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Abstract: This paper presents a solution for enabling the coexistence of digitized radio-over-fiber
(D-RoF) and analog radio-over-fiber (A-RoF) interfaces operating in the optical fronthaul of 5G
mobile systems. In the first section, we formulate the need to introduce new technologies to the
cloud/centralized radio access network (C-RAN) (Next Generation RAN (NG-RAN) in 5G systems).
A proposition of construction of the optical remote radio head (O-RRH)/gNodeB—distributed unit
(gNB-DU), which will enable the operation of digital Splits/Options and new proposed analog
Splits/Options, is presented. The methods performing calculations of bit rate and optical bandwidth
demand in the fronthaul/midhaul, with reference to the parameters of the new-radio-release-15
(NR-Rel-15) wireless interface and subsequent releases, towards the next generations, are presented.
The bandwidth demands were calculated for selected Splits/Options, and the results are shown in
diagrams. A special section is devoted to description of the results achieved and presenting potential
applications of the proposed construction of a radio-photonic device as well as new Splits/Options of
the next generation fronthaul/midhaul.

Keywords: fronthaul; midhaul; radio-over-fiber; optical gNB-DU; RRH; A-RoF; D-RoF; eCPRI; BBU;
all-optical network

1. Introduction

In previous generations of mobile systems and networks (2G/3G), a special emphasis has
been placed in the radio domain on the development of distributed radio access network (D-RAN)
architecture. It consisted in the fact that devices processing signals in the baseband (BB), intermediate-
band (IF), and radio-frequency-band (RF) were located near to the mast with the antennas.
The significant increase in the demand for signal processing, especially in the baseband, meant
that we had to look for different solutions. Existing terminal devices, called base stations, can no
longer be developed in the traditional way, because they would have to be supercomputers with
high computing power in a moment (with high network traffic), and in other cases idling equipment
(e.g., with a negligibly small nighttime traffic) that would have to be turned off to save energy without
the use of their computational potential. The solution to this problem is to transfer computing functions
into the network so that the computers performing these operations may be used for other purposes
in the absence of mobile network traffic. This requires central control architecture of remote radio
modules whose functions are as limited as their physical equipment allows.

In the future Next Generation Radio Access Networks (NG-RANs) domain of the 5G systems,
exactly centralized/cloud control technology (C-RAN) will be widely used with a large set of gNodeB
(gNB) base stations that will also be working in distributed structures/architectures (not to be confused
with D-RAN).
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1.1. State-of-the-Art 5G C-RAN Solutions

The basic concept in the NG-RAN domain, which is promoted by 5GPPP, is the multi-layered
architecture of XHaul [1,2]. This solution is based on an optical network that is designed to support
traffic from various Split/Option interfaces. This architecture also includes D-RAN solutions, which
means joint support for management of traffic from the fronthaul and backhaul. Based on this solution,
the authors of publications [3–5] proposed network architectures based on optical and microwave
(radio-line) transport. The presented solutions introduce traffic optimization, which, however, does
not take into account the possibility of transmitting signals occurring in the A-RoF format in the
network. The architecture of an Optical Transport Network (OTN) system is prepared for an efficient
transport of digital traffic, which is provided at client access points. The situation is similar in the case
of Time Shared Optical Network (TSON), which is a very good solution supporting the transport of
information from radio-over-Ethernet (RoE) (enhanced common public radio interface (eCPRI) as well
as next generation fronthaul interface (NGFI)) interfaces. A lot of research and development have been
devoted to various optimization solutions for transportation systems of streams from D-RoF interfaces.
The author reviewed the available studies [6–13], which contained the results of studies showing the
undoubted legitimacy of using the D-RoF technique. In these studies, particular emphasis was put on
showing that a particular type of Split/Option or method of digitizing a radio signal to a bit form gives
the opportunity to increase a link efficiency. There is no difference in the selection of the Split/Option
method in the context of the load on the fronthaul network or the RRH unit. In special solutions,
attempts were made to use compression methods when processing from analog to digital [14]; which,
however—with a very large number of digital streams delivered to RRH working in massive-MMIO
format—will not bring much efficiency. There remains the A-RoF solution with the least research,
especially for 5G C-RAN applications. The papers [15–19] show a focus on specific solutions, which
consist in conducting experiments documenting that radio signals in the BB, IF, and RF bands can
be transmitted in optical fiber paths. These solutions were already tested many years ago. Several
books have also been written on this subject [20,21]. In each of the presented experiments, however, no
attention was paid to what generation of optical fibers will be used and to what extent future xWDM
networks can be used to transport de facto analog signals. Particular attention of the author was caught
by the study [22], which indicates the next field of activity, where the use or disposition of an optical
fiber of the appropriate generation, located in the optical path, can be decisive in the selection of the
radio signal transport system in its original form.

1.2. Author’s Contribution

The solution of the combined approach to the analysis of the needs of the A-RoF and D-RoF
interfaces was not undertaken in the above-mentioned studies. The author proposed the coexistence
of these interfaces in an optical network. This task is possible when the fiber optic RAN network
is all-optical. Of course, we can use fiber-to-the-antenna (FFTA) or passive optical network (PON)
architecture, but passive solutions do not provide such a wide scale of optical resource management.
Implementation of the network in the XHaul architecture enables the transport of digital data (backhaul)
and digitized signals (fronthaul—D-RoF). The combination of A-RoF and D-RoF traffic forces proper
preparation of all nodes in the network from the NG-RAN domain. Therefore, the author proposed
a special O-RRH construction that can be directly or through-connected to a all-optical network.
This construction was first presented by the author at an optical conference in Prague [23]. This also
applies to BBU and DU nodes, which by definition have adequate computing power and will perform
most of the tasks on a software basis. The method of managing nodes that carry also A-RoF traffic was
presented by the author at the fiber-optic conference in Suprasl [24]. In addition, in order to formalize the
baseband-over-fiber (BBoF), intermediate-frequency-over-fiber (IFoF) and radio-frequency-over-fiber
(RFoF) solutions, it was proposed to extend the function of the Option 8 and to introduce new Options 9
and 10 in relation to the 3GPP model. The most important component of the author’s study are unique
calculations that indicate the need to reserve optical resources when transporting digital streams from
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the D-RoF (CPRI, eCPRI) and A-RoF (BBoF, IFoF and RFoF) interfaces. Calculations were made for
a variable width of radio channel according to the 5G-NR-Rel-15 baseband (CP-OFDM waveform).
The results of the calculations can be of major application when scaling the resources of an all-optical
network, whose task will be to transport any type of signal, including A-RoF. The calculation formulas
presented below have been adapted to 5G modulation and code solutions or created from scratch
as a result of appropriate transformations (applies to A-RoF interfaces). It should be noted that the
effectiveness of the presented approach to handling A-RoF and D-RoF traffic will be leading when
introducing O-RRH working in massive-MIMO format, where we will have to deal with handling
large traffic from a large number of EUs (need to introduce IoT, which will be supported in the wireless
part by 5G systems). The results of the calculations carried out will allow efficient decision-making
about switching the connection to the selected type of options in the extended range by the author,
i.e., Options 1–10.

1.3. NG-RAN Concept Description

The distributed architecture of the gNB base station makes it possible to surround the user
equipment (UE) and thus more efficient management of spatial resources. This task is accomplished
through the use of wideband and flexible all-optical networks based on the Dense Wavelength Division
Multiplexing (DWDM) system with a flexible grid of optical channels [25] or new more flexible
Elastic Optical Networks (EON) [26] working with the Ultra-Dense Wavelength Division Multiplexing
(UDWDM) format and extra flexible reconfigurable transponders. The optical network is so versatile
that it can be used to transmit information/signals both in the area of the backhaul (BH) as well as the
fronthaul (FH)/midhaul (MH) of the future next generation mobile systems.

The purpose of the backhaul (inside the cloud in Figure 1) is to connect the next generation core
(NGC/5GC) with the NG-RAN control units through the gNB-central units (gNB-CUs). The fronthaul
is used in creation of fast and often synchronous links between the gNB-CU and components of the
distributed 5G base stations, i.e., gNB-distributed unit (gNB-DU)—Figure 1 [27]. The architecture of
the distributed NG-RAN occurs in two concepts, i.e., based on the fronhaul network (Figure 1a) and
with the division of the distribution network on the fronthaul and midhaul—Figure 1b. The second
concept indicates the possibility of using a distribution point/unit (DU), whose task will be to perform
some activities related to local signal processing and their distribution to functionally limited network
termination units such as active antenna unit (AAU)/remote radio unit (RRU)/remote radio head (RRH).
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Figure 1. NG-RAN architecture with distributed gNB: (a) concept of C-RAN controlled by gNB-CU 
connected to NGC (backhaul side) and gNB-DU (fronthaul side)—forced by 3GPP; (b) concept of C-
RAN controlled by gNB-CU/BBU connected to NGC (backhaul side) and gNB-DU/AAU/RRH 
(fronthaul or/and midhaul side)—forced by 5GPPP. 
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Figure 1. NG-RAN architecture with distributed gNB: (a) concept of C-RAN controlled by gNB-CU
connected to NGC (backhaul side) and gNB-DU (fronthaul side)—forced by 3GPP; (b) concept of C-RAN
controlled by gNB-CU/BBU connected to NGC (backhaul side) and gNB-DU/AAU/RRH (fronthaul
or/and midhaul side)—forced by 5GPPP.
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Inside the gray cloud in Figure 1, there are a 5G-NGC network and a set of gNB-CU/ baseband
unit (BBU) cooperating with each other. The method of cooperation between central units processing
the radio signals symbolizes additional terms such as ‘cloud’ and ‘hotel’. The term ‘cloud’ means that
individual units can be located at a greater distance in separate buildings, which forces them to use
quick connections with small delays. The term ‘hotel’ (alternatively often used as ‘pool’) symbolizes
the placement of units in the same building, which is equivalent to a physical signal processing center,
while BBUs/CUs are usually separated in distributed logical structures, which are managed by the
so-called virtual machines.

From now, in order to simplify further description of the functioning of the network components,
we will call the control units generally gNB-CU/BBU, and devices controlled by abbreviation
gNB-DU/RRH. The name of the DU nodes that define the boundary between the F1 and F2 interfaces
(Figure 1) will remain unchanged.

The fiber-optic FH can be a passive component (FTTA or PON) of the C-RAN, which is applicable
in mobile networks of current generations (2G/3G/4G). The demand for more and more bandwidths
in the backhaul networks forces the optimization of fiber network resources, which is why it is
necessary to pay attention to the previously mentioned active flexible optical networks [25,26] using
WDM technique.

The WDM technique enables the simultaneous transmission of several optical signals (different
frequency channels) in one fiber-optic link or one optical path. Fiber-optic link is understood as a
connection between nodes of the network, and the optical path is the path on which the optical signal
travels passing through the optical nodes. Fiber-optic links are implemented using single-mode silica
fibers, where single-modality is maintained for wavelengths in the range of 1260–1675 nm. An optical
node determines whether a fiber-optic network can be called all-optical. If a node does not go to the
electronic level (on the user’s layer), to regenerate the signal or to reorganize the digital data, then
this node can be called all-optical. Such nodes include optical add-drop multiplexer (OADM) or
reconfigurable OADM (ROADM), as well as photonic cross-connects (PXCs). Of course, the process
of signal regeneration can take place in all-optical nodes, but it must be implemented on the optical
layer, which is currently extremely expensive (the need for precise recognition of the signal modulation
format). ROADM and PXC are usually adapted to the so-called optical grids according to the standards
defining transport systems. Optical channel grids, on the other hand, are adapted to the optimal
parameters of optical fibers connecting nodes. In this case, it concerns the optical ranges of the S, C, L,
and U bands [1]. If we release from these nodal devices the permanent set of optical filters and internal
constraints to xWDM grids, then we will get full flexibility. Unfortunately, this is done at the expense
of a high increase in the demand for effective photonic resources management in each of these nodes.
If an optical node is able to switch any channel (in a technologically limited range—any optical carrier
wavelength and any optical channel width), then it is sensible to use different modulation formats,
in addition to the classic on-off keying (OOK). As the optical channels are spectrally independent with
appropriately selected optical path or link parameters, they can carry completely different signals,
i.e., modulated in various formats. Therefore, the flexibility of the optical network using the WDM
technique enables an effective combination of traffic, in one fiber-optic link, coming from functionally
different networks. Separation of different streams in an optical link can be accomplished by assigning
separate optical carriers. An active network, in which there are various signals, must also be equipped
with flexible nodes and transponders [26,28], which will be able to recognize signals and place them
in the appropriate space of the grid of a given xWDM system (elastic or static). This assumption
forces, on the side of gNB-DU/RRH, the use of all-optical nodes and optical terminations of the C-RAN.
Of course, this does not exclude the possibility of mutual communication of C-RAN radio devices via
radio interfaces operating in the “sub-6” (FR1) and “mmWave” (FR2) bands [29].

The following description presents the concept of integrated optical gNB-DU/RRH, that was
presented by the author for the first time at the photonic conference in Prague [23] as the optical
RRH (O-RRH). The material concerning this concept is also included in this work for the sake of
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completeness as well as due to the introduction of minor changes regarding the adaptation of the
radio-photonic unit to flexible optical networks.

Optical gNB-DU/RRH enables communication with gNB-CU/BBU by using non-standardized
interfaces and modulations. Integration of an optical multiplexer with a radio module enables the
ingress to the optical fronthaul, connecting gNB-CU/BBU and gNB-DU/RRH, signals originating not
only from a digitized radio-over-fiber (D-RoF) interfaces [30], i.e., common public radio interface
(CPRI) [31] or evolved CPRI (eCPRI) [32], but also an analog radio-over-fiber (A-RoF) [30].

On the side of the signal processing center gNB-CU, the situation looks a little bit different, because
here we have a lot of power in terms of signal processing. The task of the central unit will therefore be
to collect all physical resource blocks (PRBs) (in terms of time and frequency) directed to specific UE
on the wireless side, combining into one or several channels from the baseband and inserting these
channels into the IF or RF band using the direct digital synthesis (DDS). In case of the D-RoF format,
the process will be terminated on the digitization of the channel created in the baseband. In order to
create an A-RoF signal, the other signal processing steps mentioned above must be implemented.

The purpose of performed analyses and calculations, the results of which are presented in the
following paper, is to show that the signals of D-RoF and A-RoF formats can be transmitted in the same
all-optical network, using the proposed construction of gNB-DU/RRH with optical termination, as well
as the indication of scenarios in which it makes sense to use interfaces working in the A-RoF formats
as those that provide a high degree of wavelength band savings compared to the D-RoF interfaces, in
the fronthaul/midhaul optical path setup between gNB-CU and gNB-DU/RRH.

The motivation of the conducted research follows from the fact that the expansion of the C-RAN
architecture is inevitable; therefore, it is necessary to search for solutions that will simplify the functions
performed by a set of antenna modules and then move many more functions to signal processing
centers that will lease computing power.

2. Radio and Photonic Components in Optical Massive-MIMO gNB-DU/RRH

The NG-RAN built on the basis of all-optical solutions enforces the introduction of the
network termination in the form of an integrated optical gNB-DU/RRH. In this way, the created
active-distributed-antenna-system (A-DAS) network (Figure 1) will enable solutions based on the
spatial surrounding of the terminal by the so-called distributed gNB base station. The distribution of
radio signals to/from gNB-DU/RRH via optical links will guarantee very high delay constancy, which
in the situation of using digital beamforming (DBF) or hybrid beamforming (HBF) of radio beams
directed to/from the UE is superior. An exception will occur in the case when the eCPRI interface
is used, in which the synchronous ethernet (SyncE) technology is applied [33–35], creating a RoE
link [36,37]. Of course, the stream of Ethernet frames can be transported through optical transport
network (OTN) links [38], similarly to CPRI [39], but in case of the need to enter on the layer 2 (L2),
in order to switch frame streams, the optical path will be terminated. Here, the guarantee of low
variance of delay may not be possible, unless the Ethernet switch is equipped with optical ports that
are connected through the linear clock on the layer 0 (L0) (the optical layer determines the transferred
clock step).

The Integrated Optical gNB-DU/RRH can exist in several configurations, what depends on the
construction of the radio massive-multiple-input–multiple-output (massive-MIMO) head and the
photonic module. Figure 2 presents three types of optical gNB-DU/RRH, which are characterized by a
four-sectors (a), one-sector (b) and six-sectors (c) radio head. Construction concepts (a) and (c) are very
similar to each other, because they require the use of stepwise transfer of connections between sectors.
In case (b), only one sector was used, which is equipped with, in proportion to other solutions, a large
number of radio and aerial modules. The single-unit gNB-DU/RRH device will allow for smooth
tracking through the UE radio beam around the mast. In this construction, it is required to smoothly
switch off individual radio modules when the angle at which the UE terminal lies is exceeded. In each
case shown (Figure 2), gNB-DU/RRH is directly connected to a fiber-optic link (at least one pair of
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optical fibers) in which the xWDM technique is applied (signals in accordance with the DWDM system
or OTN/EON type development). In solutions (a) and (c) in the photonic part, the microROADM was
used, which indicates the possibility of using the device in a double optical ring, where we will have a
reserve route and the possibility of dynamic management of the add/drop band. The single-sector
solution gNB-DU/RRH is based on the equipping of the photonic side in microOM/microDM [40,41],
which indicates that this type of device will be able to be placed at the physical terminal of the optical
path/link. The optical mux (OM)/optical demux (OD) terminating the optical path/link may be also
applied in the cases (a) and (c)—Figure 2. This will depend only on the place where the gNB-DU/RRH
device is connected to the optical network.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 28 

where we will have a reserve route and the possibility of dynamic management of the add/drop band. 
The single-sector solution gNB-DU/RRH is based on the equipping of the photonic side in 
microOM/microDM [40,41], which indicates that this type of device will be able to be placed at the 
physical terminal of the optical path/link. The optical mux (OM)/optical demux (OD) terminating the 
optical path/link may be also applied in the cases (a) and (c)—Figure 2. This will depend only on the 
place where the gNB-DU/RRH device is connected to the optical network. 

M
as

siv
e-

M
IM

O
 

An
te

nn
a 

Co
m

po
ne

nt
s

Digital and Analog 
Radio Devices 

(Separated A-RoF 
and D-RoF Buses)

Photonic and 
Radio-Photonic 

Devices 
(microROADM 

inside)

Sw
itc

hi
ng

 a
nd

 
Pr

oc
es

sin
g 

De
vic

es

West Optical 
Link

East Optical 
Link

DWDM/EON 
Traffic

DWDM/EON 
Traffic

4-sectors Head

(a) 

Digital and Analog 
Radio Devices 

(Separated A-RoF 
and D-RoF Buses)

Photonic and 
Radio-Photonic 

Devices 
(microOM/

microOD inside)
Optical Uplink Optical Downlink

DWDM/EON 
Traffic

DWDM/EON 
Traffic

1-sector Head

(b) 

Digital and Analog 
Radio Devices 

(Separated A-RoF 
and D-RoF Buses)

Photonic and 
Radio-Photonic 

Devices 
(microROADM 

inside)

M
assive-M

IM
O gNB-DU/RRH 

West Optical 
Link

East Optical 
Link

DWDM/EON 
Traffic

DWDM/EON 
Traffic

6-sectors Head

(c) 

Figure 2. Block configurations of integrated massive-MIMO optical gNB-DUs/RRHs with the same 
photonic and radio-photonic modules (devices): (a) 4-sectors gNB-DU/RRH containing 
microROADM; (b) 1-sector gNB-DU/RRH containing microOM/microOD; (c) 6-sectors gNB-DU/RRH 
containing microROADM (concept first time presented in proceedings [6]). 

The two downstream devices (modules) in optical a gNB-DU/RRH are described in more detail 
in Figure 3. The photonic switch (Figure 3a) allows a local optical channel redirection, depending on 
the need to direct concentrated radio traffic to a specific part of the antenna module assembly (Figure 
4). A very important component is the array of media-converters (transceivers), whose task will be to 
shift from the photonic to the radio domain and vice versa. These systems will have to support signals 
modulated in D-RoF and A-RoF [30] formats, so they will have to work in a flexible mode. The lasers 
built into these converters should be longitudinally single-mode and have the possibility of dynamic 
tuning. In addition to the optical and radio bus, along the radio-photonic module, a bus runs with a 
control channel (Figure 3a, red—optical, green—electric), which was delivered as a dedicated optical 
channel from the controller working at the gNB-CU/BBU. Through this digital channel, we can 
control any component in the photonic and radio signal processing chain. Its function will primarily 
be to determine and establish the path on which radio frequencies from a specific radio band or 
baseband channels (in analog or digitized form) will travel. 
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photonic and radio-photonic modules (devices): (a) 4-sectors gNB-DU/RRH containing microROADM;
(b) 1-sector gNB-DU/RRH containing microOM/microOD; (c) 6-sectors gNB-DU/RRH containing
microROADM (concept first time presented in proceedings [6]).

The two downstream devices (modules) in optical a gNB-DU/RRH are described in more detail in
Figure 3. The photonic switch (Figure 3a) allows a local optical channel redirection, depending on the
need to direct concentrated radio traffic to a specific part of the antenna module assembly (Figure 4).
A very important component is the array of media-converters (transceivers), whose task will be to shift
from the photonic to the radio domain and vice versa. These systems will have to support signals
modulated in D-RoF and A-RoF [30] formats, so they will have to work in a flexible mode. The lasers
built into these converters should be longitudinally single-mode and have the possibility of dynamic
tuning. In addition to the optical and radio bus, along the radio-photonic module, a bus runs with a
control channel (Figure 3a, red—optical, green—electric), which was delivered as a dedicated optical
channel from the controller working at the gNB-CU/BBU. Through this digital channel, we can control
any component in the photonic and radio signal processing chain. Its function will primarily be to
determine and establish the path on which radio frequencies from a specific radio band or baseband
channels (in analog or digitized form) will travel.
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Figure 3. Switching and processing devices of integrated optical gNB-DU/RRH: (a) block construction
of the photonic part with microROADM/microOM–microOD inside, (b) block construction of a common
radio part with the digitized and analog radio signals switch (presented in proceedings [6]).

Next block (Figure 3b) is connected to an electric bus that has a large number of transmission
lines. The number of transmission lines depends on the number of media converters included in
the radio-photonic block. The transmission bus provides signals to the ports of the signal switch,
whose task is to direct the appropriate signal for initial preparation or separation, before entering
them to the specific radio antenna subunit. The digital signals go to the DSP controller, which
demultiplexes/ multiplexes streams in the time domain and organizes them so that they reach the
appropriate transmission line connecting with a specific radio-antenna module. The analog signals go
to the radio controller, where they are pre-prepared (e.g., adaptation to the transmission line, correction
of time and frequency parameters, or pre-amplification in a small range). The analog radio signal
(A-RoF format) can come from the following ranges: BB, IF, or RF.

The control channel (Figures 3 and 4—green lines) enables the radio block subassemblies to
operate and continues along the radio signal transmission bus. The functionality of the control channel
does not terminate there. It is still appropriate to control the final radio systems closest to the antenna
array assembly—Figure 4.
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Figure 4. Massive-MIMO antenna component of optical gNB-DU/RRH—example of single
radio-antenna module. Proposition of gNB-DU/RRH construction with components controlled in SDR
mode by the radio control channel (green line) (presented in proceedings [23]).
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The digital and analog buses are routed from the radio module to the radio-antenna head. Along
the head with antennas, attachments should be placed to individual units converting radio signals
prepared for emission in places of antennas.

Digitized radio signals (Figure 4) go to the digital block, where their duplex directions are
subjected to separation and they are converted (processed) from digital to analog and vice versa. Here,
there is an encoding/decoding operation for the partial streams that have reached the gNB-DU/RRH
optical interface in CPRI/eCPRI format [31,32]. The signal from BB (uplink direction) gains its original
form and is then transferred to the RF band. At this point, it is possible to use a greater number of
the radio signal conversion degrees. It depends on the method of group transmission of baseband
channels and the need for cooperation with analog signal transformation techniques. In the radio
signal adaptation chain, there is also a section for forming the radiated beam. Each radio-antenna
module is equipped with systems for two directions that allow analog beamforming and spatial beam
control in cooperation with other radio-antenna modules. In the case when signals in a digitized
form (prepared in gNB-CU/BBU) are delivered to the radio-antenna module, then DBF is additionally
applied. The combination of these two techniques makes it possible to use hybrid solutions [42,43],
which balances the load on the components of the fronthaul network and increase the precision of
beam control on the free space side.

A single radio-antenna module must be equipped with a duplexer whose task is to separate and
combine signals from different directions. The diplexers allow us to direct a specific radio band to
the appropriate antenna dipole. Currently, diplexers are used as passive devices, but in the case of
multi-band work (radio interfaces of next generations) of antenna array, we may need an active system,
which will also be susceptible to control from the radio module or even gNB-CU/BBU.

The coupling of components shown in Figures 3 and 4, through fast and multi-track buses, gives
the possibility to build a through or path terminating the optical gNB-DU/RRH. The optical channels
will mostly be scaled at the gNB-CU/BBU level, but these functions may be partially moved to the
gNB-DU/RRH. The control method of optical massive-MIMO gNB-DU/RRH depends on the method
of controlling the entire domain of devices operating in the FH or MH network. The presented
proposal assumes C-RAN control with the possibility of distributing the signal preparation centers
gNB-CU/BBU Hotel/Cloud (Figure 1). From the radio termination point of the optical gNB-DU/RRH,
despite the partially distributed network devices processing BB, IF, of RF signals (gNB-CU/BBU Cloud),
gNB-CU/BBU nodes are seen as centrally located devices and communicate in parallel regarding the
so-called gNB-CU/BBU clouds.

Figure 5 shows an example of a network where a cloud is located in the middle representing an
evolved packet core (EPC)/next generation core (NGC), a network of software defined radio (SDR)
devices (gNB-CU/BBU) and a central Open Flow (OF) controller [44,45] as a resource manager in
the NG-RAN domain. The example network is based on the optical layer in the ring architecture,
however, the logical structure of connections between NGC and gNB as well as gNB-CU/BBU
and gNB-DU/RRH has tree architecture. Access to the optical network takes place through the
so-called optical concentrators, i.e., optical multiplexers. The proposed gNB-DU/RRH have the built-in
microROADM or microOM/microOD, which gives the possibility of their direct connection to the
optical ring structure (microROADM case). If there is a need to connect the outside gNB-DU/RRH in
the access mode (the so-called south direction), then it should have at least an optical multiplexer and
demultiplexer (microOM/microOD case). The assumption that the network is all-optical requires the
use of PXC or ROADM in nodes, which guarantees that there will be no conversion of the photonic to
electric signal in these nodes and vice versa. Of course, this only applies to the transport of signals
carrying user data (user plane).

The control layer using OF [44,45] must be organized so that all optical nodes together with
gNB-DU/RRH and O-gNB remain under full control. As seen in the upper part of Figure 5, the optical
network can connect gNB-DU/RRH and O-gNB to the core of the packet network and the surrounding
cloud of the gNB-CU/BBU modules. All that remains is to design a mechanism for flexible resource
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management, which will decide how the optical resources will look like when simultaneously
(hybrid) serving all streams from NG-RAN. PXC nodes equipped with DU functions will deal with
the distribution of optical streams that will transport radio signals with high time requirements
(physical layer) to the appropriate gNB-DU/RRH, whose functions can be dynamically reduced to AAU
(depending on the load of links in network and signal processing centers in the cloud). In the situation
that the midhaul network (serving traffic with lower time requirements) does not exist (Figure 1a),
all the DU functions are taken over by gNB-DU. In this case, high time requirements are taken over by
the network at the level of interface F1. The type of transport technology used (Figure 6) in particular
interfaces and links will depend heavily on the type of Split/Option and its requirements. It should be
noted that each stream of L1, L2, and L3 layers can be transported through an active optical network,
which in the all-optical version represents the so-called L0 layer (beside the 7-layer ISO/OSI model).
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Figure 6. Transport technologies used in the F1 and F2 interfaces of fronthaul/midhaul as a components
of the stationary part of NG-RAN (MicrowaveLine is the wireless transport option between gNB-CU/BBU
and gNB-DUs/RRHs—wireless communication between gNB-DUs/RRHs is also possible—out of the
scope of analysis).

3. Simple Model of Bandwidth Consumption Calculation in 5G Fronthaul Interfaces

The efficiency of the FH and MH links is the basis for a properly functioning C-RAN
(in 5G-NG-RAN) structure. Currently, the CPRI format [31] is widely used in the links of fronthaul,
the simplicity of which does not require using too large processing power from the signal processing
systems, but the resulting streams are characterized by very high bit-rates. The demand for high CPRI
bit-rate is primarily due to the need to connect to the gNB-CU/BBU cloud, independently, each antenna
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module (Figure 4) located in the radio-antenna head. In the Spits/Options model (Figure 7), the CPRI
interface is at the top, which means that this digital stream will be directed to gNB-DU/RRH with low
processing power. The functionality of this network termination will be limited to AAU. Currently,
we have defined the fastest optical interface CPRI v.7.0 [31] with 24.3 Gbps. In many situations,
especially when connecting the gNB-DU/RRH devices working in massive-MIMO format to fronthaul,
the need for a larger number of the fastest CPRI streams is necessary. The introduction of faster
bitstreams is pointless due to the emerging dispersal constraints of single-mode telecommunication
optical fiber. In a DWDM network, we can concentrate more CPRI streams into one optical fiber,
but with the dense location of the gNB-DU/RRH terminals, it is necessary to introduce new solutions in
the transmission of radio signals, in conjunction with the introduction of optical nodes that can work
more flexibly.
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functional division according to 5GPPP [1], (c) functional division according to CPRI Industry 
Forum—interface eCPRI v.2.0 [32]. 

3.1. Bandwidth Consumption in D-RoF Interfaces 

In the classical FH variant, usually one gNB-CU/BBU center will support interworking with 
several gNB-DU/RRH or DU radio terminations. In this sense, the total bit rate needed to service the 
massive-MIMO radio equipment can significantly exceed 10 Tbps. A single CPRI interface (Figure 7: 
(a) Option 8, (b) Split A, (c) Split E—yellow number 1) represents one antenna module in one sector 
of the radio-antenna head. 

The digitized baseband signal must be delivered here independently to each antenna module so 
that MIMO techniques and spatial beamforming on the side of the wireless interface can function 

Figure 7. Models of Splits/Options and functions performed by 5G-FH/MH components in the scope of
F1/F2 interfaces in the NG-RAN domain: (a) functional division according to 3GPP [46], (b) functional
division according to 5GPPP [1], (c) functional division according to CPRI Industry Forum—interface
eCPRI v.2.0 [32].

3.1. Bandwidth Consumption in D-RoF Interfaces

In the classical FH variant, usually one gNB-CU/BBU center will support interworking with
several gNB-DU/RRH or DU radio terminations. In this sense, the total bit rate needed to service the
massive-MIMO radio equipment can significantly exceed 10 Tbps. A single CPRI interface (Figure 7:
(a) Option 8, (b) Split A, (c) Split E—yellow number 1) represents one antenna module in one sector of
the radio-antenna head.

The digitized baseband signal must be delivered here independently to each antenna module
so that MIMO techniques and spatial beamforming on the side of the wireless interface can function
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effectively. The total bit rate needed to deliver the appropriate number of fast CPRI streams to the
gNB-DU/RRH mast, via the F1/F2 interface (Figure 1), can be determined based on the formula [47]

BR8 = S ·A · fs · bs · IQ ·HF · LC (1)

where S—the number of sectors per gNB-DU/RRH/AAU, A—the number of antenna modules in
array per one sector, fs—speed of sampling (in CPRI for 20 MHz radio baseband channel is equal to
30.72 MS/s (3.84 · (20/5) · 2), in wider BB radio channel is proportionally higher [8,9]), bs—number of
bits per sample (depending on the format of the sampled signal: is equal 15 per one I/Q subcarrier for
4G/5G-Rel-15 (cyclic prefix orthogonal frequency division multiplexing (CP-OFDM))), IQ—a factor
indicating a separate sub-sampling I as in-phase and Q as quadrature (is equal 2), HF (Headers
Factor)—a factor indicating the redundancy of CPRI headers (redundancy is 1/15, therefore, amounts to
16/15), LC—alphabet nB/mB line code (8B/10B—ratio of 10/8—used in CPRI Options 1-7, 64B/66B—ratio
of 66/64—used in CPRI Options 7A-10).

The relocation of the need of signal processing power to specific parts of the radio network
chain (CU or DU) depends on the network architecture and, in SDR mode, enables balancing the
power consumption and dynamic selection of signal processing centers in the gNB-CU/BBU cloud
or gNB-DU/RRH terminal/node. In the situation when we transfer more functions related to the
processing of baseband signals to the signal processing cloud, the stream that will only transmit data
regarding the actual transmission can be significantly reduced. In the context of this case, we will
consider Option 6 according to the 3GPP (Split C according to 5GPPP, Split D according to CPRI
Forum—Figure 7—yellow number 3), which applies to both ‘duplex’ directions (uplink (UL) and
downlink (DL)) and is located at the border between PHY and MAC layers. The division presented in
Figure 7 indicates the places where the separation of the network elements functions can be made,
which is also an important determinant of the directions of evolution and the emergence of NG-RAN
Split/Option standards at the F1 and F2 interfaces [1,32,46]. The rate consumption calculations that
will occur at the Split D during the maximum load, according to the CPRI Forum [9], can be carried
out on the basis of a simplified and adapted formula [2,48]

BRD =
S ·NL ·NSC ·NSY ·RC ·K ·HF · LC

TF
(2)

where S—the number of sectors per gNB-DU/RRH, NL—the number of layers (related to the number
of layers needed to create and form space beams directed to mobile UE), NSC—the number of active
CP-OFDM subcarriers in BB channel (the number of subcarriers for the new waveform from the 5G-NR
interface should be used—in the channel with a specified frequency bandwidth [MHz]), NSY—the
number of CP-OFDM symbols or newest waveform per standard time-frame (in the non-standalone
5G-Rel-15 interface a coherent value was assumed in relation to FDD-LTE), RC—the factor of FEC
code efficiency, K = log2 M—bits per modulation symbol, where M—modulation order (usually for
M-QAM format), HF (Headers Factor)—CPRI frame redundancy factor (redundancy at 1/15 for CPRI,
so the ratio is 16/15—much smaller and variable for the eCPRI, depending on the size of the charge
in a frame [32] matched to the Ethernet frame and/or OTN [36,39]), LC—a line code also used as a
scrambling (for faster streams it is 64B/66B, so the code rate is 66/64) and a physical Ethernet link
control (also applicable to the RoE technology [32,36]). The line code in the optical Ethernet link
applies only to the LAN format. Ethernet WAN interface is devoid of this code, because physical layer
functions are taken over by the transport system, e.g., OTN. When the radio samples are transported
in the fronthaul/midhaul paths using Ethernet (RoE) frames only, the LC value is included in the
HF redundancy.

When the level of the Split/Option increases, the total data rate related to the user’s data plane
will increase, which results from the need to send additional data defining the radio signal. At Split IU

and IID (Figure 7c—eCPRI 1.2—yellow number 2) an additional parameter appears which determines
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the number of quanta in the process of converting the frequency sub-carriers. Thus, the coding and
modulation rules will not be taken into account, as the frequency components will be quantized.
In order to estimate the bit rate that will occur in the fronthaul/midhaul path type Split IU/IID, an
approximate formula [2] can be used

BRIU/IID =
2 · S ·NP ·NSC ·NSY ·NQF ·HF

TF
(3)

where S—the number of sectors per gNB-DU/RRH/AAU, NP—the number of ADC/DAC chains (used in
digital beamforming (DBF)—special application in massive-MIMO mode), NSC—the number of active
CP-OFDM subcarriers in BB channel (the number of subcarriers for the 5G-NR waveform interface
should be used), NSY—the number of CP-OFDM or newest waveform symbols per standard 4G/5G
time-frame, NQF—the quantizer resolution in the frequency domain, HF (Headers Factor)—eCPRI
frame header redundancy factor [32] and higher IP/Ethernet network layers, TF—frame duration
(4G/5G system parameter).

3.2. Bandwidth Consumption in A-RoF Interfaces

Digital fronthaul/midhaul interfaces are very demanding in terms of throughput, which is why in
this part of the work we will consider the implementation of A-RoF solutions. In the analog mode of the
photonic carrier modulation, we can use a modulating signal located in the baseband, the intermediate
band, or the radio frequency band [49]—Figure 8.

In the case of photonic carrier modulation with a radio signal coming from the baseband, we have
the largest saving of the photonic band. This technique requires the use of separate optical resources
for each frequency BB channel. This causes complications in the need to use a separate optical channel
or a separate optical fiber for each BB channel. As in the D-RoF interface, a modulator must be used
on the gNB-DU/RRH side to allow the BB signal to be applied to the RF band. The second solution
indicates the use of an IF intermediate frequency. In this technique, all frequency channels can be sent
simultaneously to the selected RRH. In a remotely managed radio module, we convert the signal that
transfers data from the intermediate band to the target RF band. This solution is quite economical,
due to the possibility of optical transmission of many radio channels focused around one unified, in a
given network, intermediate frequency, which can be selected depending on the needs. The solution
that most occupies the optical band remains, that is, simultaneous transmission of all components of
the radio signal, including the RF carrier. This solution is the least effective from the point of view of
the FH network, but allows the use of maximally simplified AAU, whose tasks are reduced to optical
modulation and demodulation, amplification, pre-amplification, and shaping the beam emitted by the
antenna array.

In comparison to the D-RoF solutions, the signals in the A-RoF format do not occupy too much
bandwidth in the optical channel, however, they are characterized by much higher requirements for
distortions of modulating signals. The modulation signal is specific, because it resembles an analog
format in spite of the fact that it transfers digital data. For many years, scientists have been working on
the optical OFDM (O-OFDM) technique, which is very similar to the A-RoF such as baseband-over-fiber
(BBoF) solution, but the On/Off Keying (OOK) method with a direct detection is still popular and the
cheapest one. The modulation of the photonic carrier with a signal from the BB is therefore similar to
the O-OFDM, however, there is only one source of carrier surrounded by two bands (double-side band
(DSB) mode), thus the orthogonality of subcarriers remains on the side of the modulating signal. Care
for the orthogonality of radio subcarriers, during transport in the optical path, is not a problem due to
their very low frequency distance and the occurrence of multi-path effects in a small range (chromatic
dispersion and power penalty influence—DSB mode), which occur on a much larger scale on the side
of the wireless interface. Thus, the only limitations here are signal attenuation, its delay and dispersion,
which must be taken into account in particular when using a very broadband modulation signal.
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The use of high radio frequency allows the creation of more wider frequency channels (e.g., the need
to use mmWave ranges in 5G); however, when using DSB modulation this results in a doubled increase
in the width of the optical channel. This can be limited by using the SSB modulation technique by
introducing Mach–Zehnder Modulation (MZM) in the Hilbert configuration or by filtering out one
sideband. Such a treatment, however, weakens the modulating signal, at the expense of improving
the bandwidth efficiency and reducing the impact of the chromatic dispersion of the fiber-optic paths.
The large number of systems (2G–5G) supported by the base station causes its high degree of complexity
and hinders its quick reconfiguration. In this case, there is a need to move all system functions to the
CU cloud, where radio resource allocation will take place to individual antenna matrices mounted on
the mast. The question arises, whether it is possible to coordinate all spatial streams using only one
optical channel? Of course, this is not physically feasible, therefore there is a need to use the optical
wavelength division multiplexing (WDM) technique or space division multiplexing (SDM) on the
optical side (a larger number of optical fibers in the cable, or the use of multi-core optical fibers [50]).
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Optical resources are presented in the wavelength domain, because the optical fiber influences the
change of the wavelength as a function of the optical frequency of the carrier. In order to evaluate the
frequency bandwidth of the modulating signal, a basic relationship can be used

∆ f = 2 · fb + 2 · fk (4)

where fb—radio frequency (RF) carrier (identifying the RF channel number), fk—the extreme right
frequency of the CP-OFDM sub-carrier of the baseband channel. The transition to the wavelength
domain can be accomplished using the following approximate dependence

∆λ = λ2 − λ1 =
c · ∆ f

( f2 − ∆ f ) · f2
=

c · ∆ f
( f1 + ∆ f ) · f1

�
c · ∆ f

f 2
LD

(5)
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where fLD = λLD/c—the frequency of the optical carrier emitted by the laser radiation source.
By substituting relation (4) into (5), we get

∆λ =
∆ f · λ2

LD
c

=
2( fb + fk) · λ2

LD
c

(6)

On this basis, it can be seen that the width of the optical channel is primarily dependent on the
component that constitutes the radio frequency (RF). Regarding the relation (1), it can be seen that the
efficiency of the analog solution is higher if the radio frequency used is higher, too. The simple design
of the RRH/AAU connected via the A-RoF interface to the fronthaul/midhaul, enforces the use of
optical multiplexing techniques, which will ensure full service of the MIMO radio technology. In case
of the D-RoF interface, the use of CPRI/eCPRI enables the introduction of multiplexing of temporary
TDM, which limits the need for multiple laser sources, but creates a very broadband optical channel.
For 5G mobile systems, even at the level of a few-kilometer fiber-optic link, the D-RoF interface will
need WDM/SDM multiplexing. Another issue is related to the multi-sectority of the RRH, which makes
it necessary to use RF channel separating systems and direct them to the appropriate array of antennas
in the sector. We can solve this by using a flexible grid of DWDM channels [25], where the minimum
frequency bandwidth of the optical channel is 12.5 GHz. The grid for the optical carrier is 6.25 GHz,
but for the simplification resulting from the analog DSB modulation in the A-RoF interface, we assume
that the carrier will change the frequency at least every 12.5 GHz. On this basis, the total occupancy of
the optical band in the wavelength domain, using the formulas (4) and (5), can be written as the optical
wavelength spectrum (OWS) [23]

OWS =
S·A∑
i=1

⌈
∆ fi

/
∆ fBmin

⌉
· ∆ fBmin · c f0 ±

i∑
j=1

(⌈
∆ f j

/
∆ fBmin

⌉
· ∆ fBmin

)2 (7)

where S—a number of sectors per RRH, A—antenna modules array per sector; ∆ fi, ∆ f j—radio frequency
bandwidth of i,j-th modulating signals; ∆ fBmin—minimal frequency bandwidth of optical channel,
which according to the DWDM grid is 12,5 GHz [25] or smaller in the future EONs; f0—the reference
frequency for the optical carrier equal to 193,1 THz—according to [25] or other band carrier; c—a speed
of light in free space equal to 3 · 108 mps.

The Formula (7) shown above allows the frequency bands to be combined with the count-down
(sign “+”) or count-up (sign “−”) of the optical channel number relative to the reference frequency f0.

4. Calculation Results and Partial Discussion

In order to perform exemplary calculations indicating the bandwidth of fronthaul/midhaul links,
using the previously presented interfaces, the initial parameters of radio signals that will occur in the
5G-NR Rel-15 wireless interface and subsequent releases should be set first.

In 5G mobile systems, a 4096-point FFT and a minimum 15 kHz spacing between the CP-OFDM
subcarriers was introduced [51]. Thanks to such arrangements, 5G-NR Rel-15 can cooperate with 4G
(LTE Rel-8 and newer). The subcarrier spacing can be increased in a coherent proportion [51], allowing
the creation of broader combined frequency baseband channels—Table 1.
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Table 1. Main parameters of NR-PHY Rel-15 interface and radio-antenna modules needed to calculate
FH/MH link bandwidth consumption [2,29,51].

BB Channel
Size Layers NL

Subcarrier
Spacing

Active
Subcarriers NSC

Symbols/
Frame NSY

Code Rate
RC

Modulation
Order M

Antennas/
Sector A

(MHz) - (kHz) - - - - -

20 16 15 1272/3300 140 0.85 256 96
50 24 15 3240/3300 140 0.85 256 128
80 24 30 2604/3300 280 0.85 256 128

100 16 30 3276/3300 280 0.85 1024 1 256
200 12 60 3168/3300 560 0.85 256 256
400 10 120 3168/3300 1120 0.85 256 256

800 1 10 240 3168/3300 2240 0.85 256 256
1 The option is expected to be introduced in subsequent 5G releases.

The 3GPP Rel-15 of mobile systems has defined a physical layer and higher layers, but there
are no restrictions that would indicate the number of antenna modules per sector. The extensive
arrays of antennas make it possible to create systems for mass communication of the base station with
many UE devices. Thanks to the usage of a higher number of antenna modules, the more accurately
spatial beams can be determined. However, this entails the need to create a large number of data
transmission channels and control channels. The demand for bit-rate is strictly dependent on the type
of fronthaul/midhaul interface (type of Split/Option) that is between the mast with radio modules and
the device preparing the radio signal for emission. The study assumes that the number of antenna
modules per sector in the near future (5G Rel-15/16) should not exceed 256—Table 1.

If a well-known CPRI interface is used in the fronthaul/midhaul, then the required split speed
(Option 8/Split E) can be calculated using (1). Here, each antenna module has its own dedicated
stream with a digitized signal from the BB range. This gives the possibility of convenient scaling with
spatial resources (MIMO and beamforming) but forces the use of an optical network with very high
bandwidth links.

Figure 9a shows the results of calculations that visualize the total bit rate that will be generated
by the heavily loaded, on the radio side, 4-sector gNB-DU/RRH, and Figure 9b shows the number
of optical DWDM-OOK-50GHz-grid channels (for CPRI stream/Option 10 [31]—24.33 Gbps), which
will have to be created in the FH/MH link to allow communication with the signal processing center.
The calculations were made for 7 cases of BB channels (Table 1), where only the last one is not compatible
with the 5G-NR Rel-15.
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Figure 9. Calculation results of optical resources needed to connect 4-sector gNB-DU/RRH to optical
FH/MH as a function of antenna elements number of massive-MIMO array: (a) total bit-rate for radio BB
channels digitized to CPRI format (LC = 66/64)—3GPP—Option 8/CPRI Forum—Split E (Figure 7a,c);
(b) number of DWDM-OOK 50GHz-grid channels for radio BB channels digitized to CPRI format
(LC = 66/64) − 3GPP—Option 8/CPRI Forum—Split E (Figure 7a,c).
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Based on Formula (1) and Figure 9, it can be seen that the increase in the bandwidth required
for the CPRI link increases very strongly with the increase of the basic bandwidth (proportional
increase in the sampling frequency). It should be noted that when the BB width increases, the number
of CP-OFDM subcarriers is not significantly increased, therefore, when expanding the BB channel,
the efficiency of using the CPRI interface becomes smaller and smaller.

It is possible to reduce the bandwidth demand when we lower the number of Split/Option level in
the fronthaul/midhaul interface. This will, of course, entail an increase in the functions related to signal
processing at the gNB-DU/RRH. In order to compare the degree of reduction in the bandwidth demand,
calculations were made, the results of which in the form of diagrams are shown in Figures 10 and 11.

At the discretion of the radio device communicating with the UE in the massive-MIMO mode,
which will be connected to the gNB-CU cloud via the eCPRI-Split D/3GPP-Option 6, it cause to process
the PHY signal in the UL and DL directions. This contact lies at the border between PHY and MAC
layers, which is why it is clearly defined functional boundary (Figure 7). The dependency (2) was used
to calculate the bit rate generated at the level of this Split/Option and some assumptions were made,
which are included in Tables 1 and 2. The eCPRI interface is prepared for transporting of radio signals
via Ethernet (RoE) paths, therefore the total redundancy of the frame headers go to 1.33 (Table 2).
At the Split D level, the number of active subcarriers in the specified BB channel is significant (in Table 1
this is the first NSC value, the second is the permissible number of subcarriers in NR-Rel-15, i.e., 3300).
Therefore, the frequency bandwidth of the BB channel is not the reason for the bit rate increase in the
Split/Option, but the number of active subcarriers and the number of layers created in order to be
able to use MIMO and beamforming techniques at the level of radio-antenna modules. In this case,
it was assumed that the number of layers is equal to the number of chains converting the signal into a
digital form and vice versa (ADC/DAC)—the values were assumed approximately. The increase in
the demand for spatial multiplexing in the wireless link will entail the need to increase these values.
The larger bandwidth of the BB channel is applicable in higher millimeter RF bands (FR2) [29], where
the devices from the internet-of-things (IoT) group will be communicated, therefore the number of
layers is much lower. The TDM technique parameters in the 5G-NR frames were kept the same as
in LTE (4G), with the difference that when the frequency distance between CP-OFDM subcarriers
increased, the duration of the symbols shortens proportionally, and their number in the time-frame
increases. As a result, broader BB channels will be used in the massive machine-type communications
(mMTC) and ultra-reliable and low-latency communications (URLLC), where OFDM symbols do
not have to be too resistant to multipath effects occurring in the wireless channel. The results of the
calculations presented in Figure 10 show only the demand for the bandwidth of fronthaul/midhaul
links at the level of the user plane (UP). The final bitrate must be increased by the control stream of the
components on the gNB-DU/RRH board (control plane (CP)), but the increase in demand at the level
of this Split/Option should not exceed 10% of the calculated value—Figure 10.

Table 2. Additional parameters of FH/MH radio streams for calculation of bandwidth consumption in
the lower Split/Option interfaces [29,32,51].

BB Channel Size ADC/DAC Chains Np Quantizer Resolution NQF Frame Duration Headers Factor HF

(MHz) - - (ms) -

20 16 9 10 1.33
50 24 9 10 1.33
80 24 8 10 1.33

100 16 8 10 1.33
200 12 7 10 1.33
400 10 7 10 1.33

800 1 10 7 10 1.33
1 The option is expected to be introduced in subsequent 5G releases.
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Figure 10. Calculation results of optical resources needed to connect 4-sector gNB-DU/RRH to optical
FH/MH as a function of antenna elements number of massive-MIMO array (calculation parameters
changing according to Tables 1 and 2): (a) total bit-rate for radio BB channels digitized to eCPRI
format—3GPP—Option 6/CPRI Forum—Split D (Figure 7a,c); (b) number of DWDM-OOK 50GHz-grid
channels for radio BB channels digitized to eCPRI format—3GPP—Option 6/ CPRI Forum—Split D
(Figure 7a,c).

Intermediate Splits/Options were introduced in all reference models (Figure 7), however, they
function differently. In this analysis, additional calculations were made for the eCPRI Split IU/IID

(directions UL and DL), which is functionally similar to 5GPPP Split B (Figure 7b,c). The results of
calculations, carried out on the basis of (3), were placed in the form of diagrams in Figure 11. It can
be noticed that in this Split/Option the demand for fronthaul/midhaul the bandwidth is increasing
slightly. This increase is mainly due to the fact that each mapped OFDM subcarrier must be quantized.
The number of quantization bits per IQ subcarrier can be found in Table 2. The increase of the speed of
this Split/Option on the control plane (CP) will be significant, as it can reach even 30% of the UP flow.
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Figure 11. Calculation results of optical resources needed to connect 4-sector gNB-DU/RRH to optical
fronthaul/midhaul as a function of antenna elements number of massive-MIMO array (calculation
parameters changing according to Tables 1 and 2)—there are overlapping lines in graphs for 20 MHz
and 50 MHz, as well as 80 MHz and 100 MHz: (a) total bit-rate for radio BB channels digitized to
eCPRI format—Splits IU/IID (Figure 7c); (b) number of DWDM-OOK 50GHz-grid channels for radio
BB channels digitized to eCPRI format—Splits IU/IID (Figure 7c).

Two new Option 9/10, as well as the extension of the functionality of Option 8 split were proposed
in the paper—Figure 8. To this end, a special design of an optical gNB-DU/RRH as a network
node or network termination is proposed, which is equipped with appropriate radio components
and photonics—Figures 2–4. Proposals are based on A-RoF solutions and are achievable if the
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fronthaul/midhaul links are based on an all-optical network using WDM technique. The calculations
were carried out on the basis of a derived relation (7), and their results are presented in the form of
diagrams shown in Figure 12. In the Option/Split 10, the radio-frequency-over-fiber (RFoF) technique
is used, which enables transporting radio signals through optical links exactly in the form in which
they have be radiated in place of the radio-antenna device.

However, this solution has significant limitations, as with the increase of RF frequencies, photonic
resources in fronthaul/midhaul links are very quickly occupied. This is due there being more and more
optical channels from the DWDM standard grid—Figure 12a. In the case of the RFoF, the use of photonic
resources is effective when the radio carrier is located in the sub-6 (FR1) band—Figure 12a—area
marked with the number 1.

This technique fits very well in the simple and low energy analog beamforming (ABF)
implementation on the AAU side, however, for each space beam (layer) a separate RFoF channel
will have to be used. With Option 10, the DBF technique can only be implemented on the gNB-CU
cloud side.
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Figure 12. Calculation results of needs for optical resources in optical A-RoF fronthaul/midhaul
path from gNB-CU/BBU/DU to 4-sector gNB-DU/RRH/AAU presented as Optical Wavelength
Spectrum (OWS)—count-down from 1675 nm optical carrier (band U): (a) Option 10
(proposition—Figure 8)—analog transport of RF over optical DWDM link (min. ∆f = 12.5 GHz);
(b) Option 9 (proposition—Figure 8)—analog transport of IF over optical DWDM/UDWDM link
(min. ∆f = 1.5625 GHz); (c) analog transport of baseband over optical DWDM link (128 antennas per
sector)—extension of Option 8 (proposition—Figure 8).
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In the case of the need to use a higher radio carrier (>10 GHz), the RFoF method becomes ineffective.
Here, it is worth using the intermediate frequency (intermediate-frequency-over-fiber (IFoF) technique)
around 3 GHz (Figure 12b)—we assume that the DWDM system scope will be exceeded due to the lack
of the need for optical line amplifiers—short optical paths. The introduction of a much denser DWDM
grid (evolution towards EON/UDWDM) will further increase the efficiency of optical path utilization.
However, only if we use a lower intermediate frequency (IF) or use only basebands (BBoF technique)
directed to individual antenna modules. In Figure 12c, we see the cumulative OWS, but for zero RF
carrier. In this case, the A-RoF mode was only used for BB signals, where a single BB signal occupies
one optical channel with a width resulting from DSB modulation. The calculations were performed
for the optical bandwidths of channels lying outside the standard DWDM grid [25]—Figure 12c. In a
situation where one classic fiber is insufficient, it is recommended to introduce more fibers connected
to one gNB-DU/RRH or use multi-core fiber in proportion to the number of sectors [50].

It can be noticed that the analysis of the D-RoF and A-RoF interfaces is slightly different, because
in the case of digitized solutions, the bit rate is the starting point, while in analog solutions we operate
on the frequency band occupancy. Optical links based on the DWDM/UWDM network can be used to
transport signals of different formats. It is only important that signals at the nodes of this network are
correctly recognized due to the photonic band they occupy in the core of the optical fiber.

5. Applications of the Proposed Solutions

All the solutions proposed in the work above can be applied in developing mobile communication
and wireless access systems. The main destination is the RAN domain, whose architecture evolves
strongly towards C-RAN. The result is a search for solutions that will allow for an efficient transmission
of processed radio signals to maximally simplified radio modules. The presented concept of the
network (Figure 5) is an unavoidable step that will allow virtualization of the computing power needed
for the processed signals. The proposal for construction of the gNB-DU/RRH and coexistence of A-RoF
and D-RoF links/paths in the same network is a combined approach to the solution that will enable
dynamic management of optical resources of the fronthaul/midhaul, available cheap CU computing
power, and radio resources.

Basic application scenarios for fronthaul/midhaul C-RAN networks (we assume that optical
network (ON) and signal processing center (SPC) provide many other services to other recipients) are
the following:

1. ON is heavily loaded, and SPC has a lot of free computing power resources. In this case, we can
afford cheap signal processing even to the A-RoF. The A-RoF signals in most cases represent a
high degree of spectral compression, so it will not be heavily loaded the ON links.

2. ON has a lot of free resources, and SPC is heavily loaded with other services. In this case, we can
go to D-RoF modes, that is, lower the level of the split to the ceiling enabling the operation of the
gNB-DU/RRH (even to Option 6 (eCPRI)—Figure 7).

3. Both ON and SPC are not overloaded. A case in which the D-RoF with Option 8 (CPRI) support
may be enabled—Figure 7.

4. Both ON and SPC are heavily loaded. This is a very uncomfortable situation, because RAN has to
go into the D-RAN mode, where the gNB-DU/RRH turns into the function of a classic gNB. A
base station that does not have too much computing power and have limited access to the optical
network must limit the supported wireless traffic.

Scenarios of detailed applications enabling switching the format in the fronthaul/midhaul link of
the C-RAN (comparison with reference to the bandwidth in FH/MH links/paths of optical networks,
without analyzing the demand for computing power during signal processing to the target form) are
as follows:

1. The A-RoF and D-RoF interfaces on the same level of Option 8 (Figure 7), i.e., CPRI and BBoF.
The comparative calculations are shown in Table 3.
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2. The A-RoF and D-RoF interfaces located at different levels of split (Figure 7), i.e., eCPRI and BBoF.
Comparative calculations are shown in Table 4.

3. The A-RoF and D-RoF interfaces located at different levels of split (Figure 7), i.e., CPRI and RFoF.
Comparative calculations are shown in Table 5.

4. The A-RoF and D-RoF interfaces located at different levels of split (Figure 7), i.e., eCPRI and RFoF.
Comparative calculations are shown in Table 6.

5. The A-RoF and D-RoF interfaces located at different levels of split (Figure 7), i.e., CPRI and IFoF.
Comparative calculations are shown in Table 7.

6. The A-RoF and D-RoF interfaces located at different levels of split (Figure 7), i.e., eCPRI and IFoF.
Comparative calculations are shown in Table 8.

Table 3. Calculated comparative parameters for detailed scenario No. 1 to switch from D-RoF to A-RoF
format (the optical channel count-down is starting from wavelength equal to 1675 nm)—Figures 9
and 12 (128-element antenna-array and 4-sector unit).

Interface BB Optical
Channel BW OWS Number of

Optical Channels Format/Split

- (MHz) (GHz) (nm) - -

BBoF 400 1.5625 7.4535 512 A-RoF/Option 8
CPRI 400 50 178.4642 427 D-RoF/Option 8
BBoF 400 12.5 57.8231 512 A-RoF/Option 8

Table 4. Calculated comparative parameters for detailed scenario No. 2 to switch from D-RoF to A-RoF
format (the optical channel count-down is starting from wavelength equal to 1675 nm)—Figures 10
and 12 (128-element antenna-array and 4-sector unit).

Interface BB Optical
Channel BW OWS Number of

Optical Channels Layers Format/Split

- (MHz) (GHz) (nm) - - -

BBoF 400 1.5625 0.1462 10 10 A-RoF/Option 8
eCPRI 400 50 2.8021 6 10 D-RoF/Option 6
BBoF 400 12.5 1.1689 10 10 A-RoF/Option 8

Table 5. Calculated comparative parameters for detailed scenario No. 3 to switch from D-RoF to A-RoF
format (the optical channel count-down is starting from wavelength equal to 1675 nm)—Figures 9
and 12 (32-element antenna-array and 4-sector unit).

Interface BB Optical
Channel BW OWS Number of

Optical Channels RF Carrier Format/Split

- (MHz) (GHz) (nm) - (GHz) -

RFoF 100 12.5 14.84 128 3.6 A-RoF/Option 10
CPRI 100 50 12.5360 27 - D-RoF/Option 8
CPRI 400 50 48.6018 107 - D-RoF/Option 8
RFoF 400 50 57.8112 128 22 A-RoF/Option 10

Table 6. Calculated comparative parameters for detailed scenario No. 4 to switch from D-RoF to A-RoF
format (the optical channel count-down is starting from wavelength equal to 1675 nm)—Figures 10
and 12 (32-element antenna-array and 4-sector unit).

Interface BB Optical
Channel BW OWS Number of

Optical Channels RF Carrier Layers Format/Split

- (MHz) (GHz) (nm) - (GHz) - -

RFoF 100 12.5 0.9353 8 3.6 8 A-RoF/Option 10
eCPRI 100 50 0.9351 2 - 8 D-RoF/Option 6
eCPRI 400 50 1.4022 2 - 4 D-RoF/Option 6
RFoF 400 50 1.8691 4 22 4 A-RoF/Option 10
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Table 7. Calculated comparative parameters for detailed scenario No. 5 to switch from D-RoF to A-RoF
format (the optical channel count-down is starting from wavelength equal to 1675 nm)—Figures 9
and 12 (128-element antenna-array and 4-sector unit).

Interface BB Optical
Channel BW OWS Number of

Optical Channels IF Carrier Format/Split

- (MHz) (GHz) (nm) - (GHz) -

IFoF 100 3.125 14.8408 512 1 A-RoF/Option 9
CPRI 100 50 48.6018 107 - D-RoF/Option 8
CPRI 400 50 178.4642 427 - D-RoF/Option 8
IFoF 400 6.25 29.4204 512 2 A-RoF/Option 9

Table 8. Calculated comparative parameters for detailed scenario No. 6 to switch from D-RoF to A-RoF
format (the optical channel count-down is starting from wavelength equal to 1675 nm)—Figures 10
and 12 (32-element antenna-array and 4-sector unit).

Interface BB Optical
Channel BW OWS Number of

Optical Channels IF Carrier Layers Format/Split

- (MHz) (GHz) (nm) - (GHz) - -

IFoF 100 3.125 0.4678 16 1 16 A-RoF/Option 9
eCPRI 100 50 1.4022 3 - 16 D-RoF/Option 6
eCPRI 400 50 2.8021 6 - 10 D-RoF/Option 6
IFoF 400 6.25 0.9353 10 2 10 A-RoF/Option 9

For the calculations related to the conversion from the number of channels realizing communication
in the optical fronthaul/midhaul link/path to the OWB, a simplified version of the Formula (7)
was applied.

The proposed entirely optical network in this study may also have other applications. If the
gNB-DU terminating devices are modified accordingly, then we can use them in other work areas.
Light fidelity (Li-Fi) networks can be such an example. If the optical stream from the photonic switch
(Figure 3a) is guided directly to the light emitter, then it will be possible to implement the Li-Fi network.
Before radiating, however, the signal should be properly amplified and scattered, because in the
optical path of the xWDM-based network we cannot use too much optical power. An additional
limitation is that the operating ranges of radiators that are in general use are not adapted to the optical
bands used in fiber optic communication. If the Li-Fi network needs to be moved to the visible light
communication (VLC) systems, basically all photonic elements of the proposed network will be subject
to changes. Only the all-optical network architecture will remain unchanged. In the case of small-scale
VLC networks, it is possible to use polymer optical fibers (POFs) and PXC/ROADM/OM/OD operating
in the visible light range [52].

6. Conclusions and Final Discussion

The proposed construction of the optical gNB-DU/RRH as O-RRH in [23] should meet the set
requirements, which mainly consist in handling optical signals occurring in the D-RoF and A-RoF
formats. It is unlikely that such devices could be installed as part of the first release of 5G mobile
systems, i.e., Rel-15/16, but in the future mass production of technologically advanced devices will
certainly significantly reduce their unit price. The proposed radio-photonic device can be connected
to the optical network as a node or termination of the path, which means that it is simply a radio
access node whose operation can be implemented in the majority of software (SDN/SDR). Available
transmission optical network resources and the available signal and data processing power of the
gNB-CU/BBU cloud will be a decisive factor in the introduction of the type of Split/Option at a
given moment.

The results of calculations presented in this paper show what capacity will be needed in
fronthaul/midhaul networks, so that communication with such extended radio terminations will
be effective. The first versions of the CPRI interface were not characterized by excessive bit rate,
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but they were to apply to 3G (UMTS) and 2G (GSM) mobile systems. Subsequent versions had to be
adapted to 4G (LTE), where MIMO techniques and spatial beamforming were used more and more.
Massive-MIMO technology, which is to be widely introduced in 5G, in order to start IoT communication,
forces the use of very fast optical networks already in the local domain and access. This is caused by
the need for surrounding the UE devices by antenna arrays that must be connected using very fast,
synchronous, and flexible fronthaul/midhaul networks. Therefore, the CPRI splits will only apply
where new techniques do not have too high requirements.

Figure 9a shows that with a number of more than 100 antenna modules, a 4-sector device
supporting 400 MHz BB channels will need about 10 Tbps, which is equivalent to about 400 optical
OOK-DSB-50GHz-grid channels—Figure 9b. Of course, we can use coherent interfaces with high-order
modulation and polarization multiplexing, which will reduce the demand for frequency bandwidth in
the optical link several times, but the numbers will still be very large. Therefore, it is very important
to introduce new solutions, among which one should reduce the throughput by introducing new
Splits/Options.

Figures 10 and 11 show the calculation results for two selected eCPRI interface splits, where we
see a very large drop in the demand for bit-rate. This is done at the expense of the need to perform
more operations in the antenna-radio terminal, but the profit is significant, because the demand for
bit-rate at the maximum values of the radio signal balances around 1 Tbps. This is associated with the
occupancy of an acceptable number of optical DWDM/UDWDM channels in the fronthaul/midhaul
optical path.

In order to increase the transparency of the potential application of the presented solutions,
some exemplary scenarios (Section 5) are given in which the transition from the D-RoF format to
the A-RoF format is suggested. The basic scenarios constitute the merits of undertaking the research
topic, as they show the direction of the RAN network evolution along with the increase in the use of
fronthaul/midhaul links for this purpose, as well as the signal processing centers. Detailed scenarios
are examples in which a specific D-RoF interface can be replaced with the A-RoF interface due to a
smaller occupancy of the optical band in the fronthaul/midhaul link/path.

Scenario No. 1 concerns the comparison of BBoF and CPRI interfaces that work at the same
split level—Table 3. When using the BBoF optical channel with the minimum width matched to the
modulation signal band, the gain is almost 24-fold.

Scenario No. 2 shows a comparative overview of BBoF interfaces (Option 8) and eCPRI (Option
6)—Table 4. The eCPRI interface uses the fact that the so-called layers are most often associated with
the number of radiated beams by use of DBF or HBF method. A large part of operations related
to processing a radio signal is transferred to the gNB-DU/RRH. In this case, the gain for the optical
UDWDM channel (1.5625 GHz) is over 19, while for the DWDM channel (12.5 GHz) only 2.4. In this
example, it is clearly visible what effect the channel width has on the optical bandwidth saving, which
is a serious technological limitation in the production of tunable lasers, photonics switches, and filters
used in PXC/ROADM.

Scenario No. 3 concerns the comparison of RFoF (Option 10) and CPRI (Option 8)
interfaces—Table 5. In this comparison it is difficult to find a profit which for example BB 100
and 400 MHz channels shows losses. It should be added, however, that the RRH/AAU in the case of
RFoF is almost completely unloaded from the signal processing. Here, even the RF carrier is built on
the SPC/CU side. The calculations were carried out assuming a separate transfer of the BB channel
with the RF carrier. If we send more BB channels on one RF carrier, then the profit will be significant,
but we will limit the possibilities of independent beamforming in particular BB ranges. We eliminate
this problem in the next scenario.

Scenario No. 4 includes the technique of creating layers that manage beams. Here we compare
the RFoF (Option 10) and eCPRI (Option 6) interfaces—Table 6. The situation is similar, because
there is no profit here or there is a loss. Therefore, the situation is similar to scenario 3, and the
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significant difference in the occupation of the optical band between the scenarios results mainly from
the compression consisting in the BB encoding in the layer-related stream.

Scenario No. 5 concerns the comparison between IFoF (Option 9) and CPRI (Option 8)—Table 7.
The introduction of the IFoF format for the 100 MHz BB channel gives about 3.3-fold gain on the optical
FH/MH band. At the 400 MHz BB channel, the profit is already 6 times. In the case of the introduction
of the BB channel multiplexing technique around IF subcarriers, the gain can be improved [53].

Scenario No. 6 shows the comparison of IFoF (Option 9) and eCPRI (Option 6) interfaces, also for
2 sample BB channel widths—Table 8. For both cases, we have a similar gain of around 3. The amount
of profit will depend heavily on the selection of the IF subcarrier in relation to the selected optical
channel width from the grid of the next generation of EON/UDWDM networks.

In the scenario examples we did not use the D-RoF digital indirect interface type eCPRI Split
IU/IID—Figure 7. In this interface there is a strict dependence of the final FH/MH link bandwidth on the
BB channel width and the number of active CP-OFDM sub-carriers—Figure 11. In the eCPRI Split D
(Option 6) interface, the fronthaul/midhaul link rate depends only on the number of active CP-OFDM
sub-carriers. Considering that in the 5G-NR wireless interface the frequency distance between the
CP-OFDM subcarriers increases faster than the number of subcarriers themselves, therefore with the
increasing BB channel width the eCPRI Split IU/IID interface will become increasingly less efficient
with A-RoF (profit results will be between scenarios 1–2, 3–4, and 5–6 respectively).

Some of the issues related to the influence of the optical path or fiber-optic link on the behavior of
the wireless radio channel has already been addressed in sub-Section 3.2. However, to a large extent
these issues are not covered by the topic of this paper. It can be assumed that an all-optical path/link
guarantees the stability of the delay. The amount of delay depends on the optical path length or link.
This parameter, however, seriously affects the work of the DBF or HBF (regardless of the method
used [54]), which requires conducting many calculations and practical tests in any implementation of
subsequent C-RAN solutions. This applies to both the D-RoF format and the A-RoF format. With the
narrowing the spatial beam on the side of the wireless link (massive MIMO), a faster feedback in the
DBF control channel with the update of channel state information (CSI) data is needed—especially in
the fast-moving UE. The use of HBF is helpful here, since the instant compensation resulting from the
delay of the wired RAN part can be implemented with the ABF support.

Interferences that can occur between adjacent cells or sectors can be reduced by allocating
other physical resource blocks (PRBs) (time-frequency isolation). In the case of sectors belonging
to the same gNB-DU/RRH or gNB-CU and spaced apart, interference is even indicated due to the
constructive spatial surrounding of the UE. Time-space synchronization in the area of the distributed
base station ensures the implementation of joint transmission (JT) and high spatial gain. By means
of an antenna-array consisting of a large number of modules, a very narrow beam can be radiated,
thanks to which the channel will be resistant to multi-path. In the optical path or fiber-optic link,
the previously mentioned phenomenon of chromatic dispersion has a static character. During the DSB
transmission, a relative delay of the side bands occurs, in which there is a signal coming from the
wireless channel. CP-OFDM symbols are protected against this phenomenon by inserting a guard
interval with a cyclic prefix. The optical path enhances the multi-path phenomenon, but it is a constant
parameter that can be quickly determined and compensated by the exchange of CSI. The compensation
of optical fiber chromatic dispersion can also be implemented permanently at the end of the optical
path/link, which will ensure a constant minimization of the impact on the transported radio channel
signal in the target format.

The radio signal transported in the optical path in analog format is also influenced by noise.
The main source of noise are the radio-photonic converters. The noise factor (NF) of the converter
therefore decides on the extent of reduction of the SNR and indirectly influences the BER in the user
channel. Optical power density should also be controlled due to the potential effect of nonlinear
distortions. This is a price that in many cases is worth paying for a significant profit resulting from
the compression of the used optical spectrum in the optical path/link. Studies of A-RoF interfaces in
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this area have been conducted for many years, and their results can be found in many papers and
books [34,35].

The proposals for analog Splits/Options with high ID numbers (Option 8/9/10) may be useful in
many solutions, but they cannot be universal, as in the case of CPRI. With the currently used grid of
optical DWDM channels, the IFoF technique seems to be the most universal, since the intermediate
frequency can be selected systematically, depending on the demand and available photonic resources.
In this case, it is also possible to use a multistage BB signal transfer to the intermediate band. According
to the calculations, the results of which are shown in Figure 12 and Tables 3 and 4, the use of the BBoF
technique will become particularly important when a much denser UDWDM grid is available.

The possibility of introducing the O-OFDM format to optical links has been working for many
years, and the results of research are more and more promising. This type of format does not differ
significantly from the BBoF technique, because we have been hosting the OFDM format for over
25 years in wireless interfaces.

In order to indicate the degree of use of the optical channel by interfaces from the D-RoF family
and others, used in classic NG-RAN solutions, the author carried out calculations, the results of which
are presented in [55]. The bit rates that will occur in the 5G network will undoubtedly be high. When
approaching the next generation of mobile systems, i.e., 6G, we need to look for new solutions for
optical networks. The issue of future capacity crunch of optical networks has been raised for several
years [56–58]. However, previous analyses concerned solutions for broadband backbone networks.
The emergence of heavy IT traffic in the access domain is another new challenge. A serious generator
of this traffic in the RAN domain is the widespread use of transporting digitized radio signals to
an antenna MIMO modules. The introduction of radio signal transport in its original form will be
a must. The flexibility of future all-optical EON networks will enable the introduction of another
degree of freedom in optical resources management. As indicated above, depending on the type of
Option engaged at a given moment, the occupation of the optical channel will vary within wide limits.
In addition to WDM multiplexing, TDM technique can be introduced in digital channels. This will
provide us with OTN or its newer generations with EON interfaces, in which optical OFDM may
be used [55]. In the case of A-RoF signals we can only use WDM technique. The flexibility of the
optical network consisting in the optimal selection of the optical channel width for the A-RoF signal,
as well as packing the channels independently of the DWDM grid, significantly increases the use of
resources lying in the scope of optical nodes and the range of optical fiber single-modality. The latter is
particularly important in network solutions with FTTA or PON architectures. An additional advantage
of the optical link with the irregular grid of optical channels (EON feature) is a significant increase in
resistance to non-linear distortions resulting from the Kerr effect. Interleaving of A-RoF and D-RoF
optical channels will increase this resistance. With a large number of optical channels, the total power
can reach a high density in the fiber core, but in fronthaul there is no need for high optical power. It is
anticipated that on 5G fronthaul connections (high number Options) the transport of signals will take
place over a distance of not more than 20 km. Therefore, problems in access networks will differ from
those we see in wide area networks.

Another way to avoid capacity crunch of the fiber-optic networks in the NG-RAN access domain
is to introduce new fiber technologies, i.e., multicore fibers (MCFs). The author proposed this type of
solution for the first time in [50]. Connecting O-RRH/gNB-DU to fiber optic cables based on multi-core
structures will enable the implementation of the next SDM stage. If we combine the above dynamic
interface selection solutions with new fiber-optic cable standards, there will be no problem with
network congestion in the future. The next challenges to overcome are the construction of all-optical
node devices that will be able to effectively switch the movement on the optical layer with flexible
changing the optical channel grid. Switching will have to take place not only in the optical channel
range, but also optical frames. For A-RoF signals from the NG-RAN domain, the 5G-NR interface
frame synchronization with the optical layer switching system will be required.
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7. Future Work

The paper presents proposed solutions that can be used in the design of 5G system components
intended for the use in radio domain networks. The calculations and simulations performed show the
potential applications of the proposed interfaces. In the next stage of work on the proposed network
solutions, extended simulations should be carried out, which will demonstrate the possibility of a correct
physical operation of the A-RoF and D-RoF interfaces. It should be noted here that the coexistence of
these interfaces in the DWDM/EON link is preferred. Simulations will be conducted in the photonic
domain and partly in the radio domain using the VPIphotonics or OptiWave platforms. Having
in mind that the operation of digital and analog interfaces is completely different, this will require
appropriate selection of simulation parameters due to the way the signal samples are created. In the
optical path, linear and nonlinear phenomena should be taken into account. The main components of
the network that will bring these distortions will be single-mode telecommunications optical fibers
and, to a lesser extent, lasers, external optical modulators, and optical multiplexers.
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