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Abstract: Three-dimensional reconstruction and semantic understandings have attracted extensive
attention in recent years. However, current reconstruction techniques mainly target large-scale scenes,
such as an indoor environment or automatic self-driving cars. There are few studies on small-scale
and high-precision scene reconstruction for manipulator operation, which plays an essential role in
the decision-making and intelligent control system. In this paper, a group of images captured from
an eye-in-hand vision system carried on a robotic manipulator are segmented by deep learning and
geometric features and create a semantic 3D reconstruction using a map stitching method. The results
demonstrate that the quality of segmented images and the precision of semantic 3D reconstruction
are effectively improved by our method.
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1. Introduction

In an unstructured environment, the type and shape of the objects are unpredictable. While,
in order to achieve autonomous operations, the robot must be able to use visual sensors, such as
lasers or cameras, to get the information about the scene [1–3]. Therefore, the robot can obtain
features and identify relevant objects in the surrounding environment and then plan the motion
accordingly. In the process, besides providing the location information of objects, a semantic 3D map
can facilitate its decision-making based on actual world processes, such as judging the stability of
the scene objects [4–6], grasping and placing objects by imitating human beings [7], and generating
relevant action sequences [8–10].

Environmental information is usually collected by different sensors, such as lasers [11], a monocular
camera [12], or a depth camera [13], and is then processed through a series of algorithms, such as
height estimation [14,15], target detection, image segmentation, visual odometer, and image stitching
to generate an environmental map, which is called simultaneous localization and mapping (SLAM) or
structure from motion (SFM). The visual odometer-based method seriously affects the accuracy of the
mapping due to the position error caused by the sensors. However, the eye-in-hand vision system is
more accurate than the visual odometer. Therefore, it is necessary to make full use of the high accuracy
of the robotic manipulator to improve the quality of the 3D reconstruction of the scene [16,17]. Another
problem is that the precision of semantic segmentation is still insufficient, even by the latest method, so
it is necessary to find a way to improve the quality of semantic segmentation.

Therefore, we explore to establish an integrated 3D object semantic reconstruction framework for
eye-in-hand manipulators, including RGBD image segmentation, camera pose optimization, and map

Appl. Sci. 2020, 10, 1183; doi:10.3390/app10031183 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2659-6677
https://orcid.org/0000-0001-9695-1940
http://dx.doi.org/10.3390/app10031183
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/3/1183?type=check_update&version=2


Appl. Sci. 2020, 10, 1183 2 of 13

stitching. This enables us to achieve the following: (1) combine deep learning with geometric feature
methods to perform the semantic segmentation; (2) employ the object point cloud segmentation-based
Segment Iterative Closest Point (SICP) method to optimize the camera pose and position; and (3) stitch
together a semantic 3D map by data association.

In summary, the main contributions of this work are:

• The accuracy of image segmentation and the quality of object modeling are improved with an
eye-in-hand manipulator through combining deep learning with geometric methods.

• A high-precision semantic 3D map is established by applying the SICP method to optimize the
camera position.

The paper is organized as follows: related works and the present work are described in Sections 2
and 3, respectively. In Section 4, the experimental results are detailed and presented. The discussion
and conclusion are given in Section 5.

2. Related Works

As previous 3D reconstruction using an eye-in-hand camera rarely contains semantic information
and, currently, a large number of semantic 3D reconstruction is based on hand-held cameras, we
discuss the following two parts: semantic 3D reconstruction based on an eye-in-hand camera and a
hand-held camera.

2.1. Semantic 3D Reconstruction Based on an Eye-in-Hand Camera

Since the position of the object in the 3D space is necessary for robotic manipulators to operate
objects, the eye-in-hand camera is usually applied to get this information and make 3D scene
reconstruction. Fuchs et al. [18] used Time of Flight (ToF) cameras to acquire images and optimize
the images through the Iterative Closest Point (ICP) algorithm. Barth et al. [19] used the LSD-SLAM
method to create sparse scene maps, using object edge information to identify objects. Chang et al. [20]
used a monocular eye-in-hand camera and a laser radar to obtain the point cloud of the scene and
combined it with the Computer Closer Point (CCP) and ICP methods to improve the matching accuracy.
The above methods can only build 3D maps without semantic information, causing them have to use
all the point clouds to perform ICP matching. That induced a low calculation speed and low matching
precision due to the background interference. Moreover, since there is no semantic segmentation of the
scene, the object-level 3D reconstruction cannot be achieved.

2.2. Semantic 3D Reconstruction Based on a Hand-Held Camera

After years of development, 3D scene reconstruction based on vision has been relatively mature
and has produced a large number of excellent algorithms [21–23]. With the improvement of target
detection and image segmentation algorithms, semantic 3D scene reconstruction has become a research
hotspot in recent years [24–29]. Its essence is the effective combination of semantic information with the
SLAM system to generate 3D maps with semantic labels. Single Shot Detectors (SSDs) are introduced
to handle geometric feather-based point cloud segmentation on the foundation of the orb-slam and
processed map fusion through data association and the ICP [30]. Based on probabilistic methods,
lots of previous works conduct 2D image segmentation through Random Decision Forests (RDF)
and integrate 2D image labels into a 3D reconstruction map with a conditional random field and
Bayesian updating model [31]. McCormac et al. [32] used the Convolutional Neural Network (CNN) to
obtain the probability distribution of Classification for each 2D pixel, and then the Bayesian updating
model would track the classification probability distribution of each curved surface, which would
be updated based on the information regarding the data association provided by the SLAM system.
In the subsequent work, they created a SLAM system with 6 degrees of freedom by merging 2D object
detection with a 3D voxel foreground [33]. Bowman et al. [34] proposed a theoretical framework for
the fusion of scale and semantic information, realizing the dynamic tracking of objects through ICP
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and RGB error and achieving the real-time object 3D reconstruction by asynchronous frame updating.
Although the above works have established an environmental semantic map, the map scale is usually
too large to reach a high accuracy, which limits its application in elaborate 3D modeling, such as desktop
objects. The aforementioned 3D reconstruction method commonly use a hand-held camera and need a
visual odometer, while in the eye-in-hand vision system in robotic manipulators, the 3D reconstruction
method can be simplified through a forward kinematics analysis of robotic manipulators.

3. Overview of the Proposed Method

Our algorithm includes fusion segmentation, combining deep learning with geometric feature
methods, camera pose optimization, and map stitching. The algorithm flow is shown in Figure 1.
The deep learning adopts the R-50-FPN structure of mask R-CNN, and the geometric feature method
adopts supervoxel segmentation and the Locally Colored Convex Connected Patches (LCCCP)
clustering method with color information. The fusion segmentation uses neural network segmentation
results to further cluster LCCCP segmentation mass to generate a high-precision segmented point cloud
with semantic information and then apply the split point cloud of two adjacent frames for ICP matching
to get the real camera position. The segmented point cloud is transformed to the world coordinate
system through the current real camera position, and the data association method based on the gravity
center distance is adopted to judge whether the segmented point cloud is a false recognition. If there is
no false recognition, the segmented point cloud is spliced in the map. A 3D model reconstruction of
each object is realized by splicing the point cloud at different positions from multiple angles.
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Figure 1. Overview of our method. This process is mainly divided into two parts: image segmentation
and map stitching.

3.1. Object Recognition and Fusion Segmentation

The semantic segmentation algorithm is the basis of map stitching. Pictures and point clouds are
segmented by neural networks and geometric features, respectively, and finally the two parts are fused
together to generate semantic information. Therefore, this algorithm includes three parts: 2D semantic
segmentation, point cloud segmentation, and semantic fusion.

3.1.1. Target Detection and Instance Segmentation Based on 2D Images

Among numerous methods for object detection and instance segmentation based on 2D images,
see, e.g., [35–39], mask R-CNN is one of the most pragmatic instance segmentation frameworks at
present, which can effectively detect objects in images and simultaneously generate a high-quality
segmentation mask for each instance. Based on previous classification and regression branches in
Faster-CNN, it adds another branch, which segment and output each region of interest (ROI) to achieve
semantic segmentation [40]. The object recognition and 2D image segmentation in our work are
constructed according to mask R-CNN framework.
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3.1.2. Point Cloud Segmentation Based on the Geometric Feature Method

Although mask R-CNN has a relatively high recognition accuracy, the image segmentation
accuracy is still insufficient, so it is difficult to achieve high-precision 3D reconstruction by merely
adopting 2D image segmentation. In order to improve the accuracy of segmentation, we also take
advantage of the 3D point cloud segmentation method. Firstly, the point clouds have been decomposing
into many small patches by way of supervoxel segmentation to implement over-segmentation and
then perform clustering analysis using the locally convex connected patches (LCCP) method [41].

The aforementioned LCCP method merely utilizes position and normal as not relying on the point
cloud color. Suppose

→
pi and

→
p j represent two adjacent supervoxels, couv

(
→
pi,
→
p j

)
represents whether the

connection between two supervoxels is convex. Extended Convexity Criterion and Sanity Criterion
can be expressed with CCe

(
→
pi,
→
p j

)
and SC

(
→
pi,
→
p j

)
, respectively [41].

Since the conventional LCCP method is not able to recognize two objects when the surface of
different objects is tangential, it is necessary to differentiate objects by means of color information.
In consideration of this problem, we improve the LCCP method by adding a parameter named the
Point Color Criterion (PCC). We define γ as the maximum value of color-difference between two
adjacent supervoxels, that is:

γ
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where γ
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)
is larger than the threshold value γthresh, the two supervoxels are recognized as two

different objects. γthresh is an important parameter, which depends on the color difference between
the objects. It is generally set to be a small value. Therefore, even if the color differences between the
objects are small, the algorithm can also distinguish between them. However, too small a γthresh will
cause over-segmentation. The color criterion of point cloud can be defined as:

PCC
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)
:=
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As a result, the LCCCP method is judged by the criteria:

conv
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3.1.3. Fusion Segmentation

As described above, the 2D image segmentation method relying on the neural network can
segment multiple objects simultaneously with poor accuracy, while the geometric feature segmentation
method is characterized by high edge accuracy but a tendency towards over-segmentation and a lack
of semantic information in the segmented block. So, it is indispensable to combine the two methods
to achieve a high-precision semantic instance segmentation. Assuming that 50% of the segmented
patches generated by the LCCCP method are in the segmented image produced by mask R-CNN,
the segmented block is marked as the object. Count all the segmented patches belonging to the object
and merge them into the point cloud Pc

0 of the current frame object in the camera coordinate system.

3.2. Camera Pose Optimization

Due to the motion error of the manipulator, the position of the eye-in-hand camera will deviate
from the target position. If the point cloud of the current frame is directly spliced into the map, it will
lead to point cloud model misalignment, so the registration method is necessary to be employed to
optimize the camera pose and the SICP method is applied to calculate the camera pose deviation.

Supposing that the point cloud of the current frame in the camera coordinate system is Pc
0, the point

cloud in the world coordinate system is Pw, the transform matrix at the end of the manipulator of the
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current frame relative to the world coordinate system is Tw,t, the transform matrix of the camera relative
to the end of manipulator is Tt,c, the transform matrix of the current frame in the world coordinate
system is Tw,c = Tw,tTt,c. After being transformed by Tw,c, the current frame object point cloud matches
with the map point cloud by the SICP algorithm Pw to obtain the optimization transformation TICP,
and the point cloud Pw

0 of current frame object after compensation in the world coordinate system is:

Pw
0 = TICPTw,tTt,cPc

0 (4)

3.3. Data Association and Map Stitching

After transforming the point cloud of the current frame to the world coordinate system, it is
essential to judge whether the transformed point cloud label is correct. Based on the previously
reported method, the point cloud of the instance object in the world coordinate system is Pw

0 . Assuming
that there are m objects of the same category in the current map, we calculate the point cloud gravity
center C0 of each object point cloud

{
Pw

1 , · · ·Pw
m

}
. The object point cloud Pw

t is:

Pw
t = arg min

p
||Ci −C0 || (5)

Using this, we are able to calculate the Euclidean distance between all point pairs, which is from
the current object point cloud Pw

0 to the target object point cloud Pw
t . The value of ζ depends on the

similarity between two sequential images. Parameter ζ usually takes a small value. The algorithm can
identify semantic errors and avoid wrong splicing. However, we cannot set ζ too low, because when the
similarity between two sequential images is poor, many segmentation results will be discarded. If more
than 50% of the distance between point pairs is less than ζ, then the matching is considered successful,
otherwise it is classified as a misidentification. Generally, this process takes ζ = 2 mm. After successful
matching, the object point cloud is merged into the point cloud map with voxel filtering.

4. Experimental Results

To verify the precision and reliability of our algorithm, we completed a series of experiments
on image segmentation and 3D reconstruction by a robotic manipulator with the eye-in-hand vision
system. Each experiment has been repeated 10 times.

4.1. Experimental Conditions

We assembled a RealSense D435 camera at the end of UR10 robotic manipulator to take photos
at 400 mm away from the desktop with resolution at 640 × 480 pixels. We controlled the robotic
manipulator with an eye-in-hand camera system to take 16 pictures every 360 degrees around the object.

We validate our algorithm by employing two different datasets. Our dataset contains five types of
toys, namely cylinder, half-cylinder, L-block, cuboid, and box, as shown in Figure 2a. The dataset has a
total of 1200 images shot at different angles. The other dataset comes from the Yale-CMU-Berkeley
(YCB) Benchmarks [42], which contain objects of different sizes and shapes in daily life. We chose
lemon, pear, orange, plum, bowl, and mug for a total of six objects, as shown in Figure 2b.
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with the mask R-CNN method. Figure 3a is the qualitative segmentation result of mask R-CNN. Each 
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the segmentation results of our method. 

The quantitative comparison criteria is referred to in [43]. The Intersection-over-Union (IoU) is 
a standard metric used to evaluate the accuracy of image segmentation, which calculates the ratio of 
the intersection and union between the true value and the predicted segmentation. For each type of 
object, we respectively calculate the results of true positives (TP), false positive (FP), and false 
negative (FN), and then acquire the IoU of each object using the following formula: IoU =  𝑇𝑃𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁 (6)

Figure 2. Datasets in this paper. (a) The objects in our dataset, including the cylinder, half-cylinder,
L-block, cuboid, and box, and (b) the objects in the Yale-CMU-Berkeley (YCB) Benchmarks, including
lemon, pear, orange, plum, bowl, and mug.

4.2. Image Segmentation Results

The mask R-CNN adopts an R-50-FPN structure and is trained by 1200 manually labeled images
with 5 types of objecting in the training set. The images are processed with instance segmentation
according to the above method, and the segmentation result, which is shown in Figure 3, is compared
with the mask R-CNN method. Figure 3a is the qualitative segmentation result of mask R-CNN. Each
color represents one type of object. The edge of the segmented image is far from the edge of the actual
object, and a hole may be generated in the segmentation area. Figure 3b is the segmentation result
of our method. Because the geometric features at the edge of the object change drastically, while the
geometric features of the object are stable, the image segmentation method based on geometric features
makes the segmentation on the edge of the object more delicate with the segmentation edge closer to
the real value and the segmentation region more complete.
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Figure 3. Comparison of the segmented image. (a) The segmentation results of mask R-CNN, and
(b) the segmentation results of our method.

The quantitative comparison criteria is referred to in [43]. The Intersection-over-Union (IoU) is a
standard metric used to evaluate the accuracy of image segmentation, which calculates the ratio of the
intersection and union between the true value and the predicted segmentation. For each type of object,
we respectively calculate the results of true positives (TP), false positive (FP), and false negative (FN),
and then acquire the IoU of each object using the following formula:

IoU =
TP

TP + FP + FN
(6)
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The experimental results of our dataset and YCB Benchmarks are shown in Tables 1 and 2,
respectively. Since the mask R-CNN method is not sensitive to image boundaries, the geometric
method can clearly discriminate image boundaries, so we combine the deep learning and geometric
feature methods to merge and segment. Since it can compensate for the edge and internal defects of mask
R-CNN, our method is more accurate than the Mask R-CNN method. The MIoU (Mean Intersection
over Union) increased by 2.18% and 5.70% on our dataset and YCB Benchmarks, respectively. Whether
the object is large or small, square or round, our method performed better than the Mask R-CNN
method in all results, which proved that our algorithm can be suitable for a variety of objects. In extreme
cases, like lemon and orange, our method did not perform as good as usual. This is mainly caused by
the bad quality of the point cloud. The precision of our method is influenced by the quality of point
clouds. When an RGBD camera shoots spherical object, the point clouds of the edges are distorted,
which has great effects on the image segmentation. Even so, our method is still more accurate than the
Mask R-CNN method. Thus, the applicability and accuracy of our method is better than the Mask
R-CNN method. The performance of the two above methods on the two datasets is quite different,
because the background on the YCB Benchmarks is not exactly the same as our background, and each
image in the datasets contains only one object, while our captured image contains several objects.
The Mask R-CNN method preformed quite good in our dataset, it is difficult to improve the precision
of segmentation. However, while the Mask R-CNN method preformed poor in the YCB dataset, our
method made a greater improvement.

Table 1. Our dataset results on instance segmentation Intersection-over-Union (IoU) (%).

Method Mean Cylinder Half-Cylinder L-Block Cuboid Box

Mask R-CNN [40] 90.782 92.128 90.168 92.788 86.498 92.327
Our method 92.958 92.174 91.330 92.991 92.443 95.852

Table 2. YCB dataset results on instance segmentation IoU (%).

Method Mean Lemon Pear Orange Plum Bowl Mug

Mask-RCNN [40] 85.221 84.364 82.427 85.868 81.811 87.500 89.356
Our method 90.919 88.194 88.782 91.486 91.440 92.525 93.085

4.3. Three-Dimensional Reconstruction Results

In order to prove the accuracy of the algorithm, we tested the following four methods:

1. Mask-only: mask R-CNN for image segmentation and the forward kinematics for camera
position calculation;

2. Mask+ICP: mask R-CNN for image segmentation, the forward kinematics, and ICP registration
for camera position calculation;

3. SLIC+ICP: Simple Linear Iterative Cluster (SLIC), the forward kinematics, and ICP registration
for camera position calculation; and

4. Our method: mask R-CNN is combined with the LCCCP method for image segmentation,
the forward kinematics, and SICP registration for camera position calculation.

After building the 3D model of five types of objects with these methods, we made the ICP match
with the ground that was true of the object to calculate the object reconstruction accuracy and the
Cloud to Cloud (C2C) absolute distance. The results are shown in Figure 4. Figure 4a shows the
original image, and Figure 4b–e represent the 3D reconstruction results of mask-only, mask + ICP,
SLIC + ICP, and our method, respectively, with different color points representing different types of
objects. Table 3 shows the Cloud to Cloud (C2C) absolute distance between object models and 3D
reconstruction by four methods. The higher value of C2C absolute distance means the lower precision
of the 3D reconstruction. The comparison results show that as the camera position is inaccurate due to
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the robotic manipulator motion error, the mask-only method has the lowest modeling accuracy, and
the image of each frame does not overlap well. Since the mask + ICP and the SLIC + ICP method
optimizes the camera position, the image coincides well, and the model accuracy is greatly improved
compared to the non-optimization method. Our method improves the accuracy of 3D reconstruction
based on the mask + ICP method because it improves the segmentation quality of each frame of image.
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reconstruction results of the mask-only method, (c) the reconstruction results of the mask + ICP method,
(d) the reconstruction results of the SLIC + ICP method, and (e) the reconstruction results of our method.

Table 3. Cloud to Cloud (C2C) absolute distances between our dataset models and 3D reconstruction (mm).

Method Cylinder Half-Cylinder L-Block Cuboid Box

Mask-only [40] 4.786 5.851 5.622 4.806 3.442
Mask + ICP [34] 3.534 4.597 4.535 3.250 3.083
SLIC + ICP [44] 3.504 4.250 4.380 3.262 3.012

Our method 3.449 4.074 4.142 2.992 2.973

We evaluated the accuracy of 3D reconstruction by the method introduced in [43]. The 3D
reconstruction accuracy of the four methods on our dataset is shown in Figure 5. Due to the poor
quality of the image segmentation boundary of mask R-CNN, the reconstructed model has a large
number of misidentification points. The motion error of the robotic manipulator and the camera
calibration error result in an inaccurate position of the camera in the world coordinate system, so,
when directly using the mask R-CNN method, the 3D modeling accuracy is low, with only 28.18% of
the points in 1 mm distance to the model. Since the mask + ICP method optimizes the camera position,
the 3D modeling accuracy is improved compared to the non-optimization method, but as the quality
of image segmentation is still poor, only 48.23% of the points are within 1 mm of the model. Our
method employs fusion segmentation to improve the quality of image segmentation and also uses the
segmentation SICP method to finely correct the image, so it has the highest modeling accuracy among
the four methods, and the average precision reaches 53.16%, which is improved by 25.49% over the
mask-only method, 4.93% over the mask + ICP method, and 3.50% over the SLIC+ICP method.
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Figure 5. Our dataset results on 3D reconstruction IoU (%). Our method significantly improved the 3D
reconstruction IoU compared with the mask-only method, the mask + ICP method, and the SLIC + ICP
method by two-way Analysis of Variance (ANOVA) repeat measures with Tukey’s multiple comparison
test (*** p < 0.001).
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Similarly, we validate our algorithm on the YCB Benchmarks. The C2C absolute distances between
YCB models and 3D reconstruction by four methods are shown in Table 4. The C2C absolute distance
can be used to evaluate the similarity between 3D reconstruction results and object models. The lower
the value, the higher the accuracy of 3D reconstruction and the more significant the similarity is
between the object models. The results in Table 4 indicate that the C2C absolute distances of each object
decrease successively in the four methods of mask-only, mask + ICP, SLIC + ICP, and our method,
which suggests that the 3D reconstruction results of our method are closer to the object models with
highest accuracy. Compared with the other three methods, our method improves the accuracy of
image segmentation and reduces the number of outlier points, so the 3D reconstruction results of
our method is more accurate. The YCB dataset results on 3D reconstruction are shown in Figure 6.
Since the point cloud model of the YCB Benchmarks is obtained by the depth camera in multi-angle
shooting, it is closer to the actual situation than the point cloud model generated by Computer Aided
Design (CAD), so the four methods perform better on the YCB Benchmarks. As shown in Figure 6,
the average accuracy of our method on the YCB Benchmarks is 13.65% over the mask-only method,
4.01% over the mask + ICP method, and 3.27% over the SLIC + ICP method.

Table 4. C2C absolute distances between YCB models and 3D reconstruction (mm).

Method Lemon Pear Orange Plum Bowl Mug

Mask-only [40] 3.727 8.717 4.802 4.918 4.079 3.601
Mask + ICP [34] 3.646 6.244 4.240 4.574 3.341 3.131
SLIC + ICP [44] 3.121 5.849 4.106 4.421 3.251 3.110

Our method 2.593 5.406 3.586 3.693 3.067 2.968

We counted the average CPU time of each methods, as shown in Table 5. Due to the missing
geometric feature segmentation and camera pose optimization, the mask-only method ran fastest
with lowest precision. Without geometric feature segmentation, the mask + ICP method saved time
in segmentation, but the precision of the 3D reconstruction was still poor. The SLIC + ICP method
balanced performance and CPU time. Our method took a little more time in segmentation than the
SLIC + ICP method, but we saved much more time in the 3D mapping. Because we utilized the SICP
method to remove unrelated objects and accelerate point clouds matching.
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Figure 6. YCB dataset results on 3D reconstruction IoU (%). Our method significantly improved the 3D
reconstruction IoU compared with the mask-only method, the mask + ICP method, and the SLIC + ICP
method by two-way ANOVA repeat measures with Tukey’s multiple comparison test (*** p < 0.001).

Table 5. Average CPU Time of each method (ms).

Step Mask-Only Mask + ICP SLIC + ICP Our Method

Segmentation 81 81 784 802
3D Mapping 12 330 334 271
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5. Discussion and Conclusions

This paper proposes an algorithm framework for semantic 3D reconstruction using a robotic
manipulator with an eye-in-hand camera. Unlike SLAM, SFM, and other multi-angle modeling
methods, our approach adds semantic information into the 3D reconstruction process. We have
improved the precision of image segmentation by combining deep learning and geometric feature
analysis, and we have increased the accuracy of the 3D reconstruction model through the SICP algorithm
to optimize camera pose. The semantic information plays two important roles in 3D reconstruction,
one of which is providing the foundation for voxel block merging in image segmentation works, and
the other is to remove background during the point cloud matching process and improve the accuracy
of the ICP algorithm.

We evaluated the four methods on the YCB Benchmarks and the dataset created by ourselves.
The experimental results show that, compared with the deep learning methods, our algorithm is
more accurate in the edge segmentation of objects, leading to an improvement of 3D reconstruction.
Moreover, the accuracy of the 3D reconstruction of objects is remarkably improved due to the removal
of the background interference. Compared with the mask-only, mask + ICP, and SLIC + ICP methods,
our method improved the accuracy of the 3D reconstruction on the YCB Benchmarks by 13.65%, 4.01%,
and 3.27%, respectively. The same trend was showed on our dataset, with the increasing of the accuracy
by 25.49%, 4.93%, and 3.50%, respectively.

In the future, we will apply this method to more scenarios and objects. Based on semantic 3D
reconstruction, we will use the object point cloud model to analyze the spatial topological relationship
between objects to obtain the decision of the corresponding capture strategy and then make the
autonomous robot planning perform a variety of tasks in a semantic map.
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