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Abstract: Renewable generation, such as solar PV and wind power, is commonly integrated into the
power grid through inertialess power electronic interfaces (PEIs). Due to the increasing penetration
of renewable generation, the frequency stability of the current power system deteriorates. In order to
sustain the desired level of the overall inertia, the virtual synchronous generator (VSG) algorithm
has been proposed. The concept of VSG is to enable the PEIs to emulate the external properties
of traditional synchronous generators (SGs), such as inertia and primary frequency responses.
By exploitation of the well-established knowledge system of conventional SG-based power grids,
the VSG can also be implemented with the capabilities of primary, secondary, and tertiary frequency
control in multiple temporal stages. This paper focuses on parameter tuning for VSG-PEIs by
performance indices. The emulation strategies are completed with the capability of secondary and
tertiary frequency regulation. The transfer functions of the dynamic systems of PEIs are simplified
and referred to the control theory. The composite influences of different parameters on performance
indices are analyzed. The methods of the parameter tuning are proposed according to the temporal
sequences of the control stages. By typical performance standards, the proposed method is verified
through simulation.

Keywords: virtual synchronous generator; frequency control; parameter tuning

1. Introduction

With the deficit of fossil fuels and environmental concerns, renewable power has been widely
researched and utilized in recent decades [1–3]. Iceland and Norway obtain essentially all electricity
from renewable sources, and other nations and regions are evolving towards 100% renewables [4].
However, renewable generation also brings great challenges. On the one hand, renewable generation
is stochastic and fluctuant with meteorological conditions. The system power balance is persistently
disturbed by renewable generation fluctuations. On the other hand, renewable generation (such as
solar photovoltaic and wind power) is commonly integrated through power electronic interfaces
(PEIs), which are with almost no inertia because of its fast and accurate switches [5]. By the increasing
penetration of renewable generation, the frequency stability of the current power system deteriorates.

The current power system has been through transitions in intrinsic properties, one of which is
represented by the decreasing of the overall inertia. The inertia is an important indicator to evaluate
the strength of the power systems because inertial response (IR) can slow down the rate of change of
frequency (ROCOF) and buy time for the activation of primary frequency response (PFR) to reduce
nadir/peak frequency (maximum frequency deviation) [6]. In order to tackle the loss of inertia in
the inverter-based generation (IBG), the concept of the virtual synchronous generator (VSG) has
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been proposed [7–13]. As the control strategies of the voltage-sourced inverters (VSIs) are commonly
composed of a highly programmable supplementary controller and a double-loop controller in a cascade
structure, by the implementation of the VSG algorithm, the PEI external characteristics can mimic those
of synchronous generators (SGs) closely [9]. Therefore, the well-developed theory for the operation
of the SG-based power system can still be exploited for the evolving power grids [7]. Two classical
models, the ‘synchronverter’ and Ise’s, focus on the loss of inertia in conventional VSI droop control,
and the emulation of the properties of the inertia and the speed-governor is implemented [9,11,13].
Experiment-based studies can be found in [14,15] for stand-alone applications. In [12], the equivalence
between the VSG and the frequency-droop algorithms are demonstrated. It is accurate for an individual
unit, but when the VSG algorithm is implemented in the power systems, the damping coefficient of
loads (which is typically 1-1.5) should be considered because it is much larger than that of the damper
windings (such as 0.1) [16]. However, the above studies are all restrained in the stages of the short-term
frequency response. The frequency control of the conventional power systems includes a hierarchical
structure because the system operation requires the ability to respond to change in demand and supply
in multiple temporal stages [17]. With higher penetration of renewable generation, the IBG units would
eventually and inevitably take the responsibility of regulating the overall energy balance because of the
consequent displacement of traditional SGs. Therefore, the flexibility of the power system operation
requires the VSG algorithm to extend its application scope.

As the parameters of PEIs are tunable rather than restrained by physical equipment, VSG algorithms
can modify the inertia properties of the renewable units in real-time. General analysis for dynamic
performance can also be found in [18,19], in which the influence of inertia and droop properties are
analyzed based on transfer functions. Continuous change and step change of virtual inertia parameters
are designed to minimize frequency deviation and energy support [20–22]. The change of inertia is
straightforward but arbitrary. In [10], the requirements for dynamic support are illustrated based
on system operation, including the standards of the frequency nadir, the maximum ROCOF, and the
duration of delivery. However, it lacks the discussion on how to quantitatively tune the parameters to
satisfy these standards. In [12], a step-by-step parameter design for virtual synchronous generators is
conducted based on small-signal modeling, which focuses on independent decoupling and tuning
of active and reactive power loops of a single grid-connected inverter. However, this approach is
oriented for coping with unbalanced grid voltages, but not for quantitative performance indices.
Also, the decoupling condition includes that the short-circuit ratio is no less than 10, which is typically
not satisfied in power systems [23]. In [24], quantitative performance analysis is completed for the
inertial response provided by the capacitor in the DC link. However, the capacitor can only provide
frequency support as an energy buffer, and the response ability is restrained by the predesigned
capacitance. Again, from the view of the operation flexibility, the quantitative performance analysis for
the overall power systems should be considered for the generation mix (SGs and IBG units).

Within a microgrid, based on the information technology and communication network, secondary
frequency regulation (SFR) and tertiary frequency regulation (TFR) could also be implemented
on VSIs [25–29]. In recent research, the VSG-based IBG can also participate in system frequency
regulation when active power reserves (APRs) are implemented. Instead of the traditional maximum
power point (MPP) tracking, the APR strategy controls the IBG units to operate at a sub-optimal
point [30]. Therefore, generation availability is reserved to tackle the power imbalance caused by
the uncertain nature of renewables [31]. Active power reserves by RG units can be realized by two
types of control strategies: (1) the delta control, which deloads RG units by constant percentages or
values, or both according to the meteorological conditions [32]; and (2) the balance control, which
controls the RG output by upper limit when the surplus power acts as reserves [33]. The APR control
strategy enables the IBG units with persistent generation availability to participate not only short-term
frequency response stages (IR and PFR) but also long-term frequency regulation stages (SFR and TFR).
Therefore, a complete hierarchical structure of multiple temporal frequency control stages could be
emulated on the VSG-based IBG units.
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In order to enhance the VSG algorithm to sustain the flexibility level of power systems containing
a mixed generation at all times, in this paper, a quantitative approach of performance tuning for
VSG-PEIs participating in multiple temporal stages of frequency control is presented. The contributions
of this work could be summarized as follows:

(1) Besides the capabilities of IR and PFR, by referring to the knowledge of conventional generation
and operation, an enhanced control strategy for the capabilities of SFR and TFR are designed to
complement the VSG algorithm. Therefore, VSG-based PEIs could perform multiple temporal
frequency control.

(2) The analysis of frequency response dynamics, based on the simplification of the transfer
function down to the second-order form, is conducted for both the stages of (1) IR and PFR, and (2) SFR.
Six performance indices are proposed, and the frequency responses influenced by different parameters
are analyzed.

(3) It is noted that the performance indices are influenced by composite parameters, but the
hierarchical stages of IR, PFR, and SFR operate in chronological order. Therefore, a parameter tuning
algorithm is designed in which the parameters are also determined following a chronological sequence.

(4) The proposed parameter tuning approach could either be used to analyze dynamic performance
and tune parameters for either the bulk system performance after the power unbalance disturbances
or the dominant generation units in a stand-alone scenario.

The rest of the paper is organized as follows: Section 2 presents the complete emulation control
strategies for PEIs with multiple temporal frequency control. Section 3 analyzes the parameter
influence on the IR and PFR stages. Section 4 analyzes the parameter influence on the SFR stage.
Through analyzing the composite influence on system performances by different parameters, Section 5
proposes a parameter tuning algorithm by consideration of the time sequence of performance indices
in the multiple frequency control stages. Section 6 verifies the proposed algorithm by simulation.

2. VSG Emulation Control Strategies for VSIs with Frequency Control

For the IBG, the external characteristics are largely determined by the supplementary controller
in the control structure. In inchoate studies, among the VSG implementations in different orders,
the simplest second-order model is with better stability in transients [34] and can be combined with
virtually any VSI control strategies involving a cascade structure [35]. By the implementation of the
VSG algorithm, the IBG is capable of performing IR and PFR in the same way as the SGs.

The equations of motion, describing the effect of unbalance between the mechanical torque and
the electromagnetic torque on rotation, could be found in many classical textbooks (such as [16]).
The inertial response of the SGs is instantaneous without prerequisite measurements. For traditional
SGs, the inertia is provided by the kinetic energy stored in the rotation equipment. The inertia constant
HSG indicates the inertia property, which can be expressed as

HSG =
JSGω

2
r

2VAbase
(1)

where J is the moment of inertia,ωr is the angular speed of the rotor, VAbase is the rated power. Similar to
HSG, the virtual inertia constant Hvir of PEIs can be analogically expressed as the ratio of the provided
energy to its rated power

Hvir =
Jvirω

2
m

2VAbase
(2)

where Jvir is the virtual moment of inertia, ωm is the virtual angular speed. The inertial response
follows Newton’s law of motion which can be expressed as the swing equation,

Pm − Pe =
d∆ωr/dt

2HSG
+ D∆ωr (3)
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where D is the damping coefficient of frequency sensitive load, Pm and Pe are the virtual mechanical and
electrical power (when the initial status is assumed as 0, and the second-order terms are neglected), ωr

is virtual angular speed. When the swing equation is represented by inertia constant, all the parameters
are per-unit values.

The PFR of SGs is provided by the turbine-governor system [16]. In per unit value, for a typical
SG with a reheat steam turbine, the droop property is

∆Y = −
1
R
×

1
1 + sTG

×
1 + sFHPTRH

(1 + sTCH)(1 + sTRH)
∆ωr (4)

where R is the speed droop, Y is the valve position, TG is the time constant of speed governor, and FHP,
TRH, TCH are typical parameters for a reheat steam turbine. The emulation for the properties of
turbine-speed governor systems of SGs is necessary when the VSG-based PEIs are operated in parallel
with traditional power plants.

By the exploitation of conventional theories of the SG-based power system, the VSG algorithm
also enables the PEIs to perform SFR and TFR. The SFR kicks in when the frequency deviation lasts for
a preset time period after the frequency is stabilized by the IR and PFR. The TFR is activated by the
system operator (SO) to set the load reference for each generation unit. For traditional SGs, the SFR and
TFR are executed by the regulation of load reference settings, which is shown in Figure 1a. The variables
of load references also pass through the blocks of the turbine-governor system. However, because
only specific units in the power system are selected to perform automatic generation control (AGC)
regulation, when the emulation of AGC is implemented on VSG-PEIs, the load reference can be directly
fed into the block of the virtual swing equation, as shown in Figure 1b. In Figure 1b, τ is the time delay
of SFR, KI is the coefficients of the integral controller.

The system frequency indicates the overall power balance between the generation and the demand
at any instantaneous time. In the traditional SG-dominated power system, active power-frequency
control is a series of multiple temporal processes that can be divided into four stages [16]. As the
VSG algorithm can fully emulate the frequency control performance of the SGs, the multiple temporal
frequency control is also provided by the VSG-PEIs. For quantitative analysis, the performance indices
mainly include the maximum ROCOF, the frequency nadir, the settling frequency, and the settling
time, which are shown in Figure 2.
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Furthermore, in a small synchronous area, the equivalent inertia constant Hsys of different
VSG-based PEIs and SGs can be expressed as

Hsys =
n∑

i=1

(Hi
Si

Ssys
) (5)

where n is the total number of generation units with inertia properties, Hi and Si are the inertia
constant and power rating of the i-th unit, respectively, Ssys is the power base of the system [32,36].
Also, the equivalent speed droop Req can be expressed as

Req =
1

n∑
i=1

1
Ri

(6)
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where Ri is the speed droop property of the i-th generation unit [16].
Consequently, for a local synchronous system, the generation units can be simplified and

equivalent to a single unit. The emulation strategy mentioned before could be considered as the overall
characteristics of the entire local synchronous area. Then once the parameters are tuned, it could either
be used to control the dominated PEI in a stand-alone system or calculate the parameters reversely for
individual units with inertia properties.

3. Simplification of the Dynamic System in IR and PFR Stages

The emulation of IR and PFR is derived from the mechanism imitation of the swing equation
and the turbine-speed governor system. The effect of the closed-loop transfer function of the VSI
based on the cascade control structure is assumed to be fast and accurate. Then the high-order system
involving virtual IR and PFR can be simplified into a second-order dynamic system by the dominant
poles and zeros without too much error. The performance indices can be deduced from the simplified
transfer function. Take a stand-alone VSG-PEI supplying isolated load for example, the block diagram
involving IR and PFR is shown in Figure 3.
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For a step change of demand ∆PL, the transfer function from ∆PL to the virtual angular speed of
rotor ∆ωr is

G(s) =
∆ωr

∆PL
=

−R(1 + sTG)(1 + sTCH)(1 + sTRH)

(2Hs + D)(1 + sTG)(1 + sTCH)(1 + sTRH)R + sFHPTRH + 1
(7)

For SGs with reheat steam turbines, typical parameters are shown in Table 1.

Table 1. Typical parameters of an SG with a reheat steam turbine [16].

Parameter Value Unit Parameter Value Unit

R 0.05 pu FHP 0.3 pu
H 5 pu TRH 7 s
D 1 pu TCH 0.3 s
TG 0.2 s

The pole-zero map of the transfer function is shown in Figure 4. From the transfer function G(s),
the zeros are fixed on the real axis. With the increasing of H, the poles P3 and P4 tend to approach
the zeros Z2 and Z3. As P3 and P4 are fast poles and very close to Z2 and Z3, the dynamic responses
are mainly determined by the dominant zeros Z1 and the slow poles P1 and P2 [37]. It is noted
that the inertia constants of different SGs, which are shown in Table 2, are in a small range rather
than accurately the same [16]. The concept of VSG is to enable the PEIs to provide approximately
synchronous responses like traditional SGs. Moreover, fast poles influence the early part of the time
history [37]. The frequency responses based on the transfer function of the original and simplified
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systems are shown in Figure 5, which shows the maximum error between the two dynamic systems
is less than 10% frequency deviation. Therefore, the estimation by the dominant zeros and poles are
practically acceptable.
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(H = 5, 7, 10, 15 under a 3% step increase of the load).

According to the dominant zeros and poles (Z1, P1, and P2), the simplified transfer function of
the dynamic system is derived from Equation (7), which can be expressed as

G(s) =
−R(1+sTRH)

(2Hs+D)(1+sTRH)R+sFHPTRH+1

= K s+z1
s2+2ζωns+ω2

n

(8)
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where ωn and ζ are the undamped natural frequency and damping ratio [37],

K = − 1
2H , z1 = 1

TRH
, ωn =

√
1+RD

2HRTRH

ζ = 2HR+TRHDR+FHPTRH
4HRTRH

×

√
2HRTRH

1+RD

(9)

When the system is subjected to a step increase in demand

∆PL =
∆p
s

(10)

By multiplying (8) and (10) and taking the inverse Laplace transformation, the dynamic response
of frequency deviation in time-domain can be expressed as

∆ f (t) = K∆p× [
z1

ω2
n
+ Ae−ζωnt sin(ωdt + β)] (11)

where
ωd = ωn

√
1− ζ2

A =

√
( z1ζ−ωn
ωdωn

)
2
+ ( z1

ωn2 )
2

β = arctan[ z1ωd
ωn(z1ζ−ωn)

] + π

(12)

Assuming the original state of the frequency is 1.0 pu, the frequency response is

f (t) = 1 + K∆p× [
z1

ω2
n
+ Ae−ζωnt sin(ωdt + β)] (13)

From Equation (11), performance indices during IR and PFR can be derived. First, the rate of
change of frequency (ROCOF) is

ROCOF =
d∆ f
dt −K∆p× [Aζωne−ζωnt sin(ωdt + β)−

Aωde−ζωnt cos(ωdt + β)]
(14)

It is noted that, when t = 0, ROCOF reaches maximum magnitude, which can be expressed as

ROCOFmax = −K∆p× (Aζωn sin β−Aωd cos β) (15)

From Equation (11), when ROCOF = 0, the peak time tpeak (the time when the frequency reaches a
nadir or a peak) can be expressed as

tpeak =
1
ωd

(arctan

√
1− ζ2

ζ
− β) (16)

Substitute (16) to (13), then the peak frequency fpeak (or nadir) is

fpeak = 1 + K∆p×
z1

ω2
n
+ K∆pAe−ζωntpeak

√
1− ζ2 (17)

When the third item in the Equation (17) decays approximately to zero, the quasi-steady-state
frequency fss is achieved, which can be expressed as

fss = 1 + K∆p×
z1

ω2
n
= 1−

R
DR + 1

∆p (18)
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The frequency deviation can also be evaluated by the frequency overshoot σ, which can be
expressed as

σ =

∣∣∣∣∣∣ fss − fpeak

fss

∣∣∣∣∣∣× 100% =

∣∣∣∣∣∣∣Aω2
n

√
1− ζ2e−ζωntpeak

z1 +ω2
n/K∆p

∣∣∣∣∣∣∣ (19)

The settling time ts can be defined as the dynamic response enters the 2% quasi-steady-state error
band [17], ∣∣∣∣∣∣ f (ts) − fss

1− fss

∣∣∣∣∣∣ = 2% (20)

and by submitting Equations (11) and (12) into Equation (20), the settling time can be deduced as

ts = −
1
ζωn

ln
z1

50Aω2
n

(21)

From the performance indices, the effect of separate parameters on system performance can be
derived. When subjected to a step increase of load by 0.03 pu, the trends of the above performance
indices corresponding to different H and R are shown in Figures 6 and 7. In Figure 6, R is set as a
constant, and in Figure 7, H is set as a constant.
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From Figure 6a,b,e, the increasing of inertia constant H leads to the decreasing of the magnitude
of ROCOF, frequency nadir, and the overshoot. Therefore, it proves that inertia property could
suppress the ROCOF and improve frequency nadir. From (c), the increasing of H also delays the
peak time. However, the increasing H would slow down the dynamic responses, which is shown in
(d). Therefore, there is a trade-off between the nadir improvement and the delivery time. From (f),
the settling frequency is irrelative to H.

From Figure 7a, percentage R does not influence the ROCOF. From (b) and (e), the nadir gets worse,
and the overshoot increases as the percentage R increases. From (c) and (d), the changes in percentage R do
not alter the peak time and settling time very much. From (f), the increase of R would decrease the settling
frequency. Consequently, the speed droop coefficient R indicates the proportional relationship between
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the amount of support power and the counteracted frequency deviation. The lower R represents a larger
amount of active power supported, which results in a better nadir.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 27 
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4. Simplification of the Dynamic System in SFR Stages

The secondary control regulates the reference generation output and restores the system frequency
to the nominal. The SFR is activated after the PFR has stabilized the system frequency. In VSG-PEI,
the virtual SFR is executed by adding an integrator, shown in Figure 1b. After the frequency is
stabilized, when the SFR kicks in, the transfer function of the dynamic system in the new stage is

G(s) = (−R(1 + sTG)(1 + sTCH)(1 + sTRH)s)/
(s(1 + sFHPTRH) + KIR(1 + sTG)(1 + sTCH)(1 + sTRH)+

(2Hs + D)(1 + sTG)(1 + sTCH)(1 + sTRH)Rs)
(22)

The pole-zero map of the transfer function is shown in Figure 8.
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From the pole-zero map, the zeros are fixed on the real axis. With the increasing of KI, P1 tends to
approach to Z2, which results in the mutual cancelation of effects. The effect of poles P4 and P5, and the
zeros Z3 and Z4, which are far away from the imaginary axis, would be neglected for simplifications.
Therefore, the poles P2 and P3, and the zero Z1 are dominant in the dynamic processes.

From the slow zeros and poles (Z1, P1, and P2), the system transfer function (Equation (22)) is
simplified into the second-order, which can be expressed as

G(s) =
−Rs

s(1 + sFHPTRH) + KIR + R(Ms + D)s
= K

s + z1

s2 + 2ζωns +ω2
n

(23)

where ωn and ζ are the undamped natural frequency and damping ratio,

K = − R
FHPTRH+MR , z1 = 0, ωn =

√
KIR

FHPTRH+MR

ζ = DR+1
2(FHPTRH+MR) ×

√
FHPTRH+MR

KIR

(24)

It is noted that the initial status in the dynamic system is inherited from the IR and PFR stages.
By taking the inverse Laplace transformation, the dynamic response of system frequency in time-domain
is derived, which can be expressed as

f (t) = 1−
K
ωd

e−ζωnt sinωdt (25)

where
ωd = ωn

√
1− ζ2 (26)

From Equation (25), system performance indices during SFR can be derived. First, the rate of
change of frequency (ROCOF) can be expressed as

ROCOF =
d f
dt

= −
K
ωd
× (−ζωne−ζωnt sinωdt +ωde−ζωnt cosωdt) (27)

In Equation (27), when t = 0, ROCOF reaches the maximum value, which can be expressed as

ROCOFmax = −K (28)

The peak time tpeak is achieved when ROCOF = 0, then from Equation (27), the peak time can be
expressed as

tpeak =
1
ωd

arctan

√
1− ζ2

ζ
(29)

By substituting (29) into (25), the peak frequency fpeak can be expressed as

fpeak = 1−
K
ωd

e−ζωntpeak
√

1− ζ2 (30)

From Equation (25), the quasi-steady-state frequency fss is

fss = 1 (31)

For floating control, the frequency deviation can be evaluated by the frequency overshoot σ, which
can be derived as

σ =

∣∣∣∣∣∣ fss − fpeak

fss

∣∣∣∣∣∣× 100% =

∣∣∣∣∣ K
ωd

√
1− ζ2e−ζωntpeak

∣∣∣∣∣× 100% (32)
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The settling time ts can be defined when the decaying exponential e−ζωnt reaches 1% [37].

e−ζωnts = 0.01 (33)

then from Equation (33), the settling time can be derived as

ts =
4.6
ζωn

(34)

From the performance indices, the effect of separate parameters on system performance in the SFR
stage can be derived. When SFR kicks in, the trends of the above performance indices corresponding
to different KI, H, and R are shown in Figures 9–11, respectively.
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From Figure 9a,d,f, the coefficient of the integrator is irrelative to the magnitude of the ROCOF,
the settling time, and the settling frequency. From (b), (c), (e), the increase of the integral effect would
decrease the peak frequency, the peak time, and the overshoot.

From Figure 10a,b,e, the increasing of inertia constant would decrease the magnitude of the
ROCOF, the peak frequency, and the overshoot. However, from (c) and (d), the increase of inertia
property would also increase the peak time and the settling time. From (f), the inertia constant is
irrelative to the settling frequency.

From Figure 11a,b,d,e, the increase of speed droop R would also increase the magnitude of ROCOF,
the peak frequency, the settling time and the overshoot. However, from (c), the increase in speed droop
would decrease the peak time. From (f), the speed droop is irrelative to the settling frequency.
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5. Parameter Tuning for Frequency Response and Regulation

From the derived expressions before, the performance indices are influenced by multiple
parameters. In the process of IR and PFR, the performances are determined by the composite effects of
the inertia constant H and the speed droop R. In the following process of SFR, the performances are
determined by the integral coefficient KI, as well as the inherited or readjusted H and R.
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5.1. Composite Parameter Analysis for IR and PFR

During the processes of IR and PFR, four key performance indices (the maximum magnitude
of ROCOF, the frequency nadir, the settling frequency, and the settling time) are influenced by the
composite effects of the coefficients H and R, which are shown in Figure 12. In Figure 12, H varies from
3 to 10, R varies from 0.04 to 0.08, and the step increase of load is constant.
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From Figure 12, the magnitude of ROCOF decreases as H increases, but does not relate to R.
The frequency nadir improves with the increase of H and the decrease of R. The settling frequency
increases with the decrease of R but does not relate to H. The settling time is influenced by both H
and R.

5.2. Composite Parameter Analysis for SFR

During the process of SFR, as the effect of the integration is gradual and small, two key indices,
the settling time and the overshoot, are selected. The parameters in the SFR stage involve H, R, and the
integral coefficient KI. From previous results, the settling time in the SFR stage is irrelative to KI.
The overshoot is relative to all three parameters. The composite parameter influences are shown in
Figure 13.
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5.3. Parameter Tuning for Performance Indices

In some countries (such as Germany, the USA, and the UK), the system operators have developed
a time frame for renewable penetrated grids. For example, the prescribed limit for ROCOF is
0.125 Hz/s [38]. Also, in this material, the maximum ROCOF and PFR delivery time in its case study
are set to be 0.5 Hz/s and 10s, respectively. In another research, the maximum frequency deviation
∆ fmax is set as 0.2 Hz [24]. It is noted that if the ROCOF exceeds 1 Hz/s, the frequency relay would be
tripped and incur a large disturbance to a power system [39]. Generally, the delivery of PFR is required
to be within 10–30s, and the time for SFR delivery is from 30 s to several minutes. The PFR capacity
should always limit the frequency between 49.5–50.5Hz. The typical standards (nominal frequency is
50 Hz) are summarized in Table 3.

Table 3. Performance indices for IR and PFR.

Performance Indices Standard

Maximum ROCOF magnitude 0.125–0.5 Hz/s
Frequency nadir/peak magnitude 0.2–0.5 Hz

Settling frequency 49.5–50.5 Hz
PFR delivery time 10–30 s
SFR delivery time 30 s–minutes
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It is noted that the stages of IR, PFR, and SFR activate in chronological order. Therefore, based on the
composite effects and the standards, a flowchart of parameter design for VSG-PEIs is shown in Figure 14.
In step A, the standards for ROCOF and frequency nadir are input. The maximum ROCOF only relates to
inertia constant, so the range of H could be determined according to the ROCOF standard. The frequency
nadir relates to both H and R, then according to the H range and the nadir requirement, the range of R could
be determined. Therefore, in step B, the satisfying ranges of H and R are obtained. In step C, the desired H
and R are determined by checking the settling frequency and the settling time. If the VSG-PEI does not
participate in the following SFR, the design comes to an end. Otherwise, the parameter design goes on
for the SFR stage. If the parameters of H and R are inherited from the previous, it jumps to step F. If not,
in step D and E, the standard of settling time is input, and the satisfying ranges of H and R are obtained.
In step F, KI, and H, R are determined by checking the overshoot.
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6. Case Study and Simulation

In this section, the proposed VSG emulation strategies and the parameter tuning approach are
verified in simulation through MATLAB/Simulink. Based on the predetermined standards of the
performance indices shown in Table 4, the parameters in the simulation are shown in Table 5.



Appl. Sci. 2020, 10, 953 18 of 26

Table 4. Predetermined standards of performance indices.

Performance Indices Standard

Maximum ROCOF magnitude 0.5 Hz/s
Frequency nadir/peak magnitude 0.2 Hz

PFR Delivery time Within 20 s
SFR Delivery time Within 40 s

Table 5. Parameters in simulation.

Parameter Value Unit Parameter Value Unit

Vdc 800 V Heq 5 pu
Vac 0.22 kV D 1 pu
L 10 mH R 0.05 -
C 350 µF Voltage droop 3% pu
f 50 Hz Load step 0.03 pu

fpwm 5000 Hz Step time 1 s
VAbase 15000 W KI 10 -
τ 20 s

6.1. Frequency Response in the Initial Systems and Previous Approaches

From 1996–2016, the equivalent inertia constants Heq in many European countries and districts
have decreased larger than 15%, which are shown in Figure 15 [40]. Considering the worst case in which
the inertia constant Heq = 3.0, the frequency response of the system without renewable participation is
shown in Figure 16. The percentage droop is set as 5.
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In the previous research, renewable penetration is typically set varying from 10% to 30% [38],
and the inertia constant for VSG-IBG is usually set as 5.0 s. According to Equation (5), under the
worst case (the initial Heq = 3.0), the equivalence inertia constant is no more than 3.6 (when renewable
penetration is 30%). The frequency response with renewable participation but without parameter
tuning is shown in Figure 17. The percentage droop is set as 5.
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6.2. Frequency Response with Renewable Participation and Parameter Tuning

In order to satisfy the performance standards, the equivalent inertia constant Heq is set as
5 by the parameter tuning. The generation units in a power system can be divided into two parts:
(1) synchronous generators coupled to the power system, and (2) renewable generation units with
virtual inertia. From Equation (5), Heq obeys

Heq =

SG∑
i=1

(HiSrated, i) +
RG∑
j=1

(Hvir, jSRT, j)

Ssys
(35)

where Hi is the inertia constant of synchronous generators i, and Srate, i is the rated power of a single
unit. Hvir, j is the virtual inertia constant emulated by renewable generation units, and SRT, j is the
output power of the j-th unit in real-time. Ssys is the rated power of the mix power system. Then, from
Equation (35), the equivalent inertia property emulated by the RG units can be derived.

When subjected to a step increment of demand by 0.03 pu, the frequency response is shown in
Figure 18. By the predetermined settings, the proposed parameter tuning method satisfies the standards
of performance indices. From Figure 18a, the maximum frequency deviation is 0.1799 Hz, and the PFR
settling frequency is 49.9237 Hz. From (b), the maximum ROCOF is 0.1602 Hz/s. From (c), the output
power of the converter interface increases to suppress the ROCOF. The final value of the power in the PFR
loop is a little higher than the actual load increment because of the power loss in the switches and the filter.
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PFR loop.

The comparison of the simulation results between the frequency response with or without the
participation of renewable generation is listed in Table 6.

Table 6. Comparison of system performance in different scenarios.

Without Renewable
Participation

With Renewable
Participation without

Parameter Tuning

With Renewable
Participation and
Parameter Tuning

Heq (s) 3.0 3.6 5

Nadir (Hz) 49.6895 49.7014 49.8201
|ROCOF|max (Hz/s) 0.4452 0.3707 0.1602

Settling frequency (Hz) 49.8330 49.8730 49.9237

From Table 6, it can be concluded that:
(1) Due to the growing penetration of renewable generation and the consequent loss of inertia,

the overall inertia property decreases, and the system performance could not satisfy the standard of
the nadir index.

(2) Previous research on VSG focuses on the validity of control strategies but lacks the parameter
analysis of the equivalent inertia based on conditions in actual power systems. Therefore, the emulation
approaches based on typical inertia constants could not satisfy the standard of the nadir index as well.

(3) By parameter tuning, all the standards are satisfied. It is also noted that the settling frequency
stabilized by the PFR is also improved, which is advantageous to cope with another possible disturbance
before the frequency is restored by the SFR.

6.3. Frequency Regulation

Following the IR and PFR, the SFR kicks in after the frequency is stabilized at the 20th second.
By the calculated parameter KI, the proposed parameter tuning method satisfies the standard of the
SFR delivery time. From Figure 19a, the SFR restores the frequency to the nominal. The settling time is
within 40 s. From (b), the ROCOF is stabilized when the SFR ends. From (c) and (d), the power in the
SFR loop gradually overrides the power from the PFR loop.
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7. Conclusion

Based on the quantitative analysis of performance indices, this paper proposes a parameter
tuning method for VSG-PEIs performing frequency control. From the above analysis, the following
conclusions are made:

(1) From the perspective of the time scale and the activation, the frequency control is divided into
two parts: the frequency response including IR and PFR, and the frequency regulation including SFR.
Two dynamic systems are formed in different parts.

(2) By the effects of the dominant poles and zeros, the dynamic systems of the VSG-based
PEIs in both parts are simplified into approximation models with second-order transfer functions.
The performance indices are deduced from the reduced-order models.

(3) Different stages of frequency control kick in chronological order. In the proposed algorithm,
the inertia constant is considered first for the ROCOF standard in the inertial response stage. Then the
inertia constant and the speed droop are designed by checking the requirements of the nadir, the settling
time, and settling frequency.

(4) In frequency regulation, the parameter of inertia and speed droop are inherited or readjusted from
the previous part. The integral coefficient is determined according to the standard of SFR delivery time.

(5) The proposed algorithm can be utilized in two scenarios: (1) the parameter determination for
the dominated PEIs in a stand-alone system, and (2) the equivalent parameter determination for a
synchronous area with different units with inertia properties.

By the simulation results, the proposed method can fully satisfy typical performance standards.
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Nomenclature

1. Acronyms

AGC Automatic generation control
APR Active power reserve
IBG Inverter-based generation
IR Inertial response
MPP Maximum power point
PEI Power electronic interfaces
PFR Primary frequency response
RG Renewable generation unit
ROCOF Rate of change of frequency
SFR Secondary frequency response
SG Synchronous generator
SO System operator
TFR Tertiary frequency response
VSG Virtual synchronous generator
VSI Voltage-sourced inverter
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2. Sets and indices

ROCOF Rate of change of frequency
tpeak Peak time
fpeak Peak frequency
fss Steady-state frequency
σ Overshoot
ts Settling time
SG Set of synchronous generators
RG Set of renewable generation

3. Variables

ωr Angular speed of rotor
Hvir Virtual inertia constant
Jvir Virtual moment of inertia
ωm Virtual angular speed
Pm Virtual mechanical power
Pe Electrical power
Y Valve position

4. Parameters

HSG Inertia constant of synchronous generator
JSG Moment of inertia of synchronous generator
VAbase Rated power
D Load damping
R Speed droop
TG Time constant of speed governor
FHP, TRH, TCH Typical parameters for a reheat steam turbine
Hsys Equivalent inertia constant of the system
Ssys Rated power of the system
Hi Inertia constant of the i-th synchronous generator
Si Rated power of the i-th synchronous generator
H j Inertia constant of the j-th reneable generation unit
S j Rated power of the j-th reneable generation unit
Req Equivalent speed droop of the system
Ri Speed droop of the i-th unit
∆PL Step increase of load
ωn Undamped natural frequency
ζ Damping ratio
H Inertia constant
KI Integral coefficient
Vdc DC voltage at the DC side of the inverter
Vac AC voltage at the AC side of the inverter
L Inductance of the LC filter
C Capacitance of the LC filter
f AC system frequency
fpwm Frequency of the modulation wave
τ Time delay of the SFR
i Synchronous generator i
j Renewable generation unit j
Heq Equivalent inertia constant of the system
Srated Rated power of synchronous generators
SRT Power of renewable generation units in real-time

5. Prefix and footnote

∆ deviation
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