for categorical data. Second, it is vulnerable to outliers. For 

PAM clustering, we use the median of the actual observations instead of using the center as an 

average in the cluster. Unlike the K-means clustering, it operates not only on the Euclidean distances 

but also on arbitrary distance functions. 

2.4.3. Hierarchical Clustering 

Hierarchical clustering is a method of forming clusters by repeating a process of grouping the 

most similar entities. Results are usually given in the form of dendrograms, with each individual 

belonging to only one cluster. Various definitions of similarity or distance between individuals are 

possible, and the results of clustering are derived differently according to the connection method 

between clusters. Generally, the Euclidean distance is used, where one has to make sure that all 

attributes have the same scale. This is a special case of the Minkowski distance with p. An 

agglomerative clustering algorithm starts with N groups, each initially containing one training 

instance and, merging similar groups to form larger groups, until there is a single one. A divisive 

clustering goes in the other direction, starting with a single group and dividing large groups into 

smaller groups, until each group contains a single instance. Hierarchical clusters have the advantage 

of being able to easily identify the structural relationships between clusters in the form of 

dendrograms. Through this, the distance between items and the distance between clusters can be 

known and the robustness of the cluster can be analyzed by checking the similarity between variables 

in the clusters.  

  

Figure 4. Decision boundary function of SVM algorithm.

2.4. Clustering Analysis

2.4.1. K-means Clustering

K-means clustering is a simple and easy approach for partitioning a data set into K, non-overlapping
clusters. It is the process of assigning observation values according to initial setting of values after
setting the initial value. And minimizing the variance of the distance difference with each cluster.
The main purpose of this analysis is to find a solution for satisfying the two objective functions that
maximizes the degree of cohesion in the cluster and the separation between the clusters.

2.4.2. Partitioning Around Medoids Clustering

Partitioning Around Medoids (PAM or K-medoids) clustering is to select the real object data
representing the cluster instead of averaging the distances of the observations. PAM clustering has two
disadvantages, first, it is not valid for categorical data. Second, it is vulnerable to outliers. For PAM
clustering, we use the median of the actual observations instead of using the center as an average in
the cluster. Unlike the K-means clustering, it operates not only on the Euclidean distances but also on
arbitrary distance functions.

2.4.3. Hierarchical Clustering

Hierarchical clustering is a method of forming clusters by repeating a process of grouping the most
similar entities. Results are usually given in the form of dendrograms, with each individual belonging
to only one cluster. Various definitions of similarity or distance between individuals are possible,
and the results of clustering are derived differently according to the connection method between
clusters. Generally, the Euclidean distance is used, where one has to make sure that all attributes have
the same scale. This is a special case of the Minkowski distance with p. An agglomerative clustering
algorithm starts with N groups, each initially containing one training instance and, merging similar
groups to form larger groups, until there is a single one. A divisive clustering goes in the other direction,
starting with a single group and dividing large groups into smaller groups, until each group contains a
single instance. Hierarchical clusters have the advantage of being able to easily identify the structural
relationships between clusters in the form of dendrograms. Through this, the distance between items
and the distance between clusters can be known and the robustness of the cluster can be analyzed by
checking the similarity between variables in the clusters.

2.5. Evaluating Prediction Models

In order to improve the accuracy of the developed ANN model, First, we used clustering in order
to group the input data of the ANN model. Second, we carried out the variable importance analysis.
Both methods selected the top 9 variables with high correlation among the input data. Statistical analysis
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was performed using the results of the pre-trained ANN model. The predicted results are compared
based on the Mean Absolute Deviation (MAD), Mean Square Error (MSE), Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2), which is
defined as Equations (7)–(11).

MAD =
1
n

n∑
i=1

∣∣∣Xi −m(X)
∣∣∣ (7)

MSE =
1
n

n∑
i=1

(
Xi − X̂i

)2
(8)

RMSE =

√
1
n

n∑
i=1

(
Xi − X̂i

)2
(9)

MAPE =
1
n

n∑
i=1

∣∣∣Xi − X̂i
∣∣∣

|Xi|
(10)

R2 = 1−

∑n
i=1

(
Xi − X̂i

)2

∑n
i=1

(
Xi −Xi

)2 (11)

2.6. Evaluating Clustering Analysis

2.6.1. Connectivity

Let N denote the total number of observations in the datasets and M denote the total number of
columns, which are assumed to be numeric. Define nni( j) as the jth nearest neighbor of observation i,
and let xi,nni( j)

be zero if i and j are in the same cluster and 1/ j otherwise. Then, for a particular clustering
partition C = {C1, C2, C3 . . . Ck} of the N observations into K disjoint clusters, the connectivity is
defined as Equation (10). where L is a parameter that represents the number of nearest neighbors.
The connectivity has a value between zero and∞ and should be minimized.

c =
N∑

i=1

L∑
j=1

xi,nni( j)
(12)

2.6.2. Dunn Index

Dunn index (DI) is another internal cluster evaluating metrics based on the clustered data itself.
Equation (11) formulates DI, where d(i, j) denotes the distance between the two clusters while d′(k)
represents the distance between the nodes within the cluster. DI checks how dense the cluster is and
how well it is separated from other clusters. For a given clustering formation, higher values of DI
indicate better clustering.

DI =
min

1 ≤ i ≤ n

{
min

1 ≤ j ≤ n, i , j

(
d(i, j)

max1<k<nd′(k)

)}
(13)

2.6.3. Silhouette Coefficient

Silhouette coefficient (SC) checks for each node’s similarity with all the nodes in its own cluster
and its dissimilarity from the nodes belonging to other clusters. In addition to giving a numeric value,
SC can also provide a graphical representation of how well an object lies within its cluster. Equation (12)
formulates silhouettes, where, a(i) is the average dissimilarity of node i from the other nodes within
the cluster. The value of b(i) is the minimum average dissimilarity of node i to the nodes of all other
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clusters. The values from this function are in the range −1 to 1. A value of −1 indicates the worst
possible clustering, while 1 specifies the best clustering. As follows:

S(i) =
b(i) − a(i)

max
{
a(i), b(i)

} (14)

In this work, data preprocessing and statistical analysis were conducted used the package library
(‘ggplot’, ‘dplyr’) of R-program. And for learning and forecasting of supervised learning models,
the statistics and machine learning toolbox in MATLAB (Math Works 2019a) was used.

3. Data Preparation and Description

3.1. Field Data for Developed Model

The study area includes dry gas and gas condensate at the Eagle Ford Shale Basin in Webb and
La Salle counties, Texas, USA. The shale-play basins are distributed east to west in the area near
the Gulf of Mexico, south of Texas (Figure 5). In the case of Eagle Ford Shale basin, the reserve of
condensate tends to increase toward the north, while the southern area mainly produces dry gas.
Vertically, the Eagle Ford Formation, which were deposited during the Cenomanian and Turonian ages
of the Late Cretaceous, can be divided into the Lower and Upper Eagle Ford [30,31]. The Eagle Ford
shale play is an important hydrocarbon source for Austin chalk on the Upper Eagle Ford. Locally,
the Maness shale is identified at the bottom of the lower Eagle Ford shale with significantly higher
gamma-ray and clay content than other parts of the Eagle Ford shale.
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3.2. Correlation Analysis

The Pearson correlation analysis between the variables used in this study showed that the highest
value of 36 months of cumulative production used as a production variable was the result of the
relative number of productivity variables, where the 3-month production rate is 0.761 MMscf and,
peak for barrel of oil equivalent is 0.613 mbo, respectively. But, with the exception of the productivity
variables, in summary, correlated hydraulic fracturing and well completion data including proppant
volume (R = 0.527), slick water (R = 0.585), cluster (R = 0.347), lateral length (R = 0.341) can be used as
input features to the productivity prediction model (Figure 6).
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3.3. Workflow for Developed Model

The developed model consisted of 129 horizontal wells (Webb—72 wells, LaSalle—57 wells) in
the dry gas Eagle Ford Shale. The Drilling Info Webb site has been used to acquire the field data.
Hydraulic fracturing, well completion, and reservoir property data related to productivity were
determined as input data and the cumulative production of three years after production as an output
data. The introduction and statistical analysis for inputs and targets parameters are presented in
Tables 1 and 2.
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Table 1. Parameters and abbreviation for input and target variables used in this study.

Parameters Type Parameters Unit Abbreviation

Input variables

Proppant volume MMlb Prop.
Slick water volume Mgal Slick water

Cluster - Cluster
Lateral length ft Laterallength

Net pay ft Netpay
Tubing head pressure psia THP

Wellhead shut in pressure psia WHSP
Gas gravity - Gasgravity

Well test gas rate Mscf Testq
Initial production rate (3 month) MMscf Qi_3M

Easting - East.
Northing - North.

Measured depth ft MD
True vertical depth ft TVD

Peak for barrel of oil equivalent mbo Peak BOE
Gas oil ratio - GOR

Gas liquid ratio - GLR
Initial water rate (3 month) Mbbl Wi

Target variables Cumulative gas production (36 month) Bcf Qp_36M

Table 2. Statistical analysis of input and target variables datasets used in this study.

Parameters Type Parameters Range (Min-Max) 1st Quartile Mean 3rd Quartile

Input variables

Prop. 2.02–7.45 3.02 4.16 4.99
Slick water 25.2–230.2 69.9 96.5 117.9

Cluster 36–81 48 52 57
Laterallength 3579–8066 4718 5189 5641

Netpay 7.0–562.0 58.0 140.1 201.0
THP 1380–7330 2980 3838 4666

WHSP 200–6448 700 2004 3064
Gasgravity 0.592–0.852 0.683 0.710 0.737

Testq 0.4–30.8 8.0 12.6 16.6
Qi_3M 0.026–0.612 0.189 0.275 0.352
East. 1,558,855–2,061,324 1,601,894 1,756,328 1,951,825

North. 119,813–919,229 154,413 556,278 888,760
MD 9724–18326 14,328 15,192 16,257
TVD 5404–12944 8461 9516 10,926

Peak BOE 8.6–61.2 19.4 24.4 30.9
GOR 0–5,196,333 14,870 1,714,477 86,480
GLR 0–662,275 10,339 76,090 73,995
Wi 0.7–214.9 17.2 45.0 63.5

Target variables Qp_36M 0.28–4.48 1.00 1.46 1.60

The workflow in Figure 7 show the three steps for productivity forecasting workflow. The first
step is data preprocessing and preparation. To develop a supervised learning model, input variables
and target variables need to be selected, and machine learning modeling need to be transformed into
datasets that enable learning. In addition, outlier or null data that degrade the predictive performance
of the model are removed. In the second step, application of machine learning modeling to improve
predictive performance. First, The VIM based on RF prevents overfitting by eliminating low-correlation
input features in the predictive model. Second, Clustering validity determines the number of clusters.
It then re-generates the predictive model of clusters across the entire datasets for training. The third
step is to use test data to compare the results between supervised learning models.
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4. Model Performance Analysis

4.1. Variables Importance Analysis

In constructing a regression analysis or machine learning supervised model, selecting variables
that are highly correlated with target variables can prevent overfitting and reduce computation time.

The Pearson correlation is a method to analyze whether there is a linear relationship between
response variables and input variables. In data mining, Pearson’s correlation is used to remove
variables when the squared value is less than 0.005. However, there is a disadvantage in that only linear
relationships can be identified. Recursive feature elimination with cross validation (RFE) is typically
used for curvilinear or nonlinear relationships. In this work, we used RF-based regression analysis.
In order to better predict 36-month cumulative production, rankings can be intuitively identified.
The variables importance analysis method (VIM) is a critical output of the machine learning algorithm.
For each variable in the matrix, it tells you how important that variable is in classifying the data.
Generally, the plot shows each variable on the y-axis, and their importance on the x-axis. They are
ordered top-to-bottom as most to least important. Therefore, the most important variables are at the top,
and an estimate of their importance is given by the position of the dot on the x-axis. One should use the
most important variables, as determined from the variable importance plot, in the principle component
analysis (PCA), canonical discriminant analysis (CDA), or other analyses. Typically, you should look
for a large break between variables to decide how many important variables to choose. This is an
important tool for reducing the number of variables for other data analysis techniques, but you should
be careful not to have either too few or too many variables.

In a regression tree analysis, RF uses %IncMSE and IncNodePurity to rank variable importance.
%IncMSE is simply the average increase in squared residuals of the test set when variables are randomly
permuted. When removing or adding a variable, if there is little change in the model, it is a importance.
IncNodePurity is the increase in homogeneity in the data partitions.
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The initial input features consisted of 18 independent variables. To perform input features
ranking and finding variables importance, VIM based on random forest regression was used. Figure 8
demonstrates the results of input features ranking created by VIM (based on RF). The selected
variables were mostly consistent with the findings in literature. According to the above results,
both cases (VIM %IncMSE or IncNodePurity), for example, slick water, peak BOE, tubing head pressure,
true vertical depth, lateral length, proppant volume, and initial production rate, correlate high enough
for a 36-month cumulative production of shale reservoirs. As mentioned above, the results indicate
that Qi_3M, Slickwater, and PeakBOE are three important variables, in which these variables account
for over 50% of the importance of other variables and should be selected as the main variables when
using this development model.
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4.2. Model Validation

Cross-validation (CV) is a resampling procedure used to evaluate machine learning models on a
limited data sample. The procedure has a single parameter called k that refers to the number of groups
that a given data sample is to be split into. As such, the procedure is often called k-fold CV. When a
specific value for k is chosen, it may be used in place of k in the reference to the model, such as k = 5
becoming 5-fold CV (Figure 9). CV is one of the verification methods to further improve the predictive
performance when new, largely untrained data is modeled as input to the training model. That is,
to use a limited sample in order to estimate how the model is expected to perform in general when
used to make predictions on data not used during the training of the model. This is generally more
time consuming than other methods, such as simple train/test partitioning. However, it is a popular
method because it prevents overfitting and does not result in biased or non-optimistic assumptions
about model technology [32–34].



Appl. Sci. 2020, 10, 1267 13 of 19
Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 19 

 

Figure 9. Data partitioning scheme with K-fold validation. 

4.3. Clustering Analysis for Datasets 

It is important to estimate the number of K of clustering analysis in order to develop a robust re-

generated supervised learning model [35]. We performed an analysis to find the optimal number of 

K from three clustering validity algorithms (Figure 10). First, using a connectivity index, it was found 

that the optimal number of k was two values for 3 cluster analysis. For K-means (C-index: 8.2) and 

PAM (C-index: 3.6) cluster algorithms, C-index looks similar on the graph, but more than twice as 

different from PAM, which shows better performance. Second, in the algorithm for calculating the 

number of K through the Dunn index value, the highest slope index was found in two. Finally, the 

optimal number of K was also calculated from the silhouette index value. 

Accordingly, best performance clustering is characterized by a lower C-index or a higher Dunn 

and Silhouette index values. It is understood that the PAM clustering provides the most efficient 

clustering compared to Hierarchical and K-means clustering analysis. Figure 11 shows the 9 input 

variables with two principal components (PC), the x-axis being PC 1 and the y-axis is PC 2. It 

represents the quantitative position coordinates of the yield values of whole production wells 

calculated by K-means clustering. The cluster 1 model of the blue circular point is distributed in the 

northwest direction from the center point, and the cluster 2 model is distributed in the southeast 

direction from the center point. 
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4.3. Clustering Analysis for Datasets

It is important to estimate the number of K of clustering analysis in order to develop a robust
re-generated supervised learning model [35]. We performed an analysis to find the optimal number
of K from three clustering validity algorithms (Figure 10). First, using a connectivity index, it was
found that the optimal number of k was two values for 3 cluster analysis. For K-means (C-index: 8.2)
and PAM (C-index: 3.6) cluster algorithms, C-index looks similar on the graph, but more than twice
as different from PAM, which shows better performance. Second, in the algorithm for calculating
the number of K through the Dunn index value, the highest slope index was found in two. Finally,
the optimal number of K was also calculated from the silhouette index value.

Accordingly, best performance clustering is characterized by a lower C-index or a higher Dunn
and Silhouette index values. It is understood that the PAM clustering provides the most efficient
clustering compared to Hierarchical and K-means clustering analysis. Figure 11 shows the 9 input
variables with two principal components (PC), the x-axis being PC 1 and the y-axis is PC 2. It represents
the quantitative position coordinates of the yield values of whole production wells calculated by
K-means clustering. The cluster 1 model of the blue circular point is distributed in the northwest
direction from the center point, and the cluster 2 model is distributed in the southeast direction from
the center point.
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5. Results and Discussions

It is very important for the machine learning algorithm to select the optimal hyperparameters.
This can prevent overfitting the model and create a more robust model. Through a range of parameters,
the optimal value was found by comparing statistical results of test data used in this study. Table 3
shows the parameters for various supervised learning models used in this study.
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5.1. Comparative Analysis of Variables Importance Method

Figure 12 and Table 4 compares the prediction performance of the RF (%IncMSE, IncNodePurity),
SVM, GBM, and before VIM method using the 9 features selected by VIM method based on RF. For each
model run, 80% of the total data set is used to train the prediction model, and 20% of the total data
set is used to test the model. The prediction performance for the training and testing set is compared.
The statistical performance indicator (example: RMSE, MAPE) of trained model by k-fold validation
are found to be 0.639, 22.94% for RF(before VIM), 0.354, 22.29% for RF (VIM %IncMSE), 0.262, 16.80%
for RF (VIM IncNodePurity), 0.350, 22.87% for GBM (VIM IncNodePurity), and 0.297, 20.03% for SVM
(kernel function). It is found that the RF (VIM IncNodePurity) performs the best in terms of prediction
accuracy, which suggests that this approach method is a useful and robust tool for forecasting the
3 years gas production in shale reservoir. It should be noted that the RF (VIM %IncMSE) method also
gives a comparable prediction (RMSE) ability compared to the various method.

However, as shown in the boxplot in Figure 12, the problem of reproducibility of the test sets
forecast results has been found, and more than 70% of the APE, which has been found to be an outlier,
affects the overall accuracy of the model. In contrast, RF (VIM %IncMSE) shows more stable results.
Therefore, instead of various supervised learning algorithms, it is recommended that one develops a
production forecast model using RF (VIM %IncMSE).

Table 3. Parameters for supervised learning models.

Supervised Learning Models Parameters Range of Values Selection Values

RF
mtry 1–5 5
ntree 10–500 300

GBM
mtry 1–5 5
ntree 10–500 20

SVM
penalty function 10–1000 600

kernel parameter (RBF) 10–100 20
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Table 4. Comparison of performance indicators of various supervised learning models.

Machine Learning Algorithm
Performance Indicators

R2 MAD (Bcf) MSE RMSE MAPE (%)

RF (Before VIM -All datasets) 0.40 0.297 0.408 0.639 22.94
RF (VIM %IncMSE) 0.69 0.274 0.126 0.354 22.29

RF (VIM IncNodePurity) 0.73 0.194 0.069 0.262 16.80
GBM (VIM IncNodePurity) 0.69 0.264 0.123 0.350 22.87

SVM (Kernel function) 0.63 0.242 0.089 0.297 20.03

5.2. Comparative Analysis of Re-Training Using Clustering Analysis

In this subsection, we consider examining the influence of datasets categorized with clustering
analysis when predicting for shale gas reservoirs. The previous clustering validity analysis calculated
an optimal number of clusters, and we re-learned the classified dataset for each cluster and compared
and analyzed the model trained by applying RF (VIM IncNodePurity) considered in 5.1 subsecrtion
(Figure 13 and Table 5).

The cluster 1 model had a MAD of 0.180 Bcf, RMSE of 0.224 and MAPE of 14.94%, and R2 of 0.74,
respectively. A similar trend and results were found for the cluster 2 model, with a MAD of 0.154 Bcf,
RMSE of 0.209 and MAPE of 12.05%, R2 of 0.88, respectively. Among them, the predicted performance
of the two cluster models was found to be particularly higher. From the above results, re-training for
finding similarities in datasets through cluster analysis can improve the predictive model.
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Table 5. Comparison of performance indicators of before and after clustering analysis.

Machine Learning Algorithm
Performance Indicators

R2 MAD (Bcf) MSE RMSE MAPE (%)

RF (All datasets) 0.40 0.297 0.408 0.639 22.94
RF (Cluster 1) 0.74 0.180 0.050 0.224 14.94
RF (Cluster 2) 0.88 0.154 0.043 0.209 12.05
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6. Conclusions

The method of productivity forecasting in unconventional reservoirs should be applied different
from the conventional reservoirs. It is associated with hydraulic fracturing, well completion, and various
well information. This study introduced a robust model and workflow of productivity prediction using
machine learning for shale reservoirs at the early time stages of less than 6 months. Data-preprocessing
was performed with data from 150 shale gas wells in Eagle Ford shale, Texas. The 129 shale gas wells
for data-preprocessing were used as training datasets for supervised learning models.

The emphasis in this study is to generate a more accurate and robust model. First, the importance
of variables was evaluated when constructing the predictive model using the RF regression analysis
based on VIM. As a result, %IncMSE, IncNodePurity were estimated as the highest variables: Qi_3M,
Slickwater, PeakBOE, TVD, THP, Laterallength, and Prop. The predictive performance of the supervised
learning model, including RF, SVM, and GBM was evaluated before and when VIM applied. It showed
that the RF model with the IncNodePurity based VIM has the highest accuracy compared to other
models. Finally, after grouping datasets through cluster analysis, comparing the predictive performance
before and after the clustering analysis. Both models of the clustering analysis (cluster 1, 2 model)
were found to be more accurate than the original models before the clustering analysis.

In this study, developed model and workflow have been validated in Eagle Ford shale reservoirs.
Nevertheless, this research is just a discovery that may be valid in the Eagle Ford shale formation.
It is also a forecasting model that can be used in the initial production time (less than 6-months).
However, further research will be conducted to overcome these limitations and verify the reliability
of the developed model. We will use the data from another shale reservoirs to train and validate the
predictive model. Then, the forecasting model will be developed with available data from characteristics
of shale gas development prior to in-situ. In addition, only numerical variables were used in this study.
The availability of the categorical variable model will be evaluated in the future research.
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