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Abstract: Autonomous navigation of ground vehicles on natural environments requires looking for
traversable terrain continuously. This paper develops traversability classifiers for the three-dimensional
(3D) point clouds acquired by the mobile robot Andabata on non-slippery solid ground. To this
end, different supervised learning techniques from the Python library Scikit-learn are employed.
Training and validation are performed with synthetic 3D laser scans that were labelled point by point
automatically with the robotic simulator Gazebo. Good prediction results are obtained for most of
the developed classifiers, which have also been tested successfully on real 3D laser scans acquired by
Andabata in motion.
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1. Introduction

Traversability is a key issue for motion planning of ground vehicles on unstructured terrain that
has been addressed in different ways [1]. Among them, this relevant analysis can also be carried out
with three-dimensional (3D) point clouds acquired at the ground level with stereo vision [2] or laser
scanners [3].

3D laser scanners are of common use when moving on rough surfaces because they offer a great
quantity of reliable information of the surroundings [4]. However, the resulting scans often have
a complex structure and an uneven point density that decays with the distance to the sensor [5].
Nevertheless, these problems have not hindered autonomous navigation by processing raw point
clouds directly [6,7].

Ground extraction is a process very related with traversability assessment, which is commonly
performed just before scene segmentation [8]. Instead of designing specific segmentation procedures
for floor detection [9], different machine learning techniques can be trained with spatial features
computed right from the 3D point cloud [10,11].

Supervised learning usually employs hand-labelled points to obtain predictive models that can be
applied to new data [12]. In this way, the Classification Learner App of Matlab has been employed to
extract ground from 3D point clouds of an urban dataset [13]. Accordingly, a support vector machine
was used to detect urban and rural roads with stereo vision [14].

However, tagging point by point real 3D data from ground vehicles on natural environments
requires a laborious and error-prone effort [15]. In addition, to the best knowledge of the authors,
there are no tagged repositories with this kind of data. As an alternative to manually-labelled data,
learning from demonstration with 3D point clouds acquired from a teleoperated vehicle on traversable
zones can be employed by a Positive Naive Bayes classifier [16], a Gaussian Process [17], or a support
vector machine [18].
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Moreover, synthetic depth data offers interesting opportunities for training traversability [19].
In this sense, virtual Lidar data generated with Matlab has been employed to build a neural network
that classifies traversable terrain of planetary surfaces [20]. Similarly, in [21], a convolutional neural
network has been trained to distinguish traversable patches from heightmap images obtained by the
robotic simulator Gazebo [22].

To obtain natural-terrain traversability classifiers for 3D point clouds acquired by the mobile robot
Andabata [23] on non-slippery solid ground, this paper develops the following main contributions.

• Synthetic 3D point clouds from Gazebo, that were previously labelled without errors [15],
are employed for training and validation.

• The performance of seven potent supervised learning techniques from the free software Scikit-learn
library [24] of the Python programming language is evaluated.

• The resulting classifiers are also tested with real data acquired, whereas Andabata was teleoperated
on natural terrain.

The rest of the paper is organised as follows. The following section overviews the procedure used
to obtain synthetic 3D laser scans with point traversability labels. Section 3 presents the training of
various classifiers with these labelled point clouds. Then, Sections 4 and 5 contain validation results
for both simulated and real data, respectively. The paper ends with conclusions, acknowledgements
and references.

2. Traversability-Labeling of 3D laser scans

This section overviews how synthetic 3D laser scans of the mobile robot Andabata on natural
environments can be labelled automatically [15]. Andabata is a ground vehicle for outdoor navigation,
which is 0.67 m long, 0.54 m wide and 0.81 m high [23]. This skid-steered robot carries a 3D laser
rangefinder on top and centered (see Figure 1), which is based on the unrestrained rotation of a
commercial two-dimensional (2D) laser scanner around its optical centre [25].

Figure 1. Andabata mobile robot equipped with its 3D laser scanner on the upper end.

The vertical and horizontal fields of view of the 3D sensor are 270◦ and 360◦, respectively. The 3D
sensor has inherited from the 2D scanner its vertical resolution of 0.25◦, its ±3 cm accuracy and its
range of measurements from 0.1 m to 15 m under direct sunlight [25]. The horizontal resolution of
the 3D rangefinder depends on the turns performed by the entire 2D sensor and its turning speed.
Once mounted on Andabata, the blind region of the 3D sensor is a cone that begins at its optical centre
(0.723 m above the ground) and encompasses all the vehicle below [23].
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The robotic simulator Gazebo [22] can be employed to obtain realistic point clouds of rough terrain
from 3D rangefinders [3,19]. Figure 2 shows a general view of the natural environment generated
with Gazebo, whose maximum dimensions are 150 m long, 150 m wide and 20 m high [15]. It contains
natural elements like uneven ground, grass, bushes, rocks, trees and water. However, it also has
artificial elements like tables, benches, fences, power lines and pavement. Five different zones can be
distinguished inside: hills (A), a cave (B), a forest (C), a lake (D) and a park (E).

Figure 2. Overview of the natural environment built with Gazebo. Five different zones are marked
with capital letters.

Apart from modelling the natural environment, Gazebo simulates the range and intensity
measurements of the 2D laser scanner [22]. Successive rotations are applied to the 2D sensor around
its optical center to obtain a full 3D scan [15]. The ranges are employed to calculate the 3D Cartesian
coordinates of detected objects. Moreover, by taking into account the pitch and roll angles on the
terrain [15], the whole point cloud is levelled to operate as Andabata does [23]. Besides, the intensity
measurements are used to label each 3D point distinctively by assigning different reflectivity values to
each natural or artificial element. In addition, points from the water element are removed from the 3D
point cloud to emulate laser beam deflections [15].

Three laser scans with a horizontal resolution of 1◦ have been obtained for each zone of the
natural environment by placing Andabata on different spots on the ground. Then, these synthetic
scans are binarized in the following way; those points that belong to the ground, pavement and low
grass (with a maximum height of 5 cm) are labelled as traversable and the rest as non-traversable.
In addition, the inclination of every traversable point is estimated by computing the normal of the
local plane fitted with the twenty nearest traversable neighbours. Finally, all the points with a slope
greater than 20◦ (maximum inclination that Andabata can navigate) are re-labelled as non-traversable.

Figure 3 summaries the different stages required for labelling traversability:

(a) Represents a view of the hills zone (A) built with Gazebo [22].
(b) Shows a simulated 3D scan acquired with Andabata. The empty circle on the ground at the center

of the laser scan corresponds to the blind area of the 3D sensor.
(c) Represents the previous scan once it has been levelled and its 3D points tagged with different

colours according to their intensity values [15].
(d) Shows the traversable points of the laser scan in green colour, and the rest in red. In this case,

non-traversable points originate from trees, bushes, the electric line and very sloped terrain.
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(a) (b)

(c) (d)

Figure 3. A view of the hills generated with Gazebo (a), a synthetic 3D scan taken from this zone (b),
its gravity-levelled and intensity-tagged point cloud (c) and the traversability-labelled 3D data (d).

3. Training Terrain Traversability

The first step is to extract appropriate spatial features for traversability classification. Then, different
supervised learning techniques can be trained.

3.1. Feature Computation

Spatial features are extracted for each 3D point from its neighbourhood, which is computed with
a fixed proximity radius of 0.3 m. Those Cartesian points with less than five neighbours are discarded
from feature calculation to ensure a minimum of information. Nearest neighbour search for every
levelled point cloud is accelerated by using a 3D-tree data structure, which is built with the Python
function KDTree from the Scikit-learn library [24].

The following combination of simple spatial features, which has been already used for reliable
ground extraction [13], is employed for every 3D laser point.

1. The minimum height coordinate among all the neighbours [11].
2. The vertical orientation, which is obtained from an eigenvector of the lowest eigenvalue of the

principal components analysis (PCA) [17].
3. Scatterness, which is related with the value of the smallest eigenvalue from PCA [10].

PCA is sped up for each point neighbourhood with the Python compiler Numba (http://numba.
pydata.org). Even so, the processing time of features still depends on the number of points of each 3D
laser scan. To improve this time, by taking advantage of the four cores of the processor of Andabata
(16 GB RAM, Intel Core i7 at 3.5 GHz), the Python library multithreading (https://docs.python.org/
3/library/multiprocessing.html has been tested, but with disappointing results, and it has been
discarded. Thus, for an average synthetic scan of 76,000 points, where ~3% of points do not have
enough neighbours, data preprocessing is performed in 3.16 s.

http://numba.pydata.org
http://numba.pydata.org
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
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3.2. Supervised Learning

Different classification algorithms from the Python library Scikit-learn [24] have been chosen to
predict 3D point traversability using the above set of spatial features. This machine learning library
was designed to operate with the numerical and scientific libraries of Python NumPy and SciPy,
respectively [24].

Taking into account that it is not necessary to employ complex classification methods to extract
ground accurately from 3D Lidar scans [13], seven relevant supervised learning techniques have
been selected for training: Decision Trees (DT), Gaussian Naive Bayes (GNB), K-Nearest Neighbors
(KNN), Linear Support Vector Machine (LSVM), Bagged Decision Trees (BDT), Random Forest
(RF) and Gradient Boosted Trees (GBT). The last three are ensemble methods that combine various
base estimators.

Ten of the fifteen generated 3D point clouds are dedicated exclusively to the training process.
This error-free synthetic data contains a total of 743,346 points, where 721,616 comply with the
minimum neighbourhood restriction. The training data is unbalanced because about 70% of points
belong to the traversable class. This happens mainly because most of the laser points are acquired
from the ground near Andabata.

Table 1 shows the training times required by each estimator tuned with its default options.
The most time-demanding methods are LSVM and GBT, whereas the less demanding methods are
GNB and KNN. It is remarkable the big gap of 136 s between the best and the worst times. Nevertheless,
these times are not critical for navigation because training is only performed once off-line.

Table 1. Training times for traversability classification.

Estimator Acronym Time (s)

Decision Trees DT 3.3
Gaussian Naive Bayes GNB 0.1
K-Nearest Neighbors KNN 1.1
Linear Support Vector Machine LSVM 136.3
Bagged Decision Trees BDT 21.0
Random Forest RF 8.1
Gradient Boosted Trees GBT 41.3

4. Validating Traversability Classifiers

Five synthetic 3D point clouds, one per each zone of the natural environment, are employed for
validation purposes exclusively. This data contains a total of 397,426 points where 385,959 have at least
five neighbours. This validation data is also unbalanced with ~68% of points in the traversable class.

For all the classifiers, the prediction time for an average synthetic scan is almost negligible with
respect to its preprocessing time with the exception of the KNN estimator that requires 0.2 s. Table 2
contains the components of the confusion matrix of each trained classifier, where TP, FP, TN and FN
stand for the number of true positives, false positives, true negatives and false negatives, respectively.
True refers to points classified correctly and false to the opposite, whereas positive refers to the
non-traversable class and negative to the traversable class.

To compare the performance of the binary classifiers, five accuracy indices for imbalanced data,
computed by Scikit-learn functions (https://scikit-learn.org/stable/_downloads/scikit-learn-docs.
pdf), are considered. The precision (PR), the recall (RE) and the F1 scores are the first, the second and
the third indices, respectively:

PR =
TP

TP + FP
, RE =

TP
TP + FN

, F1 = 2
PR · RE

PR + RE
. (1)

The fourth index is the balanced accuracy score (BA):

https://scikit-learn.org/stable/_downloads/scikit-learn-docs.pdf
https://scikit-learn.org/stable/_downloads/scikit-learn-docs.pdf
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BA =
1
2

(
RE +

TN
TN + FP

)
. (2)

All the above indices vary between 0 and 1 for the worst and the best classification results,
respectively. The last index is the Matthews correlation coefficient (MC):

MC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (3)

that ranges from −1 to 1, where −1 indicates an inverse classification, 0 a random prediction and 1 a
perfect prediction.

Table 2. Components of the confusion matrices for synthetic data.

Estimator TP TN FP FN

Decision Trees 111,912 252,446 10,007 11,594
Gaussian Naive Bayes 89,890 259,351 3102 33,616
K-Nearest Neighbors 111,538 256,915 5538 11,968
Linear Support Vector Machine 97,559 21,8384 44,069 25,947
Bagged Decision Trees 113,111 254,622 7831 10,395
Random Forest 112,547 257,396 5057 10,959
Gradient Boosted Trees 111,335 258,922 3531 12,171

Table 3 includes the five accuracy indices for every estimator. In general, high accuracy is achieved,
but the best performance comes from the RF and GBT classifiers and the least from the GNB and
LSVM estimators.

Table 3. Balanced accuracy indices for synthetic data.

Estimator PR RE F1 BA MC

Decision Trees 0.918 0.906 0.912 0.934 0.871
Gaussian Naive Bayes 0.967 0.728 0.830 0.858 0.781
K-Nearest Neighbors 0.953 0.903 0.927 0.941 0.895
Linear Support Vector Machine 0.689 0.790 0.736 0.811 0.602
Bagged Decision Trees 0.935 0.916 0.925 0.943 0.891
Random Forest 0.957 0.911 0.934 0.946 0.904
Gradient Boosted Trees 0.969 0.901 0.934 0.944 0.906

Figures 4–8 illustrate the results of applying the RF classifier to the five validation scans. Excellent
estimations of both classes can be observed in red and green colours. Blue colour represents 3D points
that have not been classified due to the lack of neighbours. These unclassified points are usually
located far from Andabata, where scan density decreases.

(a) (b)

Figure 4. The validation scan on the hills (a) and the prediction results with RF (b).
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(a) (b)

Figure 5. The validation scan at the entrance of the cave (a) and the prediction results with RF (b).

(a) (b)

Figure 6. The validation scan inside the forest (a) and the prediction results with RF (b).

(a) (b)

Figure 7. The validation scan near the shore of the lake (a) and the prediction results with RF (b).

(a) (b)

Figure 8. The validation scan on the park (a) and the prediction results with RF (b).
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5. Classification Tests With Real 3D Laser Scans

Figures 9a–11a show a park, a rural path and an underpass where Andabata has been teleoperated.
For each scene, a levelled 3D point cloud with a horizontal resolution of 1.2◦ and without intensity
data has been obtained in 3.75 s [23]. Sky visibility determines the number of points for each laser scan,
ranging from 32,795 for the park to 83,183 for the underpass.

All this real data has been manually tagged to serve as ground truth (see Figures 9b–11b). In these
figures, it is noticeable that the blind area on the ground is reduced because Andabata was moving
during scan acquisition. The hand-labelled data contains a total of 162,999 points, where 90,074 belong
to the traversable class.

Feature extraction and traversability prediction for each scan can be obtained in 2.5 s for all the
estimators with the exception of KNN that requires 2.7 s. In any case, these classification times make
possible to process each 3D laser scan separately for autonomous navigation. Only 3215 points have
not been classified due to the lack of five neighbours.

Table 4 contains the confusion matrices obtained by each classifier. The balanced accuracy indices
corresponding to this table can be found in Table 5. With real data, a slightly worst accuracy is
achieved than with synthetic data, but it is still very high. The worst ranked estimators—GNB and
LSVM—coincide with those pointed out in previous section. It also repeats as best ranked RF, this time
accompanied by KNN.

Figures 9c–11c illustrate the results of applying the RF classifier to the three real points clouds.
Good classification results can be observed visually for all these scenes in these figures. Nevertheless,
they contain errors such as some isolated green points on the slope near the rural path and on the
vertical walls of the tunnel.

(a)

(b) (c)

Figure 9. A photograph of a park (a) and a real 3D point cloud from Andabata manually-tagged (b)
and classified with RF (c).



Appl. Sci. 2020, 10, 1140 9 of 12

Table 4. Components of the confusion matrices for real data.

Classifier TP TN FP FN

Decision Trees 66,060 80,747 6918 6059
Gaussian Naive Bayes 51,110 83,541 4123 21,010
K-Nearest Neighbors 64,810 84,887 6679 3408
Linear Support Vector Machine 69,630 74,623 13,192 2339
Bagged Decision Trees 66,423 81,624 6027 5710
Random Forest 67,390 81,175 6475 4744
Gradient Boosted Trees 65,025 80,657 7893 6209

Table 5. Balanced accuracy indices for real data.

Classifier PR RE F1 BA MC

Decision Trees 0.905 0.916 0.911 0.919 0.836
Gaussian Naive Bayes 0.925 0.709 0.803 0.831 0.692
K-Nearest Neighbors 0.907 0.950 0.928 0.939 0.873
Linear Support Vector Machine 0.841 0.968 0.900 0.909 0.814
Bagged Decision Trees 0.917 0.921 0.920 0.926 0.852
Random Forest 0.912 0.934 0.923 0.930 0.859
Gradient Boosted Trees 0.892 0.913 0.902 0.912 0.822

(a)

(b) (c)

Figure 10. A photograph of a rural path (a) and a real 3D point cloud from Andabata manually-tagged
(b) and classified with RF (c).
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(a)

(b) (c)

Figure 11. A photograph of an underpass (a) and a real 3D point cloud from Andabata manually-tagged
(b) and classified with RF (c).

6. Conclusions

This paper has developed point-traversability classifiers for the 3D laser scans acquired by the
mobile robot Andabata on natural environments. For this purpose, seven potent supervised learning
methods from the Python library Scikit-learn have been employed. Apart from being very complete
and using free software, this library has also facilitated the work flow to a great extent.

Furthermore, to perform training and validation, it has been necessary to use binary-tagged 3D
point clouds obtained automatically with the robotic simulator Gazebo. This gravity-levelled data
resembles closely that obtained by the 3D sensor of Andabata on non-slippery solid terrain. The main
difference is that each synthetic point has associated a traversability label, that depends mainly on its
intensity measurement.

For traversability assessment, three simple spatial features have been computed for every
Cartesian point. However, feature extraction is a time-demanding process in Python that has been
necessary to accelerate via compilation. On the contrary, prediction times, once obtained the features,
are generally negligible. All in all, Andabata would be able to determine the traversability of a whole
3D laser scan well before the following 3D scan is available.

High accuracy indices for unbalanced validation data have been obtained for most estimators,
outstanding the Random Forest method for both synthetic and real 3D point clouds. It has also been
confirmed that the traversability classifiers, trained only with simulated data, can perform very well
with real data.

Work in progress includes autonomous navigation of Andabata on natural environments based
on the continuous traversability classification of successive 3D laser scans. It is also of interest to
perform the tuning of hyper-parameters of classifiers to improve traversability estimations.
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