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Abstract: Huntington’s disease (HD) is a rare genetic disorder that cannot be cured by current medical
techniques. With the development of the disease, the life of patients will become more and more
difficult. It is necessary to timely and effectively evaluate the development of the patient’s condition
based on the patient’s clinical symptoms to help doctors to formulate a reasonable and effective
treatment plan, alleviate the condition, and improve the quality of life, which reflects humane care.
Currently, wearable devices or video surveillance are generally used to monitor the patients, and these
schemes have some disadvantages. This paper presents a new method to monitor patients with HD
using wireless sensing technology. Firstly, experimental data were collected by the self-developed
microwave sensing platform (MSP), and then the data were preprocessed. Finally, support vector
machine (SVM) and random forest (RF) algorithms were used to train the model. The MSP system
continuously monitors patients in a non-contact way, which will not bring inconvenience to patients’
lives, and will not involve privacy issues. The experimental results show that the prediction accuracy
of SVM can be as high as 98.0% and that of RF can be as high as 96.7%, which proves the feasibility of
the technical scheme described in this paper.
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1. Introduction

Huntington’s disease (HD) is a very rare autosomal dominant genetic disease. The cause of
the disease is the mutation of Huntington gene on chromosome 4 of the patient, resulting in the
variation of protein, which leads to the change of normal neural function through the related molecular
mechanism [1]. The diagnosis of this disease depends on genetic testing. It usually develops around
35–45 years old [2]. The disease degenerates the patient’s physical and psychological intelligence
during the working-age and places a heavy burden on the patient. The clinical symptoms of HD
mainly fall into three categories: motor symptoms, cognitive symptoms, and mental symptoms [3–5].
The typical manifestation of motor symptoms is that the fingers appear to play piano-like movements,
accompanied by weird facial expressions. If the trunk is involved, the patient can have a dance-like
gait. As the disease progresses, other body movements will also become slow and uncoordinated.
In the end, the patient’s entire system will be affected, making it difficult for the patient to complete
simple daily actions such as walking, talking, eating, dressing, and washing. Cognitive symptoms
sometimes appear many years earlier than motor symptoms. In the early stages of cognitive symptoms,
patients do not only suffer from episodic memory, but also have significant functional dysfunction and
do not understand the meaning of the speaker’s language. As the disease progresses, the patient’s
dementia symptoms worsen. However, even if the condition is severe, the patient retains some
cognitive functions. The third type of symptoms are mental symptoms. The mental symptoms of
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patients are often earlier than or synchronous with abnormal motor symptoms, mainly manifested
as depression, often accompanied by insomnia, anorexia, and personality changes. In the later stage,
patients will gradually experience hallucinations, delusions, paranoia, and aggressive behavior.

HD is characterized by complex clinical symptoms, progressive deterioration of the patient’s
condition, and usually death 15–20 years after onset [6]. At present, there is no effective treatment for
this disease. The purpose of treatment is to improve the quality of life of patients. Several existing
treatment methods can be classified as cause treatment and symptomatic treatment [7]. Cause treatment
includes direct gene therapy and other indirect molecular therapy, this method cannot be realized at
present, but a lot of research has been carried out. The symptomatic treatment is that the doctor obtains
the clinical symptoms of the patient through visual observation and other methods and diagnoses
the patient’s condition against the HD Scale [8], so as to formulate a drug treatment plan to directly
alleviate the patient’s symptoms.

Drug therapy is currently the main treatment for HD. In order to confirm whether drug therapy
is effective, doctors need to continue to follow up the effect of drug therapy, so as to improve the
treatment. But this treatment has a disadvantage; the doctor’s judgment of the patient is mainly based
on the naked eye and the HD Scale. The diagnosis result can easily be affected by the subjective
consciousness of the doctor. A promising solution is needed to continuously monitor the patient and
provide an objective diagnosis basis. At the same time, the mental symptoms of patients are unstable,
and patients are prone to hallucinations and aggressive behavior. In order to avoid self-injury, we also
need to carry out continuous monitoring and give timely psychotherapy to patients.

In order to solve the above-mentioned problems, this paper proposes a new method to monitor
HD patients using wireless sensing technology and demonstrates the feasibility of the proposed
method. We independently developed the microwave sensing platform (MSP) monitoring tool, which
is composed of a transmitter module and a receiver module. It can be directly installed in the indoor
environment, without any contact with the patient, and it can be completely monitored in a non-contact
way. The working process of MSP is: the transmitting module transmits the wireless signal in C-band,
the receiving module receives the wireless signal and extracts the channel state information (CSI) data
through channel estimation. After collecting CSI data, we first carried out a series of data preprocessing
steps, including removing outliers and wavelet transform de-noising. Then we extracted the features
of the preprocessed data to make the sample set. Finally, we used support vector machine (SVM) [9]
and random forest (RF) [10] to train the classification model, respectively. The trained classification
model can effectively distinguish the behavior of HD patients and normal people. The experimental
results show that the accuracy of SVM and RF is 98.0% and 96.7%, respectively, which proves that the
methods described in this paper can effectively monitor HD patients.

The rest of this paper is organized as follows. The Section 2 will introduce the current research
on the monitoring of HD and make a brief comparison with the experimental scheme proposed in
this paper. In the Section 3, we will introduce the principle of wireless sensing technology, and in the
Section 4, we will describe the experimental scheme design. In the Section 5, we will describe the data
processing flow. In the Section 6, we will discuss the experimental results and draw conclusions in the
Section 7.

2. Related Work

At present, a large number of scholars have carried out related research on monitoring patients
with HD using wearable devices. For example, Dinesh et al. reported a preliminary study to analyze
motor symptoms associated with HD and Parkinson’s disease based on sensor signal detection and
data analysis. They use a light-weight, low-power sensor to monitor the motor symptoms of patients.
The sensor adheres to the limbs and chest of patients like a tattoo and can continuously monitor
patients for 48 hours. The experimental results show that the sensor can capture different clear signals
of different clinical symptoms [11]. Bennasar et al. proposed an HD upper limb dyskinesia evaluation
system. A triaxial acceleration sensor was worn on each wrist and chest of the experimental participants.
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The collected sensor data was used to develop an automatic classification system to distinguish normal
people from HD patients [12,13] proposed a method of using inertial sensors to identify healthy gait,
HD patient gait, and hemiplegic patient gait. This method is based on a supervised and trained
two-state hidden Markov model, which can be extended to different research subjects for clinical
practice and personal health assessment. At the same time, Francisco et al. collected the gait data of
HD patients by binding the iPhone on the ankles of patients, using the built-in smart sensor of iPhone,
and classified the data with the general assembly (meta) classifier algorithm to distinguish normal
people and HD patients [14]. The use of wearable devices to monitor the movements and gaits of HD
patients requires the binding of electronic devices to a part of the patient’s body, which will affect
the patient’s movements to a certain extent and cannot collect movement data in the natural state of
the patient. At the same time, it will also affect the patient’s living comfort. Some scholars have also
proposed the idea of using a camera to monitor patient activity, combined with related video image
processing algorithms to extract patient activity information. For example, Agrawal et al. proposed
a method for human fall detection based on video surveillance, but this may violate the privacy of
patients [15].

As far as the authors know, this paper proposes for the first time to use C-band wireless sensing
technology to monitor HD patients completely in a non-contact way for continuous monitoring.
Compared with the traditional monitoring scheme, it has the following characteristics:

(1) Monitoring patients completely in a non-contact way will not bring discomfort to the patient’s
body, and data can be collected under natural conditions.

(2) Continuous monitoring of the patient’s condition by wireless sensing will not affect the
patient’s privacy.

(3) MSP has no requirements for the working environment and is easy to install.
(4) The collected data are processed, and two machine learning algorithms are used to train the

model. The two machine learning algorithms can be compared with each other, which makes the
experimental results more convincing.

3. Principle of Wireless Sensing Technology

The proposed technical scheme is suitable for non-contact continuous monitoring of HD patients
in an indoor environment. Therefore, this section will first describe the indoor model of wireless
signal propagation in detail and explain the principles behind wireless sensing technology. Since this
article mainly collects CSI data through MSP, we will next reveal the nature of CSI data, derive its
mathematical expression, and describe MSP in detail at the end of this section.

3.1. Indoor Propagation Model of Wireless Signal

When the wireless signal propagates in the indoor environment, it is influenced by the obstacles
in the propagation path, which cause reflection and diffraction. After the propagation of different
paths, each component reaches the receiving end with different strengths and phases, resulting in a
multipath effect [16]. The indoor propagation model of the wireless signal is shown in Figure 1.



Appl. Sci. 2020, 10, 870 4 of 13

Figure 1. Indoor propagation model of wireless signal.

According to the Fries transfer formula [17], the receiving power of the receiving antenna can be
expressed as:

Pr =
PtGtGrλ2

(4πR)2 (1)

where Pt and Pr are the power of transmitting antenna and receiving antenna, respectively; Gt and Gr

are the gain of transmitting antenna and receiving antenna, respectively; and the distance between
transmitting antenna and receiving antenna is R. λ is the wavelength of electromagnetic wave.

Assuming that the propagation path length of the electromagnetic wave through the interference
of static objects is D, and the propagation path length through the interference of the human body is X,
the Fries transfer formula can be rewritten as follows.

Pr =
PtGtGrλ2

16π2(R2 + D2 + X2)
(2)

In Formula (2), we can see that both R and D do not change. When people are indoors, X will
change, resulting in a change in the power of the receiving antenna. At the same time, because the
signal phase is a linear function of the distance of the propagation path, the change of the propagation
path will also lead to the change of the signal phase [18]. Human behavior changes the strength and
phase of the signal, and the CSI describes the loss and fading on the transmission path. When there
is a moving target between the transmitting and receiving devices, the wireless signal reflected by
the moving target increases the dynamic component of the channel. The fluctuation of the channel
corresponds to the motion information of the target one by one. We can get CSI data from the signals
collected by the receiving devices. By analyzing the CSI data, we can sense the changes of the external
environment. In the next section, we explain the essence of CSI and its mathematical expression [19].

3.2. CSI

In order to eliminate the adverse effect of a multipath effect on wireless signal transmission,
the MSP described in this paper uses orthogonal frequency division multiplexing (OFDM) modulation
technology to decompose the data stream to be transmitted into several independent sub-data streams,
that is, multiple subcarriers, and then transmits them in parallel, which can effectively eliminate the
inter-symbol interference caused by the multipath effect in high-speed data stream transmission. At the
same time, OFDM modulation technology can also greatly improve the data transmission efficiency.
Because there are multiple subcarriers, each subcarrier channel is independently available, which also
increases the amount of data to extract more information [20].
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Multiple input multiple output (MIMO) is supported by OFDM modulation technology [21].
The channel model of the MIMO system in the frequency domain can be expressed as

Y = HX + N (3)

where Y represents the receiving signal, X represents the transmitting signal, N represents the
environmental noise, and H represents the state matrix of the wireless channel, and its dimensions are
NT ×NR ×NC. NT, NR, and NC, respectively, represent the number of transmitting antennas, receiving
antennas, and subcarriers.

CSI is essentially a representation of the frequency response of each subcarrier channel. For each
independent subcarrier channel, its frequency response can be expressed as

Hk( fk) = ||Hk( fk)||e jarg(Hk( fk)) (1 ≤ k ≤ NC) (4)

where fk represents the center frequency of the Kth subcarrier, ||Hk( fk) || represents the CSI amplitude
information of the Kth subcarrier, and arg(Hk( fk)) represents the CSI phase information of the Kth
subcarrier.

After continuous data collection over a period of time, CSI data can be obtained through the
channel estimation formula [22].

Ĥ ≈
Y
X

(5)

3.3. MSP

The MSP independently developed in this paper works in C-band (4.8 GHz). It is a highly
customizable platform that can adapt to different application scenarios. MSP consists of omnidirectional
antenna, industrial personal computer, absorbing material, frequency converter, and other related
facilities. The use of absorbing materials is mainly to shield the surrounding environment from
interference. The main function of MSP is to obtain the CSI of the wireless channel. By analyzing the
CSI data, the behavior of patients can be monitored.

MSP uses OFDM technology. Its essence is an OFDM transceiver system, and its functional block
diagram for obtaining CSI is shown in Figure 2.

Figure 2. Block diagram of microwave sensing platform (MSP) to obtain channel state information
(CSI) data.

In Figure 2, d(k) is converted to N parallel data {x0, x1 , . . . , xN−1} through serial–parallel
conversion. These data can be regarded as N data in the frequency domain. A set of time domain data
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{s0, s1 , . . . , sN−1} obtained after the inverse discrete Fourier transform (IDFT) is an OFDM symbol.
After adding a cyclic prefix to an OFDM symbol, the OFDM symbols are transmitted on the wireless
multipath channel after parallel–serial conversion and digital–analog conversion. At the receiving end,
the reverse work is performed: analog–digital conversion, parallel–serial conversion, removing cyclic
prefix, and fast Fourier transform (FFT). The training sequence after FFT is used to perform channel
estimation according to Equation (5), and CSI data can be obtained.

4. The Experimental Scheme

The purpose of this article is to continuously monitor patients with HD. To distinguish the patient’s
actions from other normal daily movements, so as to provide an objective clinical diagnosis basis for
doctors and facilitate doctors to make appropriate treatment plans. The experimental flow chart is
shown in Figure 3.

Figure 3. The experiment flow chart.

This experiment will collect the data of several actions like normal standing, normal sitting,
normal walking, standing of HD, sitting of HD, and gait of HD, as shown in Table 1.

Table 1. The actions used in the experiment.

No. Action

1 Normal
standing

2 Normal sitting
3 Normal walking
4 Standing of HD
5 Sitting of HD
6 Gait of HD

The simulation experiment was carried out in a laboratory in the new science and technology
building of Xidian University, which is 7 m × 5 m in size. The transmitting and receiving antennas
of the MSP were respectively placed at two ends of the laboratory, with a horizontal distance of 4 m.
The transmitting antenna and receiving antenna were positioned 1.8 m from the ground and 1.2 m
from the ceiling. The transmitting module of the MSP was composed of a control computer with a
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wireless adapter and an omnidirectional antenna. The wireless adapter was configured in an injection
mode for sending wireless signals. The receiving module of the MSP consisted of a control computer
with a wireless adapter and three omnidirectional antennas. The wireless adapter was configured in a
listening mode for receiving signals and extracting CSI data. The MSP operated in C-band (4.8 GHz)
and used OFDM technology to modulate the signal with a total of 30 subcarriers. The signal bandwidth
was set at 20 MHz. The transmitting antenna had a packet frequency of 200 Hz, and the time window
was 12 s. We collected 300 samples for each action. The experimental scene is shown in Figure 4.

Figure 4. The experimental scene: (a) standing; (b) sitting; (c) walking.

In Figure 4c, the object moves in a direction perpendicular to the line connecting the transmitter
and receiver, mainly considering that if the object moves along the line from the transmitter to the
receiver, the line-of-sight transmission will be weakened, and most of the energy will be lost, resulting
in a reduction of signal amplitude at the receiver, which is not conducive to any kind of communication.
At the same time, in clinical trials, the movement tasks of patients are usually specified, so we chose a
movement mode that is more conducive to study the feasibility of the technical scheme described in
this article.

In this work, our research focuses on the feasibility of using wireless sensing technology to monitor
HD patients, and the number of HD patients is very small [23]; hence, we did not recruit real patients,
but volunteers from our team simulated HD movements.

Before the experiment, we fully informed the experimental participants of all relevant matters
and contents of the clinical experiment. By watching videos of clinical manifestations of HD patients
and reading related literature, all experimental participants were rigorously trained to simulate real
HD patient movements.

Due to the limited staff in our team, there were a total of 10 volunteers who participated in our
experiment, including 6 males and 4 females, aged between 24 and 48 years. Details of volunteers are
shown in Table 2.
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Table 2. Details of volunteers.

ID Age Gender Weight (kg) Height (cm)

1 26 Male 72 181
2 45 Male 53 173
3 30 Male 64 168
4 32 Female 50 155
5 24 Female 56 165
6 25 Male 62 164
7 36 Male 70 174
8 48 Male 65 175
9 25 Female 51 161
10 40 Female 57 163

We randomly selected 5 volunteers (3 male and 2 female) to simulate the movements of HD
patients, and the remaining 5 volunteers (3 male and 2 female) were used as normal reference. Each set
of actions was repeated 60 times for each volunteer, and it took 6 days to collect the data.

5. The Data Processing

After collecting CSI data, we needed to perform a series of processing steps on the data. In this
section, we follow the steps shown in Figure 3 to process the collected CSI data in turn.

5.1. Data Preprocessing

5.1.1. Remove Outliers

In the process of data collection, due to the influence of environmental noise or internal voltage
fluctuation of the device, there was a large number of outliers in the original signal. These outliers
seriously distort the original signal and must be removed.

We used the “Hampel” function in MATLAB to remove the outliers of the original signal. For each
sampling point of the original signal, the function calculates the median of the window consisting of
the sampling point and the three sampling points on the left and right sides. Then the absolute value
of the median is used to estimate the standard deviation of the median at each sampling point. If a
sample is more than three standard deviations away from the median, the sample is replaced with the
median [24]. The outliers contained in the original signal are shown in Figure 5. The original signal
after removing the outliers is shown in Figure 6.

Outliers can affect signal de-noising. After removing the outliers of the original signal, we can
de-noise the signal, which is described in the next section.

Figure 5. Outliers contained in the original signal.
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Figure 6. The original signal after removing the outliers.

5.1.2. Signal De-Noising

The patient’s actions mainly affect the low-frequency components of the wireless signal, so we
needed to filter out the high-frequency noise generated by environmental noise, slight internal voltage
fluctuations, etc. In this paper, wavelet transform was used to realize signal de-noising [25]. The “wden”
function with one-dimensional noise reduction in the MATLAB toolbox was used. The main principle
of this function is to filter out noise through threshold processing of the wavelet decomposition
coefficient of the original signal.

We used the “sym8” wavelet to decompose the original signal in 5 layers. The “SimN” (N = 2, 3,
. . . , 8) wavelet has good symmetry, which can reduce the phase distortion during signal decomposition
and reconstruction to a certain extent. At the same time, we applied heuristics to overcome the
problem of noise distribution at each decomposition level. The signal waveforms of each action
after de-noising by wavelet transform are shown in Figure 7; the larger the variance, the larger the
information. We chose the subcarrier according to the principle of maximum variance [26].

Figure 7. Cont.
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Figure 7. The waveforms of each action after data preprocessing: (a) normal standing; (b) standing of
Huntington’s disease (HD); (c) normal sitting; (d) sitting of HD; (e) normal walking; (f) gait of HD.

5.2. Feature Extraction

It can be seen from Figure 7 that the time domain waveform of each action is quite different.
We extracted eight time domain features from the signal waveform of each action, as shown in Table 3.

Table 3. Time domain features.

Features A Formula to Calculate

Mean value YMV = 1
N

N∑
i=1

xi

Standard deviation YSD = 2

√
1

N−1

N∑
i=1

(xi −YMV)
2

Root mean square YRMS = 2

√
1
N

N∑
i=1

xi
2

Peak-to-peak value YPPV = max(xi) −min(xi)(i = 1, 2, . . . , N)

Kurtosis YK =
1
N

∑N
i=1

(∣∣∣∣ xi
∣∣∣∣−YMV

)4

YRMS4

Skewness YS =
1
N

∑N
i=1

(∣∣∣∣ xi
∣∣∣∣−YMV

)3

YRMS3

Peak factor YP =
max(xi)

YRMS
(i = 1, 2, . . . , N)

Waveform factor YW = N∗YRMS∑N
i=1

∣∣∣∣ xi
∣∣∣∣ (i = 1, 2, . . . , N)

5.3. Model Training

We used SVM and RF to train the model to ensure the accuracy of data classification and to
determine which algorithm has a better effect in practical applications. At the same time, in order to
make the training model reliable, we used the four-fold cross validation method to divide the data set.

We selected the radial basis function (RBF) as the kernel function of SVM, and the RF contained
500 decision trees.

6. Result and Discussion

The confusion matrix of each classification algorithm is shown in Table 4.
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Table 4. Confusion matrix of classification algorithms.

Classification
Algorithm Actual Action

Predict Action (Number of Samples)

Standing Sitting Walking Standing of HD Sitting of HD Gait of HD

SVM

Standing 73 0 2 0 0 0
Sitting 1 74 0 0 0 0

Walking 2 0 72 0 0 1

Standing of HD 0 0 0 75 0 0
Sitting of HD 0 0 0 0 75 0

Gait of HD 0 0 1 0 2 72

RF

Standing 72 1 0 2 0 0
Sitting 0 75 0 0 0 0

Walking 0 0 75 0 0 0

Standing of HD 4 0 0 71 0 0
Sitting of HD 0 0 0 1 70 4

Gait of HD 0 0 2 0 1 72

The experimental accuracy of each algorithm is shown in Figure 8.

Figure 8. Algorithm accuracy.

Figure 7a–d shows different waveforms of normal people and patients with HD under static action.
It can be seen from the figure that the static action signal waveform of normal people is relatively
gentle, while the static action signal waveform of patients fluctuates greatly because patients with
HD have convulsions when they are ill and dance-like movements when they are serious. Figure 7e,f
shows the signal waveforms of normal gait and gait in patients with HD. Due to the large amplitude
of walking itself, the abnormal body swing of patients with HD may be covered by the walking
movement, resulting in the signal waveform discrimination between normal gait and abnormal gait
not being very obvious, which is consistent with reality. At the same time, we can see from Figure 7
that the differences between the action signal waveform of normal people and patients with HD are
obvious in the time domain. In order to reduce the amount of data and improve the efficiency of the
algorithm training model, we extracted eight time domain features from the samples, which can well
describe the time domain waveform, and the experimental results also prove this.

Table 4 is the confusion matrix of SVM and RF. It can be seen that the SVM algorithm can
completely distinguish the static actions of patients with HD, while the normal static actions have
misclassification, which shows that the performance of patients in the static actions is inconsistent,
the performance of body convulsion or dance is different, and the performance of normal people in
static actions are consistent. It can also be seen that RF can completely distinguish between normal gait
and normal sitting action. Both SVM and RF cannot distinguish the normal gait and the abnormal gait
of patients with HD completely, because the time domain signal waveform of them is similar.

Figure 8 shows the prediction accuracy of the two algorithms. The prediction accuracy of SVM is
98.0%, and that of RF is 96.7%. Both algorithms can achieve high prediction accuracy, which proves
that the experimental scheme described in this paper is feasible. At the same time, we can draw a
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conclusion that when using the method described in this paper to distinguish the actions of patients
with HD, the performance of SVM is better than that of RF.

7. Conclusions

As far as we know, this article first proposed a method for monitoring HD patients using wireless
sensing technology and studied the feasibility of the proposed technical scheme in depth. We used the
self-developed MSP to collect CSI data, then removed the outliers, and filtered the CSI data with the
wavelet transform. After that, we extracted eight time domain features from each action data set and
trained the model with SVM and RF machine learning algorithms. The experimental results show that
the prediction accuracy of the SVM algorithm can reach 98.0%, and the prediction accuracy of the RF
algorithm can reach 96.7%. Both algorithms can effectively distinguish the normal actions and the
actions of patients with HD, which proves that the technical scheme described in this paper is feasible.
This will provide a basis for doctors to objectively diagnose patients’ conditions. At the same time,
the technology can help doctors to follow up on the patient’s condition development and improve
the treatment plan in time. At present, the MSP described in this paper is not fully automated but
also needs some manual operations. Next, we will continue to improve the experimental platform to
make it fully automated to achieve data collection, data processing, and data analysis in a one-click
operation. At the same time, we will also further explore the application of wireless sensing technology
in medical care.
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