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Abstract: Superpixel segmentation (SS) methods have been proven to be feasible in improving
the performance of hybrid algorithms on hyperspectral images (HSIs). In this paper, a superpixel
segmentation algorithm based on the information measures with color histogram driving (IM-CHD)
was proposed. First, Shannon entropy was applied to measure the image information and preliminarily
select spectral bands. Mutual information (MI) is derived from the concept of entropy and measures
the statistical dependence between two random variables. Also, MI can effectively identify the
redundant spectral bands. Therefore, in this paper, both MI and color matching functions (CMF)
were used to select the most useful spectral bands. Second, the selected spectral bands were
combined into a false color image containing the main spectral information. A local optimization
algorithm named “hill climbing” was used to achieve the superpixel segmentation. Finally, parameter
selection experiments and comparative experiments were performed on two hyperspectral data sets.
The experimental results showed that the IM-CHD method was more efficient and accurate than
other state-of-the-art methods.

Keywords: hyperspectral images; superpixel segmentation; entropy; mutual information; color
matching functions

1. Introduction

Hyperspectral images (HSIs) contain full spectral and spatial information, and the formed
three-dimensional data block can effectively reflect much ground object information that cannot be
detected in wide-band multi-spectral images [1]. In recent years, the classification of hyperspectral
images has received extensive attention in the field of remote sensing image processing. In addition,
hyperspectral images have the characteristics of high dimension and high information redundancy.
Therefore, dimensionality reduction and image preprocessing (such as image segmentation)
are important.

At present, there are mainly two types of dimension reduction methods for hyperspectral images,
i.e., feature extraction and band selection. Band selection is based on information measures and has
been intensively studied. In the band selection method, Shannon entropy or its variations are typically
used to evaluate image information. Shannon proposed a supervised band-selection algorithm,
in which only the known class signatures were used while neither the original band nor a training
sample was required [2]. Based on mutual information, Martínez-Usó et al. used a clustering method
to select band and achieve dimensionality reduction [3]. Based on spatial entropy, Wang et al. proposed
a hyperspectral band selection algorithm for supervised classification [4]. On the other hand, many
methods perform feature extraction on hyperspectral images to achieve dimensionality reduction.
For example, Chavez and Kwarteng proposed a selection method using principal component analysis
(PCA) [5]. Wang et al. proposed a non-linear extraction method based on manifold learning [6].
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The dimensionality of data can be reduced by finding the corresponding coordinates on low-dimensional
manifold for the points in high-dimensional space. Chen et al. proposed a dimensionality reduction
method for hyperspectral images based on sparse representation [7]. Jacobson et al. proposed a band
transformation method that extends the color matching functions (CMF) to the entire image spectra,
which provided a foundation for subsequent band selection [8].

In addition to the dimensionality reduction, hyperspectral image segmentation can also reduce
the processing complexity of subsequent images. Acito et al. proposed an HSIs segmentation
algorithm based on statistical approach [9]. The proposed algorithm was completely unsupervised
and only relied on the spectral information. Veganzones et al. proposed a hyperspectral image
segmentation method using a new spectral unmixing-based binary partition tree representation [10].
Rundo et al. proposed an intelligent image analysis framework for image enhancement, automatic
global thresholding and segmentation [11]. However, the above traditional object-level segmentation
algorithms have the common problem of under-segmentation, which has a significant impact on
post-processing. In recent years, some researchers have proposed an over-segmentation scale called
superpixel, which has adaptive sizes and shapes for different spatial structures. In the hyperspectral
image classification process, segmentation using the superpixel method can effectively reduce the impact
of the segmentation scale on the classification results [12]. Therefore, superpixel segmentation (SS) has
become an important preprocessing method for HSIs. The concept of superpixel was firstly proposed
by Ren et al. [13]. In recent years, new superpixel segmentation algorithms have been continuously
proposed. Liu proposed an entropy rate-based objective function for superpixel segmentation. However,
the proposed method was very computationally intensive and time consuming [14]. Bergh et al.
proposed a superpixel segmentation algorithm via energy-driven sampling. However, the disadvantage
of this method was that it cannot solve the problem of sudden colohr changes [15]. Zhang et al.
proposed to pre-cluster the hyperspectral image for the non-linear graphs into Simple Linear Iterative
Clustering (SLIC) superpixels, and then use the superpixels as the input of the dimensionality reduction
algorithm [16]. In this method, only the first principal component map was used for segmentation,
which may cause the loss of important information. Based on the region growth method in [17],
Xu et al. proposed a super-pixel segmentation method [18]. In this method, on the basis of fast
region growth, the low-dimensional representations of hyperspectral images were achieved without
sacrificing subsequent classification performance. Rodarmel and Shan used principal component
analysis as a preprocessing technique to classify hyperspectral images [19]. Based on super pixels,
Zhang et al. proposed a hyperspectral image classification method to effectively identify the type of
land cover [20]. Steven et al. proposed a band selection method to effectively visualize the spectral
images [21]. The results showed that the superpixel segmentation scale had sufficient potential in
hyperspectral image segmentation. Therefore, although superpixel segmentation is still under study,
it has been proved to have promising prospects in HSIs segmentation.

In this paper, a new hyperspectral image superpixel segmentation algorithm (IM-CHD) was
proposed, in which the new techniques and methods, such as band selection method based on
information measures, CMF, and color histogram driving function, were used to achieve more accurate
and effective HSIs segmentation. In our previous work [22], we have proposed an HSIs classification
method based on information measure, and proved the effectiveness of obtaining the main spectra of
HSIs through information measure. In this paper, we synthesize the false color image based on the
spectral components selected by information measure, and realize the segmentation of hyperspectral
image based on this. The results of this study have significant reference value in two major aspects.

(1) The information measures theory, including entropy, mutual information, and normalized mutual
information, was applied to superpixel segmentation for HSIs. When information measures were
used in the superpixel segmentation, CMF was applied to HSIs at the same time. The combination
of both information measures and CMF achieved dimensionality reduction of hyperspectral
images. Thus, the superpixel segmentation based on information measures is different from the
existing spectral band selection methods based on information measures.
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(2) As one of the most innovative and effective methods, superpixel segmentation based on color
histogram driving and hill climbing optimization was used to segment the false color image
obtained in previous steps.

2. Dimensionality Reduction of HSIs Based on Information Measures

Band selection refers to the selection of band images which have relevant or irrelevant
information [23]. The entropy and mutual information were generally used as the criterion for
the band selection [21]. The entropy of each spectral band was calculated to evaluate the amount
of contained information in this band. A threshold was set to exclude the irrelevant spectral bands.
Then CMF was used for spectrum segmentation and the mutual information was used for the final
band selection. The process can be mainly divided into the following two steps.

2.1. Preliminary Selection of Spectral Bands Based on Entropy and Color Matching Function

Shannon first introduced the concept of entropy and mutual information [24]. It has been
proven that Shannon’s information measures theory is very effective in reducing the dimensionality
of high-dimensional data. In hyperspectral images, each channel is considered to be equivalent to a
random variable X, and all the pixels of the channel are considered to be the events of X.

The entropy of a channel can be expressed as:

H(X) =
n∑

i=1

P(Xi) logb[P(Xi)] (1)

where Xi is an event of X, P(Xi) is the probability density of X, and b is the order of the algorithm.
X and Y are two random variables with n and m values, respectively. The entropy of the joint

event is:

H(X, Y) = −
n∑

i=1

m∑
j=1

P
(
Xi, Y j

)
log P

(
Xi, Y j

)
(2)

where P
(
Xi, Y j

)
is the probability of the joint occurrence of first Xi and then Y j.

The mutual information between the two random variables X and Y is:

I(X, Y) =
∑

i=1...n, j=1...m
P
(
Xi, Y j

)
log

P(Xi,Y j)
P(Xi)·P(Y j)

= H(X) + H(Y) −H(X, Y)
(3)

where H(X) and H(Y) are the entropy of a random variable X and Y, respectively, H(X, Y) is the joint
entropy of the two random variables, X and Y.

Bell proposed the concept of the co-information [25] of three random variables, X, Y and Z, which
can be expressed as follows:

I(X; Y; Z) = H(X, Z) + H(Y, Z) −H(X, Y, Z)
= −H(Z) − I(X, Y)

(4)

where H(X, Y, Z) stands for the joint entropy of three random variables X, Y and Z.
This principle remains feasible for HSIs. The information of one channel can increase the mutual

information between the other two channels. Thus, when the co-information is smaller, the amount
of the shared information is larger. In the preliminary selection, the low-informative channels are
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removed. First, the entropy of each spectral band of the HSIs is calculated. Second, the local average
value is defined by Equation (5).

Hm(Bi) =
1
m

m/2∑
p=−m/2

H
(
Bi+p

)
(5)

In Equation (5), m stands for window size which represents the size of the neighborhood. All
the bands

ThetAll the meeting the condition in Equation 6 can be retained.

H(Bi) ∈
[
Hm(Bi) × (1− σ); Hm(Bi) × (1 + σ)

]
(6)

In Equation (6), σ is the threshold factor. The bands with higher entropy than their local average
values are distinguished by the threshold factor, and these bands are considered to be irrelevant,
as shown in Figure 1.
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Figure 1. Entropy (blue curve), local average (green curve) and thresholds (red curve) for the “Indian
pines” image.

The window size m and threshold factor σ were appropriately selected based on the smoothness
of the curve. When the entropy curve was smoother, the probability of an uncorrelated band was
lower and there was a smaller number of bands outside the correlation range. In this case, both σ and
m were set to small value in order to improve the precision. On the contrary, a sharper curve indicated
that the neighboring channels were more different. In this case, a larger window size should be used.

Then, the CIE 1931 supplementary standard colorimetric observer, i.e., CMF [26], was used to
make a second selection of the spectral bands. Based on the experiments, the CMF for a particular
wavelength was derived by determining the mixing ratio of the three primary colors of light (red, green,
and blue) to generate the same impression as a monochromatic light at that wavelength. By applying
the CIE color matching envelopes to the HSIs in the visible range, the HSIs can be visualized as a
colorimetric ally correct image [8].

The wavelength was set to λ = 360 nm in the first valid AVIRIS band and λ = 830 in the last valid
AVIRIS band. Then, linear interpolation was performed between the two bands to achieve HSIs stretch,
as shown in Figure 2.
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Figure 2. The 1931 CIE color matching curves of the three primary colors of light (red, green, and blue)
between 360 nm and 830 nm (at the interval of 5 nm)

Finally, depending on the binarization threshold, i.e., Sett
R, Sett

B, and Sett
G, three segments were

obtained, which were corresponding to the red, blue, and green primitive channels, respectively.
The impact of t is illustrated in Figure 3. In the figure, the horizontal lines represent the spectrum
thresholds in two different cases (t = 0.1 and t = 0.5). The spectral bands with above-threshold CMF
coefficients are retained.
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Figure 3. Red CMF (The horizontal lines represent two spectral thresholds in two cases. The spectral
band is retained when the CMF coefficient is above the threshold.).

In this paper, an automatic threshold method was adopted to determine t. The optimal threshold
was defined as the value at which the amount of discarded information was maximized. St

discard is
defined as the set of channels removed by thresholding the CMF with t, and St

selected is defined as the
complementary set of St

discard. Then, the optimal value of t can be obtained from Equation (7).

topt = max(t) subject to H
(
St

discard

)
< H

(
St

selected

)
(7)
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2.2. Band Selection Algorithm Based on Mutual Information

The dimensionality reduction of the HSIs was achieved by optimizing two criteria, i.e., maximizing
the amount of information and minimizing the redundancy. These two criteria need to be
considered simultaneously.

Pla et al. used the normalized mutual information for band selection [27]. In this paper, the kth
order normalized information (NI) of the bandset S = {B1, · · · , Bk}was calculated as follows:

NIk(S) =
K × I(S)
k∑

i=1
H(Bi)

(8)

where I(S) is the mutual information from B1 to Bk, and H(Bi) is the entropy of Bi.
From the above step, three segments can be obtained, i.e., Sett

R, Sett
B, and Sett

G. When the value
of the mutual information between three bands NI3(S) is smaller, the amount of useful information
contained in the selected spectral bands is larger, and the dimensionality reduction effect is better.
Thus, the minimum, second minimum, and up to nth minimum values of NI3(S) can be calculated
based on the values of xRn, yBn, zGn

(
xRn ∈ Sett

R, yBn ∈ Sett
B, zGn ∈ Sett

G, n = 1, 2, . . . 10
)
. Finally, the 3n

spectral bands are selected to composite the false color images. This method is not only convenient to
configure, but also produce the images containing the main spectral information. The optimal value of
n was determined by experiments.

3. Superpixel Segmentation Based on Color Histogram Driving

In the superpixel segmentation method based on information measures, the spectral information
in HSIs is converted to its own color information. Thus, the image color can be used as the basis to
achieve the final segmentation of HSIs. Utilizing the feature of HSIs, the color histogram was used to
evaluate the false color composition image, and the hill climbing algorithm was used to obtain the
superpixel segmentation of images [22].

3.1. Metric Function of Color Uniformity

In this study, CHD function was used as the evaluation function [28], which consisted of two
parts, i.e., the metric function of color uniformity function and the edge smoothness function.

(1) Metric function of color uniformity
To evaluate the division of the color density of each superpixel, we constructed a histogram and

discretized the color space. λ is the label of color space, G is the number of discrete histogram bars
which is set by the users, and H j( j = 1, 2, · · · , G) defines the color in a histogram bar in the group of λ.
Ak is a set of pixels, cAk( j) is the color histogram of Ak, which is expressed in Equation (9).

cAk( j) =
1
Z

∑
i∈Ak

δ
(
I(i) ∈ H j

)
(9)

where I(i) stands for the color of pixel i, Z is the normalisation factor, and δ(·) is the color discriminant
function. When the color in all pixels falls in box j, δ(·) returns 1. φ

(
cAk( j)

)
is the distance in the color

distribution, as shown in Equation (10).

φ
(
cAk( j)

)
= 1

µ
∣∣∣I(i)−I

∣∣∣+1
,
(
I(i) ∈ H j

)
I =

∑
i∈Ak

δ(I(i)∈H j)
Ak

(10)

where I is the average color value of Ak and µ is the color histogram distance weight coefficient.
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ψ
(
cAk

)
is the quality of the color distribution, and H(s) is the evaluation of ψ

(
cAk

)
for each

superpixel k. H(s) =
∑
k
ψ
(
cAk

)
. ψ

(
cAk

)
is used to evaluate the distance between colors and the

concentration degree of colors in a histogram, as shown in Equation (11).

ψ
(
cAk

)
=

∑
H j

(
cAk( j)

)2 1

µ
∣∣∣I(i) − I

∣∣∣+ 1
(11)

when all the colors concentrate in a bar of the histogram, ψ
(
cAk

)
reaches the maximum value, i.e.,

ψ
(
cAk

)
= 1. When all color bars in the histogram have the same value, the value of ψ

(
cAk

)
is

the minimum.
(2) Edge smoothness function
In G(s), Ni is defined as a square area of N ×N pixel set centered at pixel i. The histogram of the

superpixel labels in region Ni can be defined as:

bNi(k) =
1
Z

∑
j∈Ni

δ(I( j) ∈ Ak) (12)

where bNi(k) is the value of the kth superpixel label. In the histogram, the number of pixels in the
adjacent region of superpixel Ak is calculated.

The edge smoothness function G(s) is defined as the sum of the edge smooth energy of all the
superpixels, as shown in Equation (13).

G(s) =
∑

i

∑
k

(
bNi(k)

)2
(13)

G(s) reaches the maximum value when there is a unique superpixel in a neighboring region Ni.
However, there are at least two superpixel labels in the neighboring regions adjacent to the boundaries,
thus not all the pixels can reach the maximum. However, by analyzing the neighboring regions which
contain more than one superpixel labels, the pixels close to boundaries can be reduced and the function
can have more regular shapes.

3.2. Superpixel Segmentation Algorithm Based on Hill Climbing Optimization

During the segmentation process, the one-by-one superpixel adjustment strategy through gradual
local optimization can be used to obtain a superpixel region that is sufficiently segmented and uniform
in color. The hill climbing optimization was used as the one-by-one superpixel adjustment strategy in
the superpixel segmentation. The hill climbing optimization is an iterative algorithm that starts with
an arbitrary solution and then attempts to optimize the solution by incrementally changing a single
element of the solution. The segmentation includes two important operations, which are described
below [28]:

(1) The initialization of superpixels
First, the method proposed in [15] was used to manually set the segmentation amplitude threshold

U. Using this method, the maximum number of superpixels was obtained. Then, the side length L of
the initial square superpixel was obtained, as shown in Equation (14).

L = f


√

N
U

 (14)

where N is the total number of pixels, and f (·) represents the function to get the upper even number.
(2) The adjustment of superpixels
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First, a block adjustment was performed on the square area formed by adjacent pixels centred
at the superpixels, which speeded up the segmentation process. Then, the pixels were adjusted by
pixel, and the pixels on the adjusted superpixel edge were moved to its neighboring superpixels.
Each superpixel was guaranteed to remain unchanged after the modification.

Through the above two steps, the final segmentation results were obtained. The overall
segmentation process of HSIs is shown in Figure 4. The spectral bands were preliminarily selected
based on entropy and CMF, and then n spectral bands were selected to synthesize false color images.
Next, the false color images were first segmented based on hill climbing optimization, in which
E(s) was used to evaluate the segmentation results. Subsequently, both block-level and pixel-level
adjustments were performed for the pre-set number of iterations, N. Finally, the segmentation result
was obtained and output. This aspect might be added in future work since the results might be further
improved by a global optimization method. We can refer to the method proposed by Masra et al. for
combining conventional HE technology with particle swarm optimization (PSO) algorithm to naturally
enhance distorted images [29].
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4. Experiments and Analyses

Two series of experiments were designed. In the first series of experiment, the best value of
n (number of selected bands) was analyzed. The impact of window size m and threshold σ on the
segmentation performance of the proposed IM-CHD algorithm was investigated. The results can
provide references for the parameter selection. In the second series of experiment, our algorithm was
compared with the existing superpixel segmentation algorithms of hyperspectral images.

In the experiment, two datasets with different characteristics, i.e., the Indian Pines dataset (Indian
Pines) and the Pavia Center dataset (Pavia), were selected. Indian pines were acquired on 12 June
1992 at the Purdue University Agricultural College in northwestern West Lafayette with an airborne
visible/infrared imaging spectrometer (AVIRIS) sensor system with 145× 145 pixels. After removing
the noise, the image contains 200 spectral information bands with a resolution of 20 m. There are 16
real objects with labels in the image [30], as shown in Figure 5.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 19 
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PaviaC was obtained through the Reflex Optical System Imaging Spectrometer hyperspectral
sensor system in the city center near Pavia University in Pavia, northern Italy. After removing the
noise, the data contain 1096× 175 pixels. The image has a resolution of 1.3 m and a total of 102 spectral
bands. This image contains 9 types of objects [31], as shown in Figure 6.
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In these experiments, under-segmentation error (UE), achievable segmentation accuracy (ASA),
and boundary recovery (BR) were used to evaluate the performance of the proposed algorithm [32].
UE measures the fraction of pixel leakage across the truth boundaries of the ground. Smaller value of
UE indicates the better performance. In ideal situations, the classification results are all correct, so
the calculation result of UE is 0. BR estimates the percentage of true natural boundaries recovered by
segmentation of superpixel boundaries. In ideal situations, the superpixel boundaries are the same
as real boundaries and the calculation result of BR is 1. A larger value of BR indicates the better
segmentation performance. Complete accurate segmentation rate (ASA) measures the upper bound of
the performance. ASA represents the highest precision of segmentation in superpixels. A larger ASA
indicates the better performance. In the ideal situation, the result of ASA is 1.

In this paper, we implemented the generation of false color images on the platform of MatLAB2014a,
and implemented the hyperpixel segmentation of hyperspectral images on the platform of VS2008
with the extended Opencv library. The specific experimental design is described as follows.

4.1. Parameters Selection Experiments

In this section, the results and discussions may be presented in separate subsections or in one
combined subsection.

IM-CHD algorithm has three key parameters, i.e., the number of selected spectral bands n,
the window size m, and the third is the threshold σ. The three parameters need to be adjusted manually.
The three key parameters decide the exclusion of spectral bands and have a great influence on the
dimensionality of HSIs.

4.1.1. Number of Selected Bands

First of all, the number of selected bands was set to n = 1, 2, 3, 4, 5, 8, 10. When n > 10, more than
30 spectral bands would be selected, which makes dimensionality reduction meaningless. The window
size was set to m = 11, while the value of σ varied. Using the dataset of Indian Pines, the effects of the
number of selected spectral bands on UE, BR, ASA are shown in Figure 7. The polylines in different
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colors represent different numbers of selected spectral bands. For example, the red polyline represents
the values of UE at n = 1 and varying values of σ.
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Figure 7. The superpixel segmentation results at different values of n and window size m (σ = 0.1) on
Indian Pines: (a) UE; (b) BR; (c) ASA.
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Figure 7a shows the results of UE at different values of n and σ. From Figure 7a, when n = 1 and
σ were set to different values, the obtained UE in red polyline was mostly the smallest, indicating the
better performance result at n = 1.

Figure 7b shows the BR results at different values of n and σ. The red polyline represents the
BR values at n = 1, that is, the experimental results when only three spectral bands were selected.
From the figure, when n = 1, the obtained polyline (red) was always above other polylines at any
value of σ. Therefore, when n = 1, the value of BR was the largest, and the obtained segmented image
had the best performance.

Figure 7c shows the ASA results at different values of n and σ. When σ = 0.05, the red line is at
the highest point and the value of ASA is the largest. Meanwhile, the red line is more stable than the
orange line. Therefore, when n = 1, the best segmentation results can be obtained.

From the results, when n = 1, UE was relatively low, BR and ASA were relatively high. At n = 1,
the segmentation results were more satisfactory than the results at other values of n. When n = 1,
three least relevant spectral bands were selected, and they contained the largest amount of information
and minimum redundancy. Therefore, when the value of the parameter n was 1, the performance
was optimal.

4.1.2. Threshold Parameter σ

Based on information measures, the threshold parameter σ has a great influence on the
dimensionality of HSIs. In the experiment, three bands (n = 1) were selected and the window
size was set to m = 11. Using the dataset of Indian Pines, the influences of the threshold σ on UE, BR,
ASA are shown in Table 1.

Table 1. Superpixel segmentation performance under different σ (m = 11) on Indian Pines.

σ 0.05 0.1 0.15 0.2 0.3 0.4

UE 0.0203 0.0161 0.0149 0.0185 0.0185 0.0185
BR 0.6580 0.6132 0.6511 0.6268 0.6268 0.6268

ASA 0.8655 0.8408 0.8491 0.8350 0.8350 0.8350

It is important to choose the appropriate window size m and threshold σ. According to Table 1,
when σ = 0.15, the UE had the lowest. However, BR and ASA were relatively low. When m = 11,
σ ≥ 0.2 (σ = 0.2, σ = 0.3, σ = 0.4), the values of ASA, UE, and BR were the same. The results indicated
when σ is large enough, the impact of different thresholds on the segmentation result is almost the
same. When σ = 0.05, the values of BR and ASA reached the maximum simultaneously. The three
indicators were considered comprehensively to evaluate the performance of segmentation. Thus, when
BR and ASA were simultaneously maximal, even if UE was a bit high, it still can be considered that the
segmentation performance at σ = 0.05 was more satisfactory. In the following experiments, the value
of σ was set to 0.05.

4.1.3. Window Size m

The window size m has a great influence on the dimensionality of HSIs based on information
measures. In the experiment, three bands (n = 1) were selected and the threshold was set to σ = 0.1.
Using the dataset of Indian Pines, the effects of different window size m on UE, BR, ASA are shown in
Table 2.
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Table 2. Superpixel segmentation performance under different values of m (σ = 0.05) on Indian Pines.

m 5 9 11 14 17 20

UE 0.0149 0.0156 0.0203 0.0203 0.0179 0.0203
BR 0.6511 0.6470 0.6580 0.6580 0.6580 0.6610

ASA 0.8491 0.8661 0.8408 0.8655 0.8655 0.8650

As shown in Figure 1, in the image of “Indian pines”, the curvature changed steeply, thus selecting
a large window size m and a moderate σwas more suitable. In addition, from Table 2, the experimental
results showed that when m = 20, σ = 0.05, the experimental results of the segmentation were
optimal. Under this condition, both BR and ASA were high, even though UE was a little high, the
segmentation performance was still considered to be satisfactory. Through the above two parameter
selection experiments, the most suitable values for the experimental parameters can be determined in
the comparison experiment.

4.2. Comparison Experiments

In this section, the performance of the proposed IM-CHD algorithm was compared with similar
existing algorithms. At first, the IM-CHD was compared with the conventional image color visualization
method [21] based on information measures (CV-CHD). Then the proposed IM-CHD was compared to
six other combined algorithms. Specifically, the conventional first principal component (FPC) extraction
algorithm [33] and principal component (PC) weighted false color composition (FCC) algorithm [19]
were combined with the conventional SLIC algorithm [16], new LSC algorithm [34], and the CHD
superpixel segmentation algorithm [19] to obtain the 6 combined algorithms, i.e., FPC based SLIC
(FPC-SLIC), FPC based LSC (FPC-LSC), FPC based CHD SS (FPC-CHD), FCC based SLIC (FCC-SLIC),
FCC based LSC (FCC-LSC), FCC based CHD (FCC-CHD). In the experiments, the number of iterations,
Niter, was set to 10, the PC threshold was set to T = 0.99, and the distance weight coefficient was set to
µ = 1. In IM-CHD method, the parameters were set as follows: n = 1, m = 20 and σ = 0.05.

4.2.1. Experiment Using Indian Pines Dataset

First, the comparison experiments were performed on the Indian Pines dataset. The obtained
experimental results are shown in Figure 8 and Table 3. In the experiment, the obtained results were
averaged by ten times.

Figure 8a shows the results of parameter UE using 8 algorithms. The smaller value of the UE
indicated the smaller error and the better the segmentation performance. From the figure, the UE value
using CV-CHD and IM-CHD is obviously lower than that using the other six algorithms. In details,
from Table 3, compared with FCC-CHD, the error rate of IM-CHD(UE) was reduced by more than 15%;
compared with CV-CHD, the error rate of IM-CHD(UE) was reduced by more than 8%.

Figure 8b shows the results of the parameter BR using eight algorithms. The larger value of BR
indicated that the boundary obtained by superpixel segmentation was closer to the natural boundary.
From the results, CV-CHD and IM-CHD were superior to FPC-CHD and FCC-CHD. In addition, all the
above four algorithms (CV-CHD, IM-CHD, FPC-CHD, and FCC-CHD) were much better than the other
algorithms. From Table 3, compared with FCC-CHD, the missed boundaries in the IM-CHD algorithm
were reduced by more than 5%. Compared with CV-CHD, the missed boundaries were reduced by 8%.

Figure 8c shows the results of the parameter ASA using eight algorithms. The larger ASA value
indicated higher accuracy of the segmentation result. From the figure, the obtained ASA values using
different methods were relatively stable. Based on ASA, CV-CHD, IM-CHD, FCC-CHD, and FPC-CHD
had relatively better performance. The segmentation accuracy of CV-CHD was similar to that of
FCC-CHD. The ASA value of IM-CHD was slightly lower. But compared with the maximum ASA
value obtained by the FCC-CHD method, the ASA value of IM-CHD was reduced by less than 2%.
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Table 3. Superpixel segmentation performance under different methods on Indian Pines.

Different
Methods FPC-SLIC FCC-SLIC FPC-LSC FCC-LSC FPC-CHD FCC-CHD CV-CHD IM-CHD

UE 0.0312 0.0276 0.0286 0.0311 0.0211 0.0187 0.0162 0.0149
BR 0.3415 0.3385 0.4873 0.4502 0.6378 0.6434 0.6026 0.6511

ASA 0.8241 0.8186 0.8505 0.8447 0.8628 0.8666 0.8524 0.8491

By comprehensively considering the values of the three evaluation indicators, it can be concluded
that the segmentation results obtained by the IM-CHD method are the best.

Figure 9 shows the segmentation results of the Indian Pines dataset under different segmentation
methods. Under the same number of iterations, the number of superpixels obtained by different
algorithms was different. More obtained superpixels indicated that the segment algorithm was more
efficient. From the results, the IM-CHD method can better capture the boundary information and can
allocate more superpixels to represent complex areas.
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Figure 9. The superpixel segmentation images using different methods on Indian Pines dataset:
(a) FPC-SLIC; (b) FCC-SLIC;(c) FPC-LSC;(d) FCC-LSC; (e) FPC-CHD; (f) FCC-CHD; (g) CV-CHD;
(h) IM-CHD.

In the three methods, i.e., FPC-SLIC, FPC-LSC, and FPC-CHD, the images were segmented
according to the first principal component map of the HSIS. Therefore, the obtained colors using these
three methods were slightly different from the other five methods.

From Figure 9, the superpixel results using different segmentation methods were slightly different.
The CV-CHD and IM-CHD methods can better segment the real boundaries of ground objects, such as
areas within a red circle. In both algorithms, more superpixel blocks were assigned to represent the
regions with complex colors while fewer superpixels were used for the regions with simple colors.
Therefore, more precise results can be obtained using both CV-CHD and IM-CHD.

4.2.2. Experiment Using PaviaC Dataset

Figure 10 and Table 4 show the experimental results on the PaviaC dataset. Figure 10 shows the
best results generated by each method. Table 4 shows the detailed experimental results.
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Figure 10. The superpixel segmentation results using different methods on PaviaC dataset. (a) UE;
(b) BR; (c) ASA.
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Table 4. Superpixel segmentation performance using different methods on PaviaC.

Different
Methods FPC-SLIC FCC-SLIC FPC-LSC FCC-LSC FPC-CHD FCC-CHD CV-CHD IM-CHD

UE 0.0016 0.0016 0.0017 0.0016 0.0013 0.0013 0.0012 0.0013
BR 0.2507 0.2444 0.3127 0.3010 0.5487 0.5678 0.5572 0.5574

ASA 0.9233 0.9242 0.9237 0.9247 0.9306 0.9320 0.9315 0.9336

Figure 10a shows the results of the parameter UE using 8 algorithms. The histogram height of UE
using IM-CHD and CV-CHD was lower than using the other six algorithms. From Table 4, the obtained
value UE using IM-CHD was the same as using FCC-CHD and FPC-CHD. Therefore, IM-CHD method
had the second best UE performance (CV-CHD method resulted in the lowest UE value).

Figure 10b shows the results of the parameter BR using eight algorithms. FCC-CHD, FPC-CHD,
CV-CHD, and IM-CHD were superior to FFC-LSC and FPC-LSC, while the above six algorithms were
much better than FCC-SLIC and FPC-SLIC. From Table 4, among all the eight methods, IM-CHD
method provided the second largest BR value.

Figure 10c shows the results of the parameter ASA using eight algorithms. IM-CHD was superior
to all the other seven methods, i.e., FFC- FCC-CHD, FPC-CHD, FFC-LSC, FPCLSC, FFC-SLIC, FPC-SLIC,
and CV-CHD. In Table 4, compared to CV-CHD, the ASA value obtained by IM-CHD was increased by
0.2%. Therefore, based on ASA, IM-CHD exhibited the best performance.

Among all the segmentation methods of this experiment, according to the comprehensive
consideration of the three evaluation indicators, our proposed IM-CHD method had the best
performance and the highest classification accuracy.

Figure 11 shows the example segmentation results on PaviaC dataset. Due to the same reason as
in Figure 9, the segmentation result pictures using different methods had different colors.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 19 
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From Figure 11, using IM-CHD, the density of the obtained superpixel blocks is more reasonable,
which is consistent with the observations from Figure 9.

By comprehensively analyzing the performance of eight algorithms on Indian Pines and PaviaC
datasets, it can be concluded that the segmentation results obtained by IM-CHD are more reasonable
and accurate. The experiment results proved the effectiveness of the proposed method.

5. Conclusions

In this paper, first, the superpixel segmentation algorithm based on information measures with
color histogram driving was introduced. The spectral bands were selected based on entropy and CMF.
In these selected bands, the redundant information was removed while the significant information
was retained for further superpixel segmentation. Then, the mutual information was used to select
the final three groups of bands, i.e., 3n bands, to composite false color images. The smaller value of
the mutual information indicated the less redundancy between the spectral bands and the greater
amount of contained information. In our study, the segmentation results were obtained using the
hill climbing optimization algorithm. In addition, parameter selection experiments and comparative
experiments were designed and implemented in this study. Under the optimal parameter, the proposed
IM-CHD was compared with other similar existing methods. The experimental results demonstrated
the effectiveness and superiority of the proposed IM-CHD method. Therefore, the proposed method
achieved the purpose of efficient preprocessing of hyperspectral images.

Previously, we proved the validity of obtaining the main spectra of HSIs through information
measure. In the future, we will study the application of superpixel segmentation based on information
measurement in the classification of hyperspectral images. That is, the IM-CHD method proposed
in this paper is used to preprocess HSIs and classify the processed HSIs. The classification results
are compared with the previously proposed HSIs classification method, and it is discussed whether
IM-CHD method can improve the classification accuracy of HSIs.
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