iriried applied
L sciences

Article
An Uncertainties Simulation Model Applied to an
Automated Laminar Flowmeter

2,3,4,% 1,3

Anténio Pedro !, Teresa Morgado and Helena Navas

1 DEMI—Department of Mechanical and Industrial Engineering, FCTNOVA, 1900 Lisbon, Portugal;
antonioagpedro@gmail.com (A.P.); hvgn@fct.unl.pt (H.N.)

2 LNEC-Laboratério Nacional de Engenharia Civil, 1900 Lisbon, Portugal

3 UNIDEMI—Research and Development Unit in Mechanical and Industrial Engineering, FCTNOVA,

1900 Lisbon, Portugal

IPT—Polythecnic Institute of Tomar, 2300 Tomar, Portugal

*  Correspondence: tmorgado@ipt.pt; Tel.: +351-21844-3434

Received: 24 September 2019; Accepted: 22 January 2020; Published: 29 January 2020 f'};’edcgtfgsr
Abstract: Aircraft oxygen regulators are a normally used specialized test bench designed to perform
tests to the regulators during its work conditions. The tests are performed placing the regulator in
the barometric chamber, where low pressure conditions are forced to simulate altitude conditions
and then a flow is forced on the output of the regulator to simulate the inhalation of the user. The
relevant test flows are measured by laminar flowmeters. These flowmeters are meant to measure the
flowrate at pressures correspondent to altitudes between sea level altitude and fifty thousand feet. In
this work a way was studied to automate laminar flowmeters used on oxygen regulator test benches.
For this purpose, was developed a data acquisition system (DAS) using a microcontroller board and
two microelectromechanical systems—MEMSs (a pressure and temperature sensor and a differential
pressure sensor). Since these MEMSs did not have factory calibration, they were calibrated in this
study. The automated flowmeter was also calibrated. To estimate the error of flow rate measured
by this solution, an uncertainties simulation model based on the Monte Carlo method and several
calibrations were performed. According to the automated flowmeter calibration, the uncertainty
obtained (+0.45% fs) is accepted, but the authors only recommend its use for actual volumetric
flowrate measurements.

Keywords: aircraft oxygen system; test bench; automated laminar flowmeter; Monte Carlo method;
calibration; uncertainty; air data test set

1. Introduction

The oxygen equipment of an aircraft is the first line of defense against the potentially lethal
effects of hypoxia and carbon monoxide poisoning. It is the pilot’s responsibility that all aboard the
aircraft—crewmembers and passengers—know how to use this life-saving equipment safely and
efficiently [1].

Most oxygen systems are composed of a storage system (containers), delivery system and mask
or nasal cannula. The oxygen delivery system, also known as an oxygen regulator can be one of three
types: continuous flow—delivering continuous flow of oxygen from the storage to the mask (28,000 feet
and lower); diluter demand: giving the user oxygen on-demand (during inhalation) stopping the flow
when the demand ceases (during exhalation) to conserve oxygen (altitudes up to 40,000) and pressure
demand—providing oxygen under positive pressure to over-inflate the lungs (altitudes above 40,000
feet) [2,3].

Aircraft components require periodical maintenance, repair and overhaul (MRO) activity. For
oxygen regulators MRO is normally used a specialized test bench designed to perform tests to the
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regulators during its work conditions. The test bench is composed of a barometric chamber, a vacuum
pump, an altimeter and several flowmeters [4]. The tests are performed placing the regulator in the
barometric chamber, where low pressure conditions are forced to simulate altitude conditions and then
a flow is forced on the output of the regulator to simulate the inhalation of the user [5]. The relevant
test flows are measured by laminar flowmeters [6].

In this work a way was studied to automate laminar flowmeters used on oxygen regulator
test benches. The flowmeters studied have particular requirements of accuracy established by the
technical documentation delivered by the test bench manufacturer (1% full scale—fs). This flowmeter
is meant to measure flowrate at pressures correspondent to altitudes between sea level altitude and
fifty thousand feet. So, in order to achieve precise measurements, they should be corrected considering
the pressure and temperature changes. At the core of this work, the correspondence between altitude
and pressure was made in accordance to the U.S. Standard Atmosphere [3]. To estimate the error of the
flow rate measured by this solution, an uncertainties simulation model and several calibrations were
performed. The simulation model was based on the Monte Carlo method. These calibrations were
made in accordance with the Guide to the Expression of Uncertainty in Measurement—GUM [7]. In
this work, was also developed a data acquisition system (DAS) using a microcontroller board and two
microelectromechanical systems—MEMSs. Since these MEMS did not have factory calibration, the
uncertainty measurement study was performed. A methodology was developed to test the accuracy of
the automated laminar flowmeter.

2. Theoretical Fundaments: Laminar Flowmeters

Laminar flowmeters are a well-known kind of differential pressure-based flow measurement
devices mainly used for measuring low flow rates of gases and liquids.

A laminar flowmeter is composed of a laminar flow element and a differential pressure gauge
or transducer. The laminar flow element ensures that the flow passing through the flowmeter is in
laminar condition. In this condition the viscous forces, generated by internal friction of the fluid,
overcome the inertial forces and therefore the dominant mechanism for resistance to fluid motion is
friction against the surrounding walls [8].

The pressure drop (Ap) caused by fluid friction between two points separated by a distance Ax
along a pipe in a laminar flow regime is quantifiable, and can be expressed by the Hagen—Poiseuille
equation (Equation (1)) [9].

128uQAx
- mDt
where D is the pipe internal diameter, u the fluid’s viscosity and Q the volumetric flow rate.

Equation (1) establishes that for a laminar flow there is a linear relationship between the flow rate
and developed pressure drop. A major drawback of this type of flowmeter, however, is its dependence
on fluid viscosity, which in turn is mostly dependent on fluid temperature. Thus, any laminar flowmeter
requires some form of temperature compensation to obtain precise measurements [4]. In Figure 1 there
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is a scheme of a longitudinal and a transversal cut of a laminar flowmeter.
The assumptions of the Hagen—Poiseuille equation (Equation (1)) [10] are:

The flow has negligible kinetic energy,

The flow is laminar and steady,

The capillary is straight and has a uniform, circular cross section,

The fluid is incompressible and its density is constant,

The fluid is Newtonian,

The temperature of the fluid is constant and viscous heating is negligible,

NG N

There is no slip at the wall of the capillary.

This is a simplistic model.
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Figure 1. Laminar flowmeter.

In real situations, it is natural that some of these conditions cannot be met and therefore errors
arise in the flow measurement. The practical models used by experimentalists must correct errors
arising from a breach of the conditions listed. According to the practical model adopted in this work,
each laminar flowmeter has its calibration curve that is generated using a quadratic Equation (2) [11].
This equation is only valid for temperature and pressure at standard conditions (at sea level: T = 15 °C
and p = 1013, 25 mbar).

Q= [BxAp+Cx(ap)?], @)

where B and C are calibration constants.

The actual volumetric flowrate, Q,, can be obtained by measuring the differential pressure (Ap)
across the laminar flow element and the temperature (T) of the inlet fluid. This flow rate can be
obtained by the Equation (3).

Qu=[Bxap+Cx(ap]- £, ()

where p, is the actual viscosity of the fluid and py the viscosity of the fluid at standard temperature.

The word “standard” when associated with flow rate, means that the flow rate has been normalized
to an assigned standard pressure and temperature [7]. If the standard volumetric flowrate is desired it
can be obtained by multiplying the actual volumetric flowrate by the pressure and temperature ratios:

- standard temperature (Tgy) /actual temperature (T,),
- and actual pressure (p,) /standard pressure (Pgy)-

This way, the standard volumetric flowrate can be obtained by Equation (4).
Hstd  Tsta  Pa
std = [Bx Ap 4+ Cx (Ap)?]x 28 5 S 5 2 4
Q [ P (4p) ] Ha Ta  Pstd @

3. Experimental Proceeding

The process of measuring an electrical or physical phenomenon is called data acquisition (DAQ).
A DAQ system is normally composed by one or more sensors, a DAQ measurement device or hardware
and a computer with programmable software as shown in Figure 2 [4].

Sensors DAQ Device Computer

Figure 2. Parts of a data acquisition (DAQ) system.
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The DAQ system used to automate the laminar flowmeters in this work was composed by: two
sensors (an absolute pressure and temperature sensor and a differential pressure sensor), an Arduino
microcontroller board and a computer (Figure 2).

In Figure 3 the solution’s is presented with all the components: The MEMS capture the three input
variables (p, T and Ap). The Arduino acquires the signals from the sensors, stabilizes them if necessary
and converts them. These signals are sent to the computer where they are processed according to
information programmed in LabVIEW and finally the desired outputs (Q, Q, and Qstd) are obtained.

Data
LabViEW < Acquisition
System Device
0 Pressure Taps
Qa - :
Q Input Output
std Flow ' pandT Flow
Sensor -
v
_’-

Figure 3. Solution’s setup.

A MS5611-01BA03 barometric pressure sensor, with a stainless steel cap [12] was used, to measure
pressure and temperature (see Figure 3). This is a new generation of a high resolution altimeter
sensor, which the specifications are presented in Table 1. A differential and gauge, integrated pressure
sensor, MPXV5004DP, was used to measure the pressure drop [13], and the respective specifications are
presented in Table 2. The MPXV5004DP MEMS combines a highly sensitive implanted strain gauge
with advanced micromachining techniques, thin-film metallization and bipolar processing to provide
an accurate, high level analog output sign that is proportional to the applied pressure [13]. The data
acquisition system used the micro controller board Arduino Leonardo [14] based on the Atmega32u4
microprocessor [15]. The Arduino Leonardo has 20 digital input/output pins, 16 MHz crystal oscillator,
a micro USB connection [14]. In Table 3 are presented the Atmega32u4 principal specifications.

Table 1. MS5611-01BA03 technical data.

Sensor Performance (Vg= 3 V) Minimum Maximum Unit

Pressure Range 10 1200 mbar

Pressure Accuracy (25 °C; 750 mbar) -1.5 +1.5 mbar

Error Band ([-20, +85] °C, [450, 1100] mbar) -25 +2.5 mbar
Temperature Range —40 +85 °C

Temperature Accuracy -0.8 +0.8 °C
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Table 2. MPXV5004DP technical data.

Operating Characteristics

(Ve=5.0V) Minimum Tipic Maximum Unit
Pressure Range 0 - 400 mm H,O
Full Scale Span (Vrss) - 3 - A%
Accuracy ~15 ) +15 % VEss
[0, 100] mm H,O [10, 60] °C ’ ’ (with autozero)
Accuracy 25 ) 425 % VEgs
[100, 400] mm H,O [10, 60] °C ' ' (with autozero)
Accuracy _ % VEss
[0, 400] mm H,O [10, 60] °C 6.25 +6.25 (without autozero)
Table 3. Atmega32u4 technical data.
Features
Work Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limit) 6-20V
Digital I/O Pin 20 (7 PWM)
Analogic Input pin 12
Intensity by pin 40 mA
Intensity in pin 3.3 V 50 mA
Flash Memory 32 KB (4 KB bootloader?)
SRAM 25 KB
EEPROM 1 KB
Maximum Frequency 16 MHz at4.5V

Calibrations

In order to determinate the real uncertainty of measurement associated with each MEMS and to
with automated flowmeter, calibrations were performed to each device separately.

The calibrations were performed according to the Guide to the Expression of Uncertainty in
Measurement—GUM [7].

A Ruska 77501 Air Data Test Set (ADTS) [16] was used, for absolute and differential pressure
calibration and a thermal mass flowmeter for volumetric flow rate calibration. The model 7750i is
indicated for avionics instrumentation and represented the latest generation ADTS, having unequalled
precision and long term stability with the latest pressure control technology, provides high performance
measurement and control of all air data parameters [16].

For the calibration of the absolute pressure sensor, the sensor was placed in a barometric chamber
where standard pressures were forced by the vacuum pump of the ADTS (see Figure 4). Five different
pressures were forced inside the chamber, which, according to the U.S. Standard Atmosphere [3],
refer to the altitude of: sea level, 10, 20, 30, 40 and 50 feet. Table 4 represents the calibration sheet of
this sensor.
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Figure 4. Calibration’ setup: (a) barometric chamber; (b) laptop computer; (c) Air Data Test Set (ADTS)
and (d) vacuum pump.

Table 4. Absolute pressure sensor calibration sheet.

Reference Pressure (mbar) Sensor Reading (mbar) k Uncertainty (+mbar)
1013.250 1013.18 2.02 0.16
696.817 696.32 2.07 0.15
465.633 464.49 2.03 0.1
300.896 299.18 2.17 0.13
187.539 185.43 2.52 0.13
155.972 113.66 22 0.08

Considering the calibration of the differential pressure sensor the same ADTS was used, connected
to the positive pressure tap. This calibration is expressed in Table 5.

Table 5. Differential pressure sensor calibration sheet.

Reference Pressure (in H,O) Sensor Reading (in H>0) k Uncertainty (+in H;O)
1 0.97 2.65 0.03
5 4.94 2.2 0.04
10 9.93 2.28 0.04
14 13.91 2.65 0.03

The calibration of the automated flowmeter was performed placing the two flowmeters in series
(the thermal mass flowmeter and the automated flowmeter). The tests were performed with air at
three different pressures: sea level, 30 kft and 50 kft. In Table 6 the calibration sheet at sea level is
presented. At this pressure was obtained the maximum uncertainty of measurement.
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Table 6. Automated flowmeter calibration sheet at sea level pressure.

Reference Flowrate (slpm) Flowmeter Reading (slpm) k Uncertainty (+slpm)
5.953 5.7 2.01 0.65
50.05 49.6 2.01 0.59
95.975 96.5 2.04 0.6
137.85 138.4 2.18 0.67

The maximum flowrate uncertainty of measurement obtained was +0.67 standard litters per
minute that correspond to a relative uncertainty of +0.45% full scale.

4. Uncertainties Simulation Model

In order to predict the measurement error of the automated flowmeter several simulations were
executed. For that purpose, was performed an uncertainty simulation model, based on the Monte Carlo
method, taking as premises two different scenarios for the MEMS uncertainties of the measurement:
one based on the manufacturers information (Simulation 1) and another based on the results of the
calibrations performed (Simulation 2). The software used for these simulations was Matlab.

In these simulations random values were generated for the input variables (p, T and Ap) and their
respective errors (uT, up and u Ap), within their established ranges, and subsequently values of the
output data were calculated (Q, and Q) and also their respective errors (ug, and ug_, ).

In each simulation were selected the maximum errors observed for the output data.

A non-air-conditioned room where there were established ranges for the input variables and
for their respective error was ensured (Table 7). As has been said before, in simulation 1 the ranges
of error were established according to the data sheets of the MEMS, provided by its manufacturers;
in simulation 2 the ranges of error were established according to the results obtained on MEMS
calibrations. For the generation of the input variables and respective errors the rand function of Matlab
was used. This function uses rectangular distribution in the generation of random value within its
established range.

Table 7. Input variables and respective errors.

Variables Min Max Unit
p 11,597 102,000 Pa
T 263.15 313.15 °K
Ap 0 10 inH20
Errors (Manufacturers) Min Max Unit
ur -0.8 0.8 °K
Up -250 250 Pa
Uuap (Ap < 3.94inH20) -0.18 0.18 inH20
upp (Ap > 3.94inH20) -0.3 0.3 inH20
Errors (Calibrations) Min Max Unit
Up -16 16 Pa
Unp -0.04 0.04 inH20

5. Results and Discussion

Tables 8 and 9 express the results of simulation 1, based on the manufacturing uncertainty, that
maximize the actual volumetric flow rate and the standard volumetric flow rate, respectively.
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Table 8. Simulation 1: actual volumetric flow rate.

i Ap uAp T ur Qa uQa
Number of Iterations (inH20) (inH20) (K) (K) (Ipm (% £s)
10M 3.96 -0.299 265.45 0.791 72.633 3.559
- 3.94 —-0.300 263.15 0.800 72.782 3.598

Table 9. Simulation 1: standard volumetric flow rate.

; Ap Unp T ur P Up Qstd UQ.y
(inH20)  (inH20) K) (K) (Pa) (Pa) (slpm) (% £s)

10M 6.14 0.297 263.32 —-0.608 101,730 173.68 120.301 3.984
- 3.94 0.300 263.15 —0.800 102,000 250.00 80.235 4.265

Based on the calibrations uncertainty, Tables 10 and 11 express the results of simulation 2 that
maximize the actual volumetric flow rate and the standard volumetric flow rate, respectively.

Table 10. Simulation 2: actual volumetric flow rate.

. Ap Unp T ur Q. g,
(inH20) (inH20) (K) (K) (Ipm (% f£s)
10M 9.94 0.039 263.15 -0.778 166.89 0.636
- 10.00 0.040 263.15 -0.800 167.67 0.644

Table 11. Simulation 2: standard volumetric flow rate.

; Ap Unp T ur 14 Up Qsta UQ i
(inH20)  (inH20) (K) (K) (Pa) (Pa) (slpm) (% fs

10M 9.34 0.035 264.79 -0.799 100,410 12.57 178.95 1.016
- 10.00 0.040 263.15 -0.800 102,000 16.00 184.84 1.107

The results of the MEMS calibration and the maximum errors that their manufactures claim to
occur are presented in Table 12. Note that this MEMS do not have factory calibration, so it is natural
that their manufacturers supply data with higher values of measurement errors in order to guarantee
their clients medium/long time satisfaction.

Table 12. Uncertainty of microelectromechanical systems (MEMSs).

MEMS Calibration Manufacturer
Pressure +0.16 mbar +2.50 mbar
Differential Pressure +0.040 inH,O +0.30 inH,O

The maximum output errors were obtained in simulations that used ten million iterations.
However, by analyzing the trend of the variables over each simulation, it was verified that the
maximum output errors were obtained when the input values and respective errors take the limit
values of their range. So, for this case, the iteration number (i) was negligible.

In Table 13 there are presented the results obtained by the two simulations and by the calibration
for the uncertainty of actual and standard volumetric flowrate. As has been said before, this flowmeter
had a particular accuracy requirement established by the technical documentation delivered by the
test bench manufacturer (+1% full scale).
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Table 13. Uncertainty of the actual and standard volumetric flowrate.

Simulation 1 Simulation 2 Calibration
Actual Volumetric Flowrate +3.56% fs +0.64% fs +0.45% fs
Standard Volumetric Flowrate +4.27% fs +1.11% fs +0.45% fs

So, according to the MEMS manufacturing uncertainty, the automated flowmeter measurement
uncertainty was ug, ~ £3.6% fs and ug_, ~ +4.3% fs. According to the MEMS calibrations uncertainty,
the automated flowmeter measurement uncertainty was ug, ~ £0.6% fs and ug_, ~ +1.1% fs.

6. Conclusions

The conclusions taken from the various stages of this work are:

e The data measurement uncertainty given by the sensors manufacturers was higher than the
obtained by the calibrations, so all MEMS must be calibrated before installed in the setup.

e  The iteration number for simulation 1 and simulation 2 was negligible, because the maximum
output errors were obtained when the input values and respective errors took the limit values of
their range.

e Insimulation 1, it was observed that both the actual volumetric flowrate and standard volumetric
flowrate largely exceeded the accuracy requirement (+1% full scale). So, in coherence with the
data measurement uncertainty given by the manufacturer this simulation was very conservative.

e In simulation 2 the actual volumetric flowrates maximum error was lower than the accuracy
requirement established by the technical documentation delivered by the test bench manufacturer
(£1% full scale).

e The maximum error of the standard volumetric flowrate, obtained by simulation 2, slightly
exceeded the accuracy requirement established by the test bench technical manual.

e  The automated flowmeter calibration performed according to the Guide to the Expression of
Uncertainty in Measurement shows the lowest uncertainty values.

e  The measurement uncertainty given by the calibration was lower than the values obtained by
both simulations.

e  According to the automated flowmeter calibration, the uncertainty obtained (+0.45% fs) was
accepted by the requirement and therefore recommended for this application.

By analyzing all the results, this automated flowmeter can be used in this test bench, but the
authors only recommended its use for actual volumetric flowrate measurements.
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Abbreviations

fs full scale

B,C calibration constants

D pipe internal diameter

i number of iterations

k expansion factor

Is standard liters

PWM Pulse-Width Modulation

p pressure

Pa actual pressure

Pstd standard pressure

Q volumetric flow rate

Qu actual volumetric flowrate

Qstd standard volumetric flowrate

T temperature

T, actual temperature

Tsta standard temperature

uy standard uncertainty of the measurand estimate, p

ur standard uncertainty of the measurand estimate, T

Upp standard uncertainty of the measurand estimate, Ap

uQ, standard uncertainty of the measurand estimate, Q,

uQ., standard uncertainty of the measurand estimate, Qg

Vs Supply Voltage

VEss Full Scan Span Voltage

Ax distance between two pressure points

Ap pressure drop

7 fluid’s viscosity

H, fluid’s actual viscosity

Ustd fluid’s viscosity at standard temperature
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